

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFI

Product Status	Active
Туре	Fixed Point
Interface	Host Interface, SSI, SCI
Clock Rate	100MHz
Non-Volatile Memory	ROM (576B)
On-Chip RAM	24kB
Voltage - I/O	3.30V
Voltage - Core	3.30V
Operating Temperature	-40°C ~ 100°C (TJ)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=dsp56303ag100r2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Target Applications

Examples include:

- Multi-line voice/data/fax processing
- Video conferencing
- Audio applications
- Control

Product Documentation

The documents listed in **Table 2** are required for a complete description of the DSP56303 device and are necessary to design properly with the part. Documentation is available from a local Freescale distributor, a Freescale semiconductor sales office, or a Freescale Semiconductor Literature Distribution Center. For documentation updates, visit the Freescale DSP website. See the contact information on the back cover of this document.

Name	Description	Order Number
DSP56303 User's Manual	Detailed functional description of the DSP56303 memory configuration, operation, and register programming	DSP56303UM
DSP56300 Family Manual	Detailed description of the DSP56300 family processor core and instruction set	DSP56300FM
Application Notes	Documents describing specific applications or optimized device operation including code examples	See the DSP56303 product website

Table 2. DSP56303 Documentation

1.6 Interrupt and Mode Control

The interrupt and mode control signals select the chip operating mode as it comes out of hardware reset. After **RESET** is deasserted, these inputs are hardware interrupt request lines.

Signal Name	Туре	State During Reset	Signal Description
RESET	Input	Schmitt-trigger Input	Reset —Places the chip in the Reset state and resets the internal phase generator. The Schmitt-trigger input allows a slowly rising input (such as a capacitor charging) to reset the chip reliably. When the RESET signal is deasserted, the initial chip operating mode is latched from the MODA, MODB, MODC, and MODD inputs. The RESET signal must be asserted after powerup.
MODA	Input	Schmitt-trigger Input	Mode Select A —MODA, MODB, MODC, and MODD select one of 16 initial chip operating modes, latched into the Operating Mode Register when the RESET signal is deasserted.
ĪRQĀ	Input		External Interrupt Request A —After reset, this input becomes a level- sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. If the processor is in the STOP or WAIT standby state and IRQA is asserted, the processor exits the STOP or WAIT state.
MODB	Input	Schmitt-trigger Input	Mode Select B —MODA, MODB, MODC, and MODD select one of 16 initial chip operating modes, latched into the Operating Mode Register when the RESET signal is deasserted.
ĪRQB	Input		External Interrupt Request B —After reset, this input becomes a level- sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. If the processor is in the WAIT standby state and IRQB is asserted, the processor exits the WAIT state.
MODC	Input	Schmitt-trigger Input	Mode Select C —MODA, MODB, MODC, and MODD select one of 16 initial chip operating modes, latched into the Operating Mode Register when the RESET signal is deasserted.
IRQC	Input		External Interrupt Request C —After reset, this input becomes a level- sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. If the processor is in the WAIT standby state and IRQC is asserted, the processor exits the WAIT state.
MODD	Input	Schmitt-trigger Input	Mode Select D —MODA, MODB, MODC, and MODD select one of 16 initial chip operating modes, latched into the Operating Mode Register when the RESET signal is deasserted.
IRQD	Input		External Interrupt Request D —After reset, this input becomes a level- sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. If the processor is in the WAIT standby state and IRQD is asserted, the processor exits the WAIT state.
Note: These signals ar	e all 5 V tole	erant.	

Table 1-9.	Interrupt and Mode	Control
------------	--------------------	---------

