E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	Fixed Point
Interface	Host Interface, SSI, SCI
Clock Rate	100MHz
Non-Volatile Memory	ROM (576B)
On-Chip RAM	24kB
Voltage - I/O	3.30V
Voltage - Core	3.30V
Operating Temperature	-40°C ~ 100°C (TJ)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/dsp56303ag100b1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features

 Table 1 lists the features of the DSP56303 device.

Feature			Descr	iption			
High-Performance DSP56300 Core	 100 million mult Object code cor Data arithmetic 56-bit parallel ba ALU instructions Program control DSP application expandable hard Direct memory a , and three-dimetriggering from i Phase-lock loop with skew elimir Hardware debugget test access port 	100 million multiply-accumulates per second (MMACS) with a 100 MHz clock at 3.3 V nominal Object code compatible with the DSP56000 core with highly parallel instruction set Data arithmetic logic unit (Data ALU) with fully pipelined 24 × 24-bit parallel multiplier-accumulator (MAC), 56-bit parallel barrel shifter (fast shift and normalization; bit stream generation and parsing), conditional ALU instructions, and 24-bit or 16-bit arithmetic support under software control Program control unit (PCU) with position-independent code (PIC) support, addressing modes optimized for DSP applications (including immediate offsets), internal instruction cache controller, internal memory- expandable hardware stack, nested hardware DO loops, and fast auto-return interrupts Direct memory access (DMA) with six DMA channels supporting internal and external accesses; one-, two-, and three-dimensional transfers (including circular buffering); end-of-block-transfer interrupts; and triggering from interrupt lines and all peripherals Phase-lock loop (PLL) allows change of low-power divide factor (DF) without loss of lock and output clock with skew elimination Hardware debugging support including on-chip emulation (OnCE ^c) module, Joint Test Action Group (JTAG) test access port (TAP)					
Internal Peripherals	 Enhanced 8-bit glueless connect Two enhanced s six-channel horr Serial communities Triple timer moct Up to thirty-four are enabled 	 Enhanced 8-bit parallel host interface (HI08) supports a variety of buses (for example, ISA) and provides glueless connection to a number of industry-standard microcomputers, microprocessors, and DSPs Two enhanced synchronous serial interfaces (ESSI), each with one receiver and three transmitters (allows six-channel home theater) Serial communications interface (SCI) with baud rate generator Triple timer module Up to thirty-four programmable general-purpose input/output (GPIO) pins, depending on which peripherals 					
	 192 × 24-bit bootstrap ROM 8 K × 24-bit RAM total Program RAM, instruction cache, X data RAM, and Y data RAM sizes are programmable: 						
Internal Memories	Program RAM Size	Instruction Cache Size	X Data RAM Size	Y Data RAM Size	Instruction Cache	Switch Mode	
	4096×24 -bit 3072×24 -bit 2048×24 -bit 1024×24 -bit	$0 \\ 1024 \times 24\text{-bit} \\ 0 \\ 1024 \times 24\text{-bit}$	2048×24 -bit 2048×24 -bit 3072×24 -bit 3072×24 -bit	2048×24 -bit 2048×24 -bit 3072×24 -bit 3072×24 -bit	disabled enabled disabled enabled	disabled disabled enabled enabled	
External Memory Expansion	 Data memory ex lines Program memori address lines External memori Chip select logic Internal DRAM (Data memory expansion to two 256 K × 24-bit word memory spaces using the standard external address lines Program memory expansion to one 256 K × 24-bit words memory space using the standard external address lines External memory expansion port Chip select logic for glueless interface to static random access memory (SRAMs) Internal DRAM Controller for glueless interface to duramic random access memory (DRAMs) 					
Power Dissipation	 Very low-power Wait and Stop lo Fully static designed Optimized power dependent) 	CMOS design ow-power standby gn specified to op er management cir	r modes erate down to 0 Hz rcuitry (instruction-o	(dc) dependent, periphe	eral-dependent, ar	nd mode-	
Packaging	144-pin TQFP p196-pin molded	ackage in lead-fre array plastic-ball	e or lead-bearing grid array (MAP-BC	versions GA) package in lea	d-free or lead-bea	ring versions	