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
SCK1	Input/Output	Ignored Input	Serial Clock —Provides the serial bit rate clock for the ESSI. The SCK1 is a clock input or output used by both the transmitter and receiver in synchronous modes or by the transmitter in asynchronous modes.
			Although an external serial clock can be independent of and asynchronous to the DSP system clock, it must exceed the minimum clock cycle time of 6T (that is, the system clock frequency must be at least three times the external ESSI clock frequency). The ESSI needs at least three DSP phases inside each half of the serial clock.
PD3	Input or Output		Port D 3 —The default configuration following reset is GPIO input PD3. When configured as PD3, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SCK1 through the Port D Control Register.
SRD1	Input	Ignored Input	Serial Receive Data—Receives serial data and transfers the data to the ESSI Receive Shift Register. SRD1 is an input when data is being received.
PD4	Input or Output		Port D 4 —The default configuration following reset is GPIO input PD4. When configured as PD4, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal SRD1 through the Port D Control Register.
STD1	Output	Ignored Input	Serial Transmit Data—Transmits data from the Serial Transmit Shift Register. STD1 is an output when data is being transmitted.
PD5	Input or Output		Port D 5 —The default configuration following reset is GPIO input PD5. When configured as PD5, signal direction is controlled through the Port D Direction Register. The signal can be configured as an ESSI signal STD1 through the Port D Control Register.
Notes: 1. In th • If ti • If ti 2. The 3. All ir	e Stop state, the signed last state is input, ne last state is outpu Wait processing state nputs are 5 V toleran	nal maintains the las the signal is an igno t, the signal is tri-sta te does not affect the t.	et state as follows: ored input. ted. e signal state.

 Table 1-13.
 Enhanced Serial Synchronous Interface 1 (Continued)

Specifications

The DSP56303 is fabricated in high-density CMOS with transistor-transistor logic (TTL) compatible inputs and outputs.

2.1 Maximum Ratings

CAUTION

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{CC}).

In the calculation of timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a "maximum" value for a specification never occurs in the same device that has a "minimum" value for another specification; adding a maximum to a minimum represents a condition that can never exist.

2.2 Absolute Maximum Ratings

Rating	Symbol	Value	Unit				
Supply Voltage	V _{CC}	- 0 .3 to +4.0	V				
All input voltages excluding "5 V tolerant" inputs	V _{IN}	GND -0.3 to V _{CC} + 0.3	V				
All "5 V tolerant" input voltages ²	V _{IN5}	GND -0.3 to 5.5	V				
Current drain per pin excluding V _{CC} and GND	I	10	mA				
Operating temperature range	TJ	-4 0 to +100	°C				
Storage temperature	T _{STG}	-5 5 to +150	°C				
Notes: 1. Absolute maximum ratings are stress ratings of the maximum rating may affect device reliability	Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the maximum rating may affect device reliability or cause permanent damage to the device.						
At power-up, ensure that the voltage difference	At power-up, ensure that the voltage difference between the 5 V tolerant pins and the chip V_{00} never exceeds 3.5 V.						

Table 2-1	Absolute	Maximum	Ratings ¹
	Absolute	IVIAAIIIIUIII	naunys

2.3 Thermal Characteristics

Characteristic	Symbol	TQFP Value	MAP-BGA ³ Value	MAP-BGA ⁴ Value	Unit		
Junction-to-ambient thermal resistance ¹	$R_{\theta JA}$ or θ_{JA}	56	57	28	°C/W		
Junction-to-case thermal resistance ²	$R_{\theta JC}$ or θ_{JC}	11	15	_	°C/W		
Thermal characterization parameter	$\Psi_{\rm JT}$	7	8	_	°C/W		
Notes: 1. Junction-to-ambient thermal resistance is based on measurements on a horizontal single-sided printed circuit board per JEDEC Specification JESD51-3.							

Table 2-2. Thermal Characteristics

2. Junction-to-case thermal resistance is based on measurements using a cold plate per SEMI G30-88, with the exception that

the cold plate temperature is used for the case temperature.

3. These are simulated values. See note 1 for test board conditions.

4. These are simulated values. The test board has two 2-ounce signal layers and two 1-ounce solid ground planes internal to the test board.