Table 1. DSP56303 Features

- Notes: 1. The HI08 port supports a non-multiplexed or a multiplexed bus, single or double Data Strobe (DS), and single or double Host Request (HR) configurations. Since each of these modes is configured independently, any combination of these modes is possible. These HI08 signals can also be configured alternatively as GPIO signals (PB[0–15]). Signals with dual designations (for example, HAS/HAS) have configurable polarity.
 - 2. The ESSI0, ESSI1, and SCI signals are multiplexed with the Port C GPIO signals (PC[0–5]), Port D GPIO signals (PD[0–5]), and Port E GPIO signals (PE[0–2]), respectively.
 - 3. TIO[0–2] can be configured as GPIO signals.
 - 4. Ground connections shown in this figure are for the TQFP package. In the MAP-BGA package, in addition to the GND_P and GND_{P1} connections, there are 64 GND connections to a common internal package ground plane.

Figure 1-1. Signals Identified by Functional Group

 Table 2-3.
 DC Electrical Characteristics⁶ (Continued)

		Characteristics	Symbol	Min	Тур	Max	Unit
Notes:	1. 2. 3. 4. 5. 6. 7. 8.	Refers to MODA/IRQA, MODB/IRQB, MODC/IRQC, and Section 4.3 provides a formula to compute the estimate results, all inputs must be terminated (that is, not allower benchmarks (see Appendix A). The power consumption of this benchmark. This reflects typical DSP applications 100°C. In order to obtain these results, all inputs must be termine In order to obtain these results, all inputs that are not dis float). PLL and XTAL signals are disabled during Stop st Periodically sampled and not 100 percent tested. $V_{CC} = 3.3 V \pm 0.3 V$; $T_J = -40^{\circ}$ C to +100 °C, $C_L = 50 \text{ pF}$ This characteristic does not apply to XTAL and PCAP. Driving EXTAL to the low V _{IHX} or the high V _{ILX} value mapower consumption, the minimum V _{IHX} should be no higher the second statement of the second stateme	d MODD/IRQE d current requ d to float). Me n numbers in f s. Typical inter nated (that is, sconnected at tate. ay cause addit ver than nan 0.1 × V _{CC}	D pins. Jirements in No asurements are this specificatio rnal supply curr not allowed to f Stop mode mu tional power con c.	prmal mode. In e based on syn n are 90 perce ent is measure float). Ist be terminate	order to obtain the othetic intensive D ant of the measure ed with $V_{CC} = 3.3$ V ed (that is, not allo current). To minir	ese SP d results / at T _J = wed to mize

2.5 AC Electrical Characteristics

The timing waveforms shown in the AC electrical characteristics section are tested with a V_{IL} maximum of 0.3 V and a V_{IH} minimum of 2.4 V for all pins except EXTAL, which is tested using the input levels shown in Note 6 of the previous table. AC timing specifications, which are referenced to a device input signal, are measured in production with respect to the 50 percent point of the respective input signal transition. DSP56303 output levels are measured with the production test machine V_{OL} and V_{OH} reference levels set at 0.4 V and 2.4 V, respectively.

Note: Although the minimum value for the frequency of EXTAL is 0 MHz, the device AC test conditions are 15 MHz and rated speed.

2.5.1 Internal Clocks

Characteristics	Symbol		Expression ^{1, 2}				
Characteristics	Cymbol	Min	Тур	Мах			
Internal operation frequency and CLKOUT with PLL enabled	f	_	$\begin{array}{c} (Ef\timesMF)/\\ (PDF\timesDF) \end{array}$	—			
Internal operation frequency and CLKOUT with PLL disabled	f	—	Ef/2	—			
 Internal clock and CLKOUT high period With PLL disabled With PLL enabled and MF ≤4 With PLL enabled and MF > 4 	т _н	$\begin{array}{c}\\ 0.49 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF}\\ 0.47 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF} \end{array}$	ET _C — —	$\begin{array}{c}\\ 0.51 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF}\\ 0.53 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF} \end{array}$			
 Internal clock and CLKOUT low period With PLL disabled With PLL enabled and MF ≤4 With PLL enabled and MF > 4 	TL	$\begin{matrix}\\ 0.49 \times \text{ET}_{\text{C}} \times \\ \text{PDF} \times \text{DF/MF} \\ 0.47 \times \text{ET}_{\text{C}} \times \\ \text{PDF} \times \text{DF/MF} \end{matrix}$	ET _C — —	$\begin{matrix}\\ 0.51 \times \text{ET}_{\text{C}} \times \\ \text{PDF} \times \text{DF/MF} \\ 0.53 \times \text{ET}_{\text{C}} \times \\ \text{PDF} \times \text{DF/MF} \end{matrix}$			
Internal clock and CLKOUT cycle time with PLL enabled	T _C	—	$ET_{C} \times PDF \times DF/MF$	—			

Table 2-4. Internal Clocks, CLKOUT

b) General-Purpose I/O

Figure 2-5. External Fast Interrupt Timing

Figure 2-7. Synchronous Interrupt from Wait State Timing

Figure 2-8. Operating Mode Select Timing

ifications

Figure 2-16. DRAM Page Mode Read Accesses

2.5.6 Host Interface Timing

	Observation to 10	F	100		
NO.	Characteristic	Expression	Min	Max	Unit
317	Read data strobe assertion width ⁵ HACK assertion width	T _C + 9.9	19.9	—	ns
318	Read data strobe deassertion width ⁵ HACK deassertion width		9.9	_	ns
319	Read data strobe deassertion width ⁵ after "Last Data Register" reads ^{8,11} , or between two consecutive CVR, ICR, or ISR reads ³ HACK deassertion width after "Last Data Register" reads ^{8,11}	$2.5 \times T_{C} + 6.6$	31.6	_	ns
320	Write data strobe assertion width ⁶		13.2	—	ns
321	Write data strobe deassertion width ⁸ HACK write deassertion width • after ICR, CVR and "Last Data Register" writes	$2.5 \times T_{C} + 6.6$	31.8	_	ns
	 after IVR writes, or after TXH:TXM:TXL writes (with HLEND= 0), or after TXL:TXM:TXH writes (with HLEND = 1) 		16.5	_	ns
322	HAS assertion width		9.9	—	ns
323	HAS deassertion to data strobe assertion ⁴		0.0	—	ns
324	Host data input setup time before write data strobe deassertion ⁶		9.9	—	ns
325	Host data input hold time after write data strobe deassertion ⁶		3.3	—	ns
326	Read data strobe assertion to output data active from high impedance ⁵ HACK assertion to output data active from high impedance		3.3	—	ns
327	Read data strobe assertion to output data valid ⁵ $\overline{\text{HACK}}$ assertion to output data valid		_	24.5	ns
328	Read data strobe deassertion to output data high impedance ⁵ HACK deassertion to output data high impedance		—	9.9	ns
329	Output data hold time after read data strobe deassertion ⁵ Output data hold time after HACK deassertion		3.3	—	ns
330	HCS assertion to read data strobe deassertion ⁵	T _C + 9.9	19.9	_	ns
331	HCS assertion to write data strobe deassertion ⁶		9.9	_	ns
332	HCS assertion to output data valid		_	19.3	ns
333	HCS hold time after data strobe deassertion ⁴		0.0	—	ns
334	Address (HAD[0-7]) setup time before HAS deassertion (HMUX=1)		4.6	—	ns
335	Address (HAD[0-7]) hold time after HAS deassertion (HMUX=1)		3.3	—	ns
336	HA[8–10] (HMUX=1), HA[0–2] (HMUX=0), HR/W setup time before data strobe assertion ⁴ • Read • Write		0 4.6		ns ns
337	HA[8–10] (HMUX=1), HA[0–2] (HMUX=0), HR/ \overline{W} hold time after data strobe deassertion ⁴		3.3	_	ns
338	Delay from read data strobe deassertion to host request assertion for "Last Data Register" read ^{5, 7, 8}	T _C + 5.3	15.3	_	ns
339	Delay from write data strobe deassertion to host request assertion for "Last Data Register" write ^{6, 7, 8}	$1.5 \times T_{C} + 5.3$	20.3	_	ns

Table 2-16.Host Interface Timings^{1,2,12}

Table 2-16.	Host Interface Timings ^{1,2,12}	(Continued)
-------------	--	-------------