2.4 DC Electrical Characteristics

Characteristics	Symbol	Min	Тур	Мах	Unit
Supply voltage	V _{CC}	3.0	3.3	3.6	V
Input high voltage • D[0–23], BG, BB, TA • MOD ¹ /IRQ ¹ , RESET, PINIT/NMI and all JTAG/ESSI/SCI/Timer/HI08 pins • EXTAL ⁸	V _{IH} V _{IHP} V _{IHX}	2.0 2.0 0.8 × V _{CC}		V _{CC} 5.25 V _{CC}	V V V
Input low voltage • D[0–23], BG, BB, TA, MOD ¹ /IRQ ¹ , RESET, PINIT • All JTAG/ESSI/SCI/Timer/HI08 pins • EXTAL ⁸	V _{IL} V _{ILP} V _{ILX}	-0.3 -0.3 -0.3		0.8 0.8 0.2 × V _{CC}	V V V
Input leakage current	I _{IN}	-10	_	10	μA
High impedance (off-state) input current (@ 2.4 V / 0.4 V)	I _{TSI}	-10	_	10	μA
Output high voltage • TTL $(I_{OH} = -0.4 \text{ mA})^{5.7}$ • CMOS $(I_{OH} = -10 \mu \text{A})^5$	V _{OH}	2.4 V _{CC} – 0.01	_		V V
Output low voltage • TTL (I_{OL} = 1.6 mA, open-drain pins I_{OL} = 6.7 mA) ^{5,7} • CMOS (I_{OL} = 10 µA) ⁵	V _{OL}			0.4 0.01	V V
Internal supply current ² : In Normal mode In Wait mode³ In Stop mode⁴ 	I _{CCI} I _{CCW} I _{CCS}	 	127 7.5 100		mA mA μA
PLL supply current		—	1	2.5	mA
Input capacitance ⁵	C _{IN}	_		10	pF

 Table 2-3.
 DC Electrical Characteristics⁶

 Table 2-3.
 DC Electrical Characteristics⁶ (Continued)

		Characteristics	Symbol	Min	Тур	Max	Unit
Notes:	1. 2. 3. 4. 5. 6. 7. 8.	Refers to MODA/IRQA, MODB/IRQB, MODC/IRQC, and Section 4.3 provides a formula to compute the estimate results, all inputs must be terminated (that is, not allower benchmarks (see Appendix A). The power consumption of this benchmark. This reflects typical DSP applications 100°C. In order to obtain these results, all inputs must be termine In order to obtain these results, all inputs that are not dis float). PLL and XTAL signals are disabled during Stop st Periodically sampled and not 100 percent tested. $V_{CC} = 3.3 V \pm 0.3 V$; $T_J = -40^{\circ}$ C to +100 °C, $C_L = 50 \text{ pF}$ This characteristic does not apply to XTAL and PCAP. Driving EXTAL to the low V _{IHX} or the high V _{ILX} value mapower consumption, the minimum V _{IHX} should be no higher the second statement of the second stateme	d MODD/IRQE d current requ d to float). Me n numbers in f s. Typical inter nated (that is, sconnected at tate. ay cause addit ver than nan 0.1 × V _{CC}	D pins. Jirements in No asurements are this specificatio rnal supply curr not allowed to f Stop mode mu tional power con c.	prmal mode. In e based on syn n are 90 perce ent is measure float). Ist be terminate	order to obtain the othetic intensive D ant of the measure ed with $V_{CC} = 3.3$ V ed (that is, not allo current). To minir	ese SP d results / at T _J = wed to mize

2.5 AC Electrical Characteristics

The timing waveforms shown in the AC electrical characteristics section are tested with a V_{IL} maximum of 0.3 V and a V_{IH} minimum of 2.4 V for all pins except EXTAL, which is tested using the input levels shown in Note 6 of the previous table. AC timing specifications, which are referenced to a device input signal, are measured in production with respect to the 50 percent point of the respective input signal transition. DSP56303 output levels are measured with the production test machine V_{OL} and V_{OH} reference levels set at 0.4 V and 2.4 V, respectively.

Note: Although the minimum value for the frequency of EXTAL is 0 MHz, the device AC test conditions are 15 MHz and rated speed.