Ne			Everencian	100 MHz		Unit
NO.		Characteristic	Expression	Min	Max	Unit
340	Delay Regist	from data strobe assertion to host request deassertion for "Last Data ter" read or write (HROD=0) ^{4, 7, 8}		_	19.3	ns
341	Delay from data strobe assertion to host request deassertion for "Last Data Register" read or write (HROD=1, open drain host request) ^{4, 7, 8, 9}				300.0	ns
Notes:	 See the Programmer's Model section in the chapter on the HI08 in the <i>DSP56303 User's Manual</i>. In the timing diagrams below, the controls pins are drawn as active low. The pin polarity is programmable. This timing is applicable only if two consecutive reads from one of these registers are executed. The data strobe is Host Read (HRD) or Host Write (HWR) in the Dual Data Strobe mode and Host Data Strobe (HDS) in the Single Data Strobe mode. The read data strobe is HRD in the Dual Data Strobe mode and HDS in the Single Data Strobe mode. The write data strobe is HRD in the Dual Data Strobe mode and HDS in the Single Data Strobe mode. The new rite data strobe is HREQ in the Single Host Request mode and HRQ and HTRQ in the Double Host Request mode. The "Last Data Register" is the register at address \$7, which is the last location to be read or written in data transfers. This is RXL/TXL in the Big Endian mode (HLEND = 0; HLEND is the Interface Control Register bit 7—ICR[7]), or RXH/TXH in the Little Endian mode (HLEND = 1). In this calculation, the host request signal is pulled up by a 4.7 kΩ resistor in the Open-drain mode. V_{CC} = 3.3 V ± 0.3 V; T_J = -40°C to +100 °C, C_L = 50 pF This timing is applicable only if a read from the "Last Data Register" is followed by a read from the RXL, RXM, or RXH registers 					

12. After the external host writes a new value to the ICR, the HI08 is ready for operation after three DSP clock cycles ($3 \times$ Tc).

Note: The IVR is read only by an MC680xx host processor in non-multiplexed mode.

Figure 2-27. Host Interrupt Vector Register (IVR) Read Timing Diagram

2.5.8 ESSI0/ESSI1 Timing

Table 2-18. ESSI Timings

No	Characteristics ^{4, 5, 7}	Symbol	Expression ⁹	100 MHz		Cond-	Unit
NO.		Symbol	Expression	Min	Max	ition ⁵	Onit
430	Clock cycle ¹	t _{SSICC}	$3 \times T_C$ $4 \times T_C$	30.0 40.0		x ck i ck	ns
431	Clock high period • For internal clock • For external clock		2 × T _C - 10.0 1.5 × T _C	10.0 15.0	_		ns ns
432	Clock low period • For internal clock • For external clock		$\begin{array}{c} 2\times \ T_C -10.0 \\ 1.5\times \ T_C \end{array}$	10.0 15.0	_		ns ns
433	RXC rising edge to FSR out (bit-length) high			-	37.0 22.0	xck icka	ns
434	RXC rising edge to FSR out (bit-length) low			_	37.0 22.0	xck icka	ns
435	RXC rising edge to FSR out (word-length-relative) high ²			_	39.0 37.0	xck icka	ns
436	RXC rising edge to FSR out (word-length-relative) low ²			_	39.0 37.0	xck icka	ns
437	RXC rising edge to FSR out (word-length) high			_	36.0 21.0	x ck i ck a	ns
438	RXC rising edge to FSR out (word-length) low			_	37.0 22.0	x ck i ck a	ns
439	Data in set-up time before RXC (SCK in Synchronous mode) falling edge			10.0 19.0	_	x ck i ck	ns
440	Data in hold time after RXC falling edge			5.0 3.0	_	x ck i ck	ns
441	FSR input (bl, wr) ⁷ high before RXC falling edge ²			1.0 23.0	—	x ck i ck a	ns
442	FSR input (wl) ⁷ high before RXC falling edge			3.5 23.0	_	x ck i ck a	ns
443	FSR input hold time after RXC falling edge			3.0 0.0	—	x ck i ck a	ns
444	Flags input set-up before RXC falling edge			5.5 19.0	_	xck icks	ns
445	Flags input hold time after RXC falling edge			6.0 0.0	_	xck icks	ns
446	TXC rising edge to FST out (bit-length) high			_	29.0 15.0	x ck i ck	ns
447	TXC rising edge to FST out (bit-length) low			_	31.0 17.0	x ck i ck	ns
448	TXC rising edge to FST out (word-length-relative) high ²			_	31.0 17.0	x ck i ck	ns
449	TXC rising edge to FST out (word-length-relative) low ²			_	33.0 19.0	x ck i ck	ns
450	TXC rising edge to FST out (word-length) high			_	30.0 16.0	x ck i ck	ns
451	TXC rising edge to FST out (word-length) low			—	31.0 17.0	x ck i ck	ns
452	TXC rising edge to data out enable from high impedance			_	31.0 17.0	x ck i ck	ns