2.5.1 Internal Clocks

Characteristics	Symbol	Expression ^{1, 2}			
Characteristics	Cymbol	Min	Тур	Мах	
Internal operation frequency and CLKOUT with PLL enabled	f	_	$\begin{array}{c} (Ef\timesMF)/\\ (PDF\timesDF) \end{array}$	_	
Internal operation frequency and CLKOUT with PLL disabled	f	—	Ef/2	—	
 Internal clock and CLKOUT high period With PLL disabled With PLL enabled and MF ≤4 With PLL enabled and MF > 4 	т _н	$\begin{array}{c}\\ 0.49 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF}\\ 0.47 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF} \end{array}$	ET _C — —	$\begin{array}{c}\\ 0.51 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF}\\ 0.53 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF} \end{array}$	
 Internal clock and CLKOUT low period With PLL disabled With PLL enabled and MF ≤4 With PLL enabled and MF > 4 	TL	$\begin{matrix}\\ 0.49 \times \text{ET}_{\text{C}} \times \\ \text{PDF} \times \text{DF/MF} \\ 0.47 \times \text{ET}_{\text{C}} \times \\ \text{PDF} \times \text{DF/MF} \end{matrix}$	ET _C — —	$\begin{matrix}\\ 0.51 \times \text{ET}_{\text{C}} \times \\ \text{PDF} \times \text{DF/MF} \\ 0.53 \times \text{ET}_{\text{C}} \times \\ \text{PDF} \times \text{DF/MF} \end{matrix}$	
Internal clock and CLKOUT cycle time with PLL enabled	Τ _C	—	$ET_{C} \times PDF \times DF/MF$	—	

Table 2-4. Internal Clocks, CLKOUT

2.5.5 External Memory Expansion Port (Port A)

2.5.5.1 SRAM Timing

			F	100	Unit	
NO.	Characteristics	Symbol	Expression	Min	Max	Unit
100	Address valid and AA assertion pulse width ²	t _{RC} , t _{WC}	$(WS + 1) \times T_{C} - 4.0$	16.0	—	ns
			[1 ≦WS ≦3] (WS + 2) × T _C −4.0 [4 ≤WS ≤7]	56.0	_	ns
			$(WS + 3) \times T_{C} - 4.0$ $[WS \ge 8]$	106.0	—	ns
101	Address and AA valid to \overline{WR} assertion	t _{AS}	$0.25 \times T_{C} - 2.0$	0.5	—	ns
			[₩3 = 1] 0.75 × T _C −2.0 [2 ≤WS ≤3]	5.5	—	ns
			$\begin{array}{c} 1.25 \times \mathrm{T_{C}}-2.0 \\ \mathrm{[WS} \geq 4] \end{array}$	10.5	—	ns
102	WR assertion pulse width	t _{WP}	1.5 × T _C −4.0 [WS = 1]	11.0	—	ns
			$WS \times T_{C} - 4.0$ [2 < WS < 3]	16.0	—	ns
			$(WS - 0.5) \times T_{C} - 4.0$ [WS ≥ 4]	31.0	—	ns
103	WR deassertion to address not valid	t _{WR}	0.25 × T _C −2.0 [1 ≤WS ≤3]	0.5	—	ns
			$1.25 \times T_{C} - 4.0$	8.5	—	ns
			$[4 \le w3 \le 7]$ 2.25 × T _C -4.0 [WS ≥ 8]	18.5	_	ns
104	Address and AA valid to input data valid	t _{AA} , t _{AC}	$\begin{array}{l} (\text{WS + 0.75)} \times \text{T}_{\text{C}} -5.0 \\ [\text{WS} \geq 1] \end{array}$	_	12.5	ns
105	RD assertion to input data valid	t _{OE}	$\begin{array}{l} (\text{WS}+0.25)\times \text{T}_{\text{C}}-5.0\\ [\text{WS}\geq 1] \end{array}$	_	7.5	ns
106	RD deassertion to data not valid (data hold time)	t _{OHZ}		0.0	_	ns
107	Address valid to $\overline{\mathrm{WR}}$ deassertion ²	t _{AW}	$\begin{array}{l} (\text{WS} + 0.75) \times \text{T}_{\text{C}} - 4.0 \\ [\text{WS} \geq 1] \end{array}$	13.5	—	ns
108	Data valid to \overline{WR} deassertion (data setup time)	t _{DS} (t _{DW})	$\begin{array}{c} (\text{WS}-0.25)\times\text{T}_{\text{C}}-3.0\\ [\text{WS}\geq1] \end{array}$	4.5	—	ns
109	Data hold time from \overline{WR} deassertion	t _{DH}	0.25 × T _C −2.0 [1 ≤WS <3]	0.5	—	ns
			$1.25 \times T_{C} - 2.0$ [4 <ws <7]<="" td=""><td>10.5</td><td>—</td><td>ns</td></ws>	10.5	—	ns
			$2.25 \times T_{\rm C} - 2.0$ [WS ≥ 8]	20.5	—	ns
110	WR assertion to data active	_	0.75 × T _C −3.7 [WS = 1]	3.8	_	ns
			0.25 × T _C – 3.7 [2 ⊴WS ≤3]	-1.2	_	ns
			-0.25 × T _C -3.7 [WS ≥ 4]	-6.2	_	ns

Table 2-8.	SRAM Read and Write Accesses

Na	Characteristics	Symbol	Europeaniam ³	100 MHz		Unit
NO.	Characteristics	s Symbol		Min	Max	
172	RAS assertion to row address not valid	t _{RAH}	$1.75 \times T_{C} - 4.0$	13.5	—	ns
173	3 Column address valid to CAS assertion		$0.75 imes T_C - 4.0$	3.5	_	ns
174	CAS assertion to column address not valid	t _{CAH}	$5.25 imes T_C - 4.0$	48.5	_	ns
175	RAS assertion to column address not valid	t _{AR}	$7.75 imes T_C - 4.0$	73.5	_	ns
176	Column address valid to RAS deassertion	t _{RAL}	$6 imes T_C - 4.0$	56.0	_	ns
177	WR deassertion to CAS assertion	t _{RCS}	$3.0 imes T_C - 4.0$	26.0	_	ns
178	$\overline{\text{CAS}}$ deassertion to $\overline{\text{WR}}^4$ assertion	t _{RCH}	$1.75 \times T_{C} - 3.7$	13.8	_	ns
179	$\overline{\text{RAS}}$ deassertion to $\overline{\text{WR}}^4$ assertion	t _{RRH}	$0.25 imes T_C$ –2.0	0.5	—	ns
180	CAS assertion to WR deassertion	t _{WCH}	$5 imes T_C - 4.2$	45.8	_	ns
181	RAS assertion to WR deassertion	t _{WCR}	$7.5 imes T_C - 4.2$	70.8	_	ns
182	WR assertion pulse width	t _{WP}	$11.5 imes T_C - 4.5$	110.5	—	ns
183	WR assertion to RAS deassertion	t _{RWL}	$11.75 imes T_C$ –4.3	113.2	—	ns
184	WR assertion to CAS deassertion	t _{CWL}	$10.25 \times T_C -4.3$	98.2	_	ns
185	Data valid to CAS assertion (write)	t _{DS}	$5.75 imes T_C - 4.0$	53.5	—	ns
186	CAS assertion to data not valid (write)	t _{DH}	$5.25 imes T_C - 4.0$	48.5	—	ns
187	RAS assertion to data not valid (write)	t _{DHR}	$7.75 imes T_C - 4.0$	73.5	—	ns
188	WR assertion to CAS assertion	t _{WCS}	$6.5 imes T_C - 4.3$	60.7	—	ns
189	CAS assertion to RAS assertion (refresh)	t _{CSR}	$1.5 imes T_C - 4.0$	11.0	—	ns
190	RAS deassertion to CAS assertion (refresh)	t _{RPC}	$2.75 imes T_C - 4.0$	23.5	_	ns
191	RD assertion to RAS deassertion	t _{ROH}	$11.5 imes T_C - 4.0$	111.0	—	ns
192	RD assertion to data valid	t _{GA}	$10 imes T_C$ –7.0	—	93.0	ns
193	RD deassertion to data not valid ⁵	t _{GZ}		0.0	_	ns
194	WR assertion to data active		$0.75 imes T_{C} - 1.5$	6.0	_	ns
195	WR deassertion to data high impedance		$0.25 imes T_C$	1 –	2.5	ns
Notes	 The number of wait states for an out-of-page access is specified. The refresh period is specified in the DRAM Control Register 	cified in the DR	AM Control Register.		-	·

Table 2-11. DRAW Out-of-Page and Refresh Timings. Eleven wait States " (Continu
--

The refersh period is specified in the Drivin control negation.
 Use the expression to compute the maximum or minimum value listed (or both if the expression includes ±).
 Either t_{RCH} or t_{RRH} must be satisfied for read cycles.
 RD deassertion always occurs after CAS deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ}.

Note: Address lines A[0-17] hold their state after a read or write operation. AA[0-3] do not hold their state after a read or write operation.

Note: Address lines A[0–17] hold their state after a read or write operation. AA[0–3] do not hold their state after a read or write operation.