Note: In Network mode, output flag transitions can occur at the start of each time slot within the frame. In Normal mode, the output flag state is asserted for the entire frame period.

2.5.10 GPIO Timing

Table 2-20.	GPIO	Timing
-------------	------	--------

No	Characteristics	Expression	100	Unit	
NO.	Characteristics	Expression	Min	Max	Unit
490	CLKOUT edge to GPIO out valid (GPIO out delay time)		—	8.5	ns
491	CLKOUT edge to GPIO out not valid (GPIO out hold time)		0.0	_	ns
492	GPIO In valid to CLKOUT edge (GPIO in set-up time)		8.5	_	ns
493	CLKOUT edge to GPIO in not valid (GPIO in hold time)		0.0	_	ns
494	Fetch to CLKOUT edge before GPIO change	Minimum: $6.75 \times T_{C}$	67.5	—	ns
Note:	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}; T_{J} = -40^{\circ}\text{C} \text{ to } +100 ^{\circ}\text{C}, C_{L} = 50 \text{ pF}$		•	-	•

Fetch the instruction MOVE X0,X:(R0); X0 contains the new value of GPIO and R0 contains the address of the GPIO data register.

Packaging

This section includes diagrams of the DSP56303 package pin-outs and tables showing how the signals described in **Chapter 1**, are allocated for each package.

The DSP56303 is available in two package types:

- 144-pin Thin Quad Flat Pack (TQFP)
- 196-pin Molded Array Process-Ball Grid Array (MAP-BGA)

aging

Table 3-2.	DSP56303 TQFP	Signal Identification	by Name
		- J	.,

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
A0	72	BG	71	D7	109
A1	73	BR	63	D8	110
A10	88	CAS	52	D9	113
A11	89	CLKOUT	59	DE	5
A12	92	D0	100	EXTAL	55
A13	93	D1	101	GND _A	75
A14	94	D10	114	GND _A	81
A15	97	D11	115	GND _A	87
A16	98	D12	116	GND _A	96
A17	99	D13	117	GND _C	58
A2	76	D14	118	GND _C	66
A3	77	D15	121	GND _D	104
A4	78	D16	122	GND _D	112
A5	79	D17	123	GND _D	120
A6	82	D18	124	GND _D	130
Α7	83	D19	125	GND _H	39
A8	84	D2	102	GND _P	47
A9	85	D20	128	GND _{P1}	48
AA0	70	D21	131	GND _Q	19
AA1	69	D22	132	GND _Q	54
AA2	51	D23	133	GND _Q	90
AA3	50	D3	105	GND _Q	127
BB	64	D4	106	GND _S	9
BCLK	60	D5	107	GND _S	26
BCLK	61	D6	108	HO	43

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
M1	HA1, HA8, or PB9	N3	H4, HAD4, or PB4	P5	PCAP
M2	HA2, HA9, or PB10	N4	H2, HAD2, or PB2	P6	GND _{P1}
MЗ	HA0, HAS/HAS, or PB8	N5	RESET	P7	AA2/RAS2
M4	V _{CCH}	N6	GND _P	P8	XTAL
M5	H0, HAD0, or PB0	N7	AA3/RAS3	P9	V _{CCC}
M6	V _{CCP}	N8	CAS	P10	TA
M7	NC	N9	V _{CCQ}	P11	BB
M8	EXTAL	N10	BCLK	P12	AA1/RAS1
M9	CLKOUT	N11	BR	P13	BG
M10	BCLK	N12	V _{CCC}	P14	NC
M11	WR	N13	AA0/RAS0		
M12	RD	N14	A0		
Notes:	Signal names are based on configured functionality. Most connections supply a single signal. Some connections provide a signal with dual functionality, such as the MODx/IRQx pins that select an operating mode after RESET is deasserted but act as interrupt lines during operation. Some signals have configurable polarity; these names are shown with and without overbars, such as HAS/HAS. Some connections have two or more configurable functions; names assigned to these connections indicate the function for a specific configuration. For example, connection N2 is data line H7 in non-multiplexed bus mode, data/address line HAD7 in multiplexed bus mode, or GPIO line PB7 when the GPIO function is enabled for this pin. Unlike in the TQFP package, most of the GND pins are connected internally in the center of the connection array and act as heat sink for the chip. Therefore, except for GND _P and				