Figure 2-22. Synchronous Bus Timings 2 WS (TA Controlled)

2.5.6 Host Interface Timing

	Oberrect.vit.vit.10	F	100 MHz		
NO.	Characteristic	Expression	Min	Max	Unit
317	Read data strobe assertion width ⁵ HACK assertion width	T _C + 9.9	19.9	—	ns
318	Read data strobe deassertion width ⁵ HACK deassertion width		9.9	_	ns
319	Read data strobe deassertion width ⁵ after "Last Data Register" reads ^{8,11} , or between two consecutive CVR, ICR, or ISR reads ³ HACK deassertion width after "Last Data Register" reads ^{8,11}	$2.5 \times T_{C} + 6.6$	31.6	_	ns
320	Write data strobe assertion width ⁶		13.2	—	ns
321	Write data strobe deassertion width ⁸ HACK write deassertion width • after ICR, CVR and "Last Data Register" writes	2.5 × T _C + 6.6	31.8	_	ns
	 after IVR writes, or after TXH:TXM:TXL writes (with HLEND= 0), or after TXL:TXM:TXH writes (with HLEND = 1) 		16.5	_	ns
322	HAS assertion width		9.9	—	ns
323	HAS deassertion to data strobe assertion ⁴		0.0	_	ns
324	Host data input setup time before write data strobe deassertion ⁶		9.9	—	ns
325	Host data input hold time after write data strobe deassertion ⁶		3.3	—	ns
326	Read data strobe assertion to output data active from high impedance ⁵ HACK assertion to output data active from high impedance		3.3	—	ns
327	Read data strobe assertion to output data valid ⁵ $\overline{\text{HACK}}$ assertion to output data valid		_	24.5	ns
328	Read data strobe deassertion to output data high impedance ⁵ HACK deassertion to output data high impedance		—	9.9	ns
329	Output data hold time after read data strobe deassertion ⁵ Output data hold time after HACK deassertion		3.3	—	ns
330	HCS assertion to read data strobe deassertion ⁵	T _C + 9.9	19.9	_	ns
331	HCS assertion to write data strobe deassertion ⁶		9.9	_	ns
332	HCS assertion to output data valid		_	19.3	ns
333	HCS hold time after data strobe deassertion ⁴		0.0	—	ns
334	Address (HAD[0-7]) setup time before HAS deassertion (HMUX=1)		4.6	—	ns
335	Address (HAD[0–7]) hold time after $\overline{\text{HAS}}$ deassertion (HMUX=1)		3.3	—	ns
336	HA[8–10] (HMUX=1), HA[0–2] (HMUX=0), HR/W setup time before data strobe assertion ⁴ • Read • Write		0 4.6		ns ns
337	HA[8–10] (HMUX=1), HA[0–2] (HMUX=0), HR/ \overline{W} hold time after data strobe deassertion ⁴		3.3	_	ns
338	Delay from read data strobe deassertion to host request assertion for "Last Data Register" read ^{5, 7, 8}	T _C + 5.3	15.3	_	ns
339	Delay from write data strobe deassertion to host request assertion for "Last Data Register" write ^{6, 7, 8}	$1.5 \times T_{C} + 5.3$	20.3	_	ns

Table 2-16.Host Interface Timings^{1,2,12}

Figure 2-31. Write Timing Diagram, Non-Multiplexed Bus, Double Data Strobe

Figure 2-33. Read Timing Diagram, Multiplexed Bus, Double Data Strobe

2.5.10 GPIO Timing

Table 2-20.	GPIO	Timing
-------------	------	--------

No	Characteristics	Expression	100	Unit	
NO.	Characteristics	Expression	Min	Max	onit
490	CLKOUT edge to GPIO out valid (GPIO out delay time)		—	8.5	ns
491	CLKOUT edge to GPIO out not valid (GPIO out hold time)		0.0	_	ns
492	GPIO In valid to CLKOUT edge (GPIO in set-up time)		8.5	_	ns
493	CLKOUT edge to GPIO in not valid (GPIO in hold time)		0.0	_	ns
494	Fetch to CLKOUT edge before GPIO change	Minimum: $6.75 \times T_{C}$	67.5	—	ns
Note:	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}; \text{ T}_{J} = -40^{\circ}\text{C} \text{ to } +100 ^{\circ}\text{C}, \text{ C}_{L} = 50 \text{ pF}$		•	-	•

Fetch the instruction MOVE X0,X:(R0); X0 contains the new value of GPIO and R0 contains the address of the GPIO data register.

aging

Top and bottom views of the MAP-BGA package are shown in **Figure 3-4** and **Figure 3-5** with their pin-outs.

Figure 3-5. DSP56303 Molded Array Process-Ball Grid Array (MAP-BGA), Bottom View

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
TDO	A4	V _{CCA}	K12	V _{CCP}	M6
TIO0	L3	V _{CCA}	L12	V _{CCQ}	C7
TIO1	L2	V _{CCC}	N12	V _{CCQ}	G13
TIO2	КЗ	V _{CCC}	P9	V _{CCQ}	H2
TMS	A3	V _{CCD}	A7	V _{CCQ}	N9
TRST	B4	V _{CCD}	C9	V _{CCS}	E2
TXD	G3	V _{CCD}	C11	V _{CCS}	K1
V _{CCA}	F12	V _{CCD}	D14	WR	M11
V _{CCA}	H12	V _{CCH}	M4	XTAL	P8

 Table 3-4.
 DSP56303 MAP-BGA Signal Identification by Name (Continued)

3.4 MAP-BGA Package Mechanical Drawing

CASE 1128C-01 ISSUE O

DATE 07/28/98

Figure 3-6. DSP56303 Mechanical Information, 196-pin MAP-BGA Package

- Consider all device loads as well as parasitic capacitance due to PCB traces when you calculate capacitance. This is especially critical in systems with higher capacitive loads that could create higher transient currents in the V_{CC} and GND circuits.
- All inputs must be terminated (that is, not allowed to float) by CMOS levels except for the three pins with internal pull-up resistors (TRST, TMS, DE).
- Take special care to minimize noise levels on the V_{CCP}, GND_P, and GND_{P1} pins.
- The following pins must be asserted after power-up: RESET and TRST.
- If multiple DSP devices are on the same board, check for cross-talk or excessive spikes on the supplies due to synchronous operation of the devices.
- RESET must be asserted when the chip is powered up. A stable EXTAL signal should be supplied before deassertion of RESET.
- At power-up, ensure that the voltage difference between the 5 V tolerant pins and the chip V_{CC} never exceeds 3.5 V.

4.3 Power Consumption Considerations

Power dissipation is a key issue in portable DSP applications. Some of the factors affecting current consumption are described in this section. Most of the current consumed by CMOS devices is alternating current (ac), which is charging and discharging the capacitances of the pins and internal nodes.

Current consumption is described by this formula:

Equation 3: $I = C \times V \times f$

Where:

С	=	node/pin capacitance
V	=	voltage swing
f	=	frequency of node/pin toggle

For a Port A address pin loaded with 50 pF capacitance, operating at 3.3 V, with a 66 MHz clock, toggling at its maximum possible rate (33 MHz), the current consumption is expressed in **Equation 4**.

Equation 4: $I = 50 \times 10^{-12} \times 3.3 \times 33 \times 10^{6} = 5.48 \ mA$

The maximum internal current (I_{CCI} max) value reflects the typical possible switching of the internal buses on bestcase operation conditions—not necessarily a real application case. The typical internal current (I_{CCItyp}) value reflects the average switching of the internal buses on typical operating conditions.

Perform the following steps for applications that require very low current consumption:

- 1. Set the EBD bit when you are not accessing external memory.
- 2. Minimize external memory accesses, and use internal memory accesses.
- 3. Minimize the number of pins that are switching.
- 4. Minimize the capacitive load on the pins.
- 5. Connect the unused inputs to pull-up or pull-down resistors.