GND_{P1} that support the PLL, other GND signals do not support individual subsystems in the chip.

Table 3-3. DSP56303 MAP-BGA Signal Identification by Pin Number (Continued)

- Consider all device loads as well as parasitic capacitance due to PCB traces when you calculate capacitance. This is especially critical in systems with higher capacitive loads that could create higher transient currents in the V_{CC} and GND circuits.
- All inputs must be terminated (that is, not allowed to float) by CMOS levels except for the three pins with internal pull-up resistors (TRST, TMS, DE).
- Take special care to minimize noise levels on the V_{CCP}, GND_P, and GND_{P1} pins.
- The following pins must be asserted after power-up: RESET and TRST.
- If multiple DSP devices are on the same board, check for cross-talk or excessive spikes on the supplies due to synchronous operation of the devices.
- RESET must be asserted when the chip is powered up. A stable EXTAL signal should be supplied before deassertion of RESET.
- At power-up, ensure that the voltage difference between the 5 V tolerant pins and the chip V_{CC} never exceeds 3.5 V.

4.3 Power Consumption Considerations

Power dissipation is a key issue in portable DSP applications. Some of the factors affecting current consumption are described in this section. Most of the current consumed by CMOS devices is alternating current (ac), which is charging and discharging the capacitances of the pins and internal nodes.

Current consumption is described by this formula:

Equation 3: $I = C \times V \times f$

Where:

С	=	node/pin capacitance
V	=	voltage swing
f	=	frequency of node/pin toggle

For a Port A address pin loaded with 50 pF capacitance, operating at 3.3 V, with a 66 MHz clock, toggling at its maximum possible rate (33 MHz), the current consumption is expressed in **Equation 4**.

Equation 4: $I = 50 \times 10^{-12} \times 3.3 \times 33 \times 10^{6} = 5.48 \ mA$

The maximum internal current (I_{CCI} max) value reflects the typical possible switching of the internal buses on bestcase operation conditions—not necessarily a real application case. The typical internal current (I_{CCItyp}) value reflects the average switching of the internal buses on typical operating conditions.

Perform the following steps for applications that require very low current consumption:

- 1. Set the EBD bit when you are not accessing external memory.
- 2. Minimize external memory accesses, and use internal memory accesses.
- 3. Minimize the number of pins that are switching.
- 4. Minimize the capacitive load on the pins.
- 5. Connect the unused inputs to pull-up or pull-down resistors.

Power Consumption Benchmark

The following benchmark program evaluates DSP56303 power use in a test situation. It enables the PLL, disables the external clock, and uses repeated multiply-accumulate (MAC) instructions with a set of synthetic DSP application data to emulate intensive sustained DSP operation.

```
·***
        *******
                    ******
;*
;*
;*
                          Typical Power Consumption
                  CHECKS
;*
;****
         200,55,0,0,0
      page
      nolist
I_VEC EQU $000000; Interrupt vectors for program debug only
START EQU $8000; MAIN (external) program starting address
INT_PROG EQU $100 ; INTERNAL program memory starting address
INT_XDAT EQU $0; INTERNAL X-data memory starting address
INT_YDAT EQU $0; INTERNAL Y-data memory starting address
      INCLUDE "ioequ.asm"
      INCLUDE "intequ.asm"
      list
      org
            P:START
:
      movep #$0243FF,x:M_BCR ;; BCR: Area 3 = 2 w.s (SRAM)
; Default: 2w.s (SRAM)
;
      movep #$0d0000,x:M_PCTL
                              ; XTAL disable
                              ; PLL enable
                               ; CLKOUT disable
;
; Load the program
;
      move
            #INT_PROG,r0
      move
            #PROG_START,r1
      do
            #(PROG_END-PROG_START), PLOAD_LOOP
            p:(r1)+,x0
      move
            x0,p:(r0)+
      move
      nop
PLOAD_LOOP
;
; Load the X-data
;
            #INT_XDAT,r0
      move
            #XDAT_START,r1
      move
      do
            #(XDAT_END-XDAT_START),XLOAD_LOOP
```