Power Consumption Benchmark

The following benchmark program evaluates DSP56303 power use in a test situation. It enables the PLL, disables the external clock, and uses repeated multiply-accumulate (MAC) instructions with a set of synthetic DSP application data to emulate intensive sustained DSP operation.

```
·***
        *******
                    ******
;*
;*
;*
                          Typical Power Consumption
                  CHECKS
;*
;****
         200,55,0,0,0
      page
      nolist
I_VEC EQU $000000; Interrupt vectors for program debug only
START EQU $8000; MAIN (external) program starting address
INT_PROG EQU $100 ; INTERNAL program memory starting address
INT_XDAT EQU $0; INTERNAL X-data memory starting address
INT_YDAT EQU $0; INTERNAL Y-data memory starting address
      INCLUDE "ioequ.asm"
      INCLUDE "intequ.asm"
      list
      org
            P:START
:
      movep #$0243FF,x:M_BCR ;; BCR: Area 3 = 2 w.s (SRAM)
; Default: 2w.s (SRAM)
;
      movep #$0d0000,x:M_PCTL
                              ; XTAL disable
                              ; PLL enable
                               ; CLKOUT disable
;
; Load the program
;
      move
            #INT_PROG,r0
      move
            #PROG_START,r1
      do
            #(PROG_END-PROG_START), PLOAD_LOOP
            p:(r1)+,x0
      move
            x0,p:(r0)+
      move
      nop
PLOAD_LOOP
;
; Load the X-data
;
            #INT_XDAT,r0
      move
            #XDAT_START,r1
      move
      do
            #(XDAT_END-XDAT_START),XLOAD_LOOP
```

r Consumption Benchmark

M_BRP EQU 23 ; Refresh prescaler Address Attribute Registers ; M BAT EOU \$3 ; Ext. Access Type and Pin Def. Bits Mask (BAT0-BAT1) M BAAP EOU 2 ; Address Attribute Pin Polarity M_BPEN EQU 3 ; Program Space Enable M_BXEN EQU 4 ; X Data Space Enable M_BYEN EQU 5 ; Y Data Space Enable M_BAM EQU 6 ; Address Muxing ; Packing Enable M BPAC EOU 7 M_BNC EQU \$F00 ; Number of Address Bits to Compare Mask (BNC0-BNC3) M_BAC EQU \$FFF000 ; Address to Compare Bits Mask (BAC0-BAC11) control and status bits in SR : M CP EOU Sc00000 ; mask for CORE-DMA priority bits in SR M_CA EQU 0 ; Carry M_V EQU 1 ; Overflow MZEOU2 ; Zero M_N EQU 3 ; Negative M U EOU 4 ; Unnormalized M_E EQU 5 : Extension M_L EQU 6 ; Limit M_S EQU 7 ; Scaling Bit M_IO EQU 8 ; Interupt Mask Bit 0 M_I1 EQU 9 ; Interupt Mask Bit 1 M_S0 EQU 10 ; Scaling Mode Bit 0 M_S1 EQU 11 ; Scaling Mode Bit 1 M_SC EQU 13 ; Sixteen_Bit Compatibility M_DM EQU 14 ; Double Precision Multiply M_LF EQU 15 ; DO-Loop Flag M_FV EQU 16 ; DO-Forever Flag ; Sixteen-Bit Arithmetic M_SA EQU 17 M_CE EQU 19 ; Instruction Cache Enable M_SM EQU 20 ; Arithmetic Saturation M_RM EQU 21 ; Rounding Mode M_CP0 EQU 22 ; bit 0 of priority bits in SR M_CP1 EQU 23 ; bit 1 of priority bits in SR control and status bits in OMR ; M_CDP EQU \$300 ; mask for CORE-DMA priority bits in OMR M_MA equ0 ; Operating Mode A M_MB equ1 ; Operating Mode B M MC equ2 ; Operating Mode C M MD ; Operating Mode D equ3 M_EBD EQU 4 ; External Bus Disable bit in OMR M_SD EQU 6 ; Stop Delay M_MS EQU 7 ; Memory Switch bit in OMR ; bit 0 of priority bits in OMR M_CDP0 EQU 8 M_CDP1 EQU 9 ; bit 1 of priority bits in OMR ; Burst Enable M_BEN EQU 10 ; TA Synchronize Select M_TAS EQU 11 M_BRT EQU 12 ; Bus Release Timing M_ATE EQU 15 ; Address Tracing Enable bit in OMR. M_XYS EQU 16 ; Stack Extension space select bit in OMR. M_EUN EQU 17 ; Extensed stack UNderflow flag in OMR. M_EOV EQU 18 ; Extended stack OVerflow flag in OMR. M_WRP EQU 19 ; Extended WRaP flag in OMR.