M SCRIE EOU 11 ; SCI Receive Interrupt Enable M_SCTIE EQU 12 ; SCI Transmit Interrupt Enable M_TMIE EQU 13 ; Timer Interrupt Enable M_TIR EQU 14 ; Timer Interrupt Rate M SCKP EOU 15 ; SCI Clock Polarity M_REIE EQU 16 ; SCI Error Interrupt Enable (REIE) ; SCI Status Register Bit Flags M TRNE EOU 0 ; Transmitter Empty M TDRE EOU 1 ; Transmit Data Register Empty ; Receive Data Register Full M_RDRF EQU 2 M_IDLE EQU 3 ; Idle Line Flag M_OR EQU 4 ; Overrun Error Flag M_PE EQU 5 ; Parity Error M_FE EQU 6 ; Framing Error Flag M R8 EOU 7 ; Received Bit 8 (R8) Address SCI Clock Control Register ; M_CD EQU \$FFF ; Clock Divider Mask (CD0-CD11) M_COD EQU 12 ; Clock Out Divider M SCP EOU 13 ; Clock Prescaler M_RCM_EQU_14 ; Receive Clock Mode Source Bit M_TCM EQU 15 ; Transmit Clock Source Bit _____ :----; EQUATES for Synchronous Serial Interface (SSI) ; ; ; ; Register Addresses Of SSI0 M_TX00 EQU \$FFFFBC ; SSI0 Transmit Data Register 0 M_TX01 EQU \$FFFFBB ; SSI0 Transmit Data Register 1 M_TX02 EQU \$FFFFBA ; SSI0 Transmit Data Register 2 M_TSR0 EQU \$FFFFB9 ; SSI0 Time Slot Register M_RX0 EQU \$FFFFB8 ; SSI0 Receive Data Register M_SSISR0 EQU \$FFFFB7 ; SSI0 Status Register M_CRB0 EQU \$FFFFB6 ; SSI0 Control Register B M_CRA0 EQU \$FFFFB5 ; SSI0 Control Register A M_TSMA0 EQU \$FFFFB4 ; SSI0 Transmit Slot Mask Register A M_TSMB0 EQU \$FFFFB3 ; SSI0 Receive Slot Mask Register B M_RSMA0 EQU \$FFFFB2 ; SSI0 Receive Slot Mask Register A Register Addresses Of SSIO : M_RSMB0 EQU \$FFFFB1 ; SSIO Receive Slot Mask Register B Register Addresses Of SSI1 M_TX10 EQU \$FFFFAC ; SSI1 Transmit Data Register 0 ; SSI1 Transmit Data Register 1 M_TX11 EQU \$FFFFAB ; SSII Transmit Data Register 1 ; SSII Transmit Data Register 2 ; SSII Time Slot Register M_TX12 EQU \$FFFFAA ; SSI1 Time Slot Register M_TSR1 EQU \$FFFFA9 ; SSI1 Receive Data Register M_RX1 EQU \$FFFFA8 ; SSI1 Status Register M_SSISR1 EQU \$FFFFA7 M_CRB1 EQU \$FFFFA6 ; SSI1 Control Register B M_CRA1 EQU \$FFFFA5 ; SSI1 Control Register A ; SSI1 Transmit Slot Mask Register A M_TSMA1 EQU \$FFFFA4 M_TSMB1 EQU \$FFFFA3 ; SSI1 Transmit Slot Mask Register B ; SSI1 Receive Slot Mask Register A M_RSMA1 EQU \$FFFFA2 ; SSI1 Receive Slot Mask Register B M_RSMB1 EQU \$FFFFA1

