
NXP USA Inc. - DSP56303VL100B1 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details	5
---------	---

Detalls	
Product Status	Obsolete
Туре	Fixed Point
Interface	Host Interface, SSI, SCI
Clock Rate	100MHz
Non-Volatile Memory	ROM (576B)
On-Chip RAM	24kB
Voltage - I/O	3.30V
Voltage - Core	3.30V
Operating Temperature	-40°C ~ 100°C (TJ)
Mounting Type	Surface Mount
Package / Case	196-LBGA
Supplier Device Package	196-LBGA (15x15)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/dsp56303vl100b1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

		Data Sheet Conventions	ii
		Features	
		Target Applications	iv
		Product Documentation	iv
Chapter 1	Signa	als/Connections	
	1.1	Power	1-3
	1.2	Ground	
	1.3	Clock	1-4
	1.5	External Memory Expansion Port (Port A)	1-4
	1.6	Interrupt and Mode Control	1-7
	1.7	Host Interface (HI08)	
	1.8	Enhanced Synchronous Serial Interface 0 (ESSI0)	1-11
	1.9	Enhanced Synchronous Serial Interface 1 (ESSI1)	1-12
	1.10	Serial Communication Interface (SCI)	1-14
	1.11	Timers	1-15
	1.12	JTAG and OnCE Interface	1-16
Chapter 2	Spec	ifications	
	2.1	Maximum Ratings	2-1
	2.3	Thermal Characteristics	2-2
	2.4	DC Electrical Characteristics	2-2
	2.5	AC Electrical Characteristics	2-3
Chapter 3	Packa	aging	
	3.1	TQFP Package Description	
	3.2	TQFP Package Mechanical Drawing	
	3.3	MAP-BGA Package Description	
	3.4	MAP-BGA Package Mechanical Drawing	
Chapter 4	Desig	gn Considerations	
	4.1	Thermal Design Considerations	4-1
	4.2	Electrical Design Considerations	4-2
	4.3	Power Consumption Considerations	4-3
	4.4	PLL Performance Issues	4-4
	4.5	Input (EXTAL) Jitter Requirements	4-5

Appendix A Power Consumption Benchmark

Data Sheet Conventions

OVERBAR	Indicates a signal that is active when pulled low (For example, the \overline{RESET} pin is active when low.)			
"asserted"	Means that a high true	e (active high) signal is l	nigh or that a low true (active	low) signal is low
"deasserted"	Means that a high true	e (active high) signal is l	ow or that a low true (active l	ow) signal is high
Examples:	Signal/Symbol	Logic State	Signal State	Voltage
	PIN	True	Asserted	V _{IL} /V _{OL}
	PIN	False	Deasserted	V _{IH} /V _{OH}
	PIN	True	Asserted	V _{IH} /V _{OH}
		1100	110001000	

Note: Values for V_{IL} , V_{OL} , V_{IH} , and V_{OH} are defined by individual product specifications.

Target Applications

Examples include:

- Multi-line voice/data/fax processing
- Video conferencing
- Audio applications
- Control

Product Documentation

The documents listed in **Table 2** are required for a complete description of the DSP56303 device and are necessary to design properly with the part. Documentation is available from a local Freescale distributor, a Freescale semiconductor sales office, or a Freescale Semiconductor Literature Distribution Center. For documentation updates, visit the Freescale DSP website. See the contact information on the back cover of this document.

Name	Description	Order Number
DSP56303 User's Manual	Detailed functional description of the DSP56303 memory configuration, operation, and register programming	DSP56303UM
DSP56300 Family Manual	Detailed description of the DSP56300 family processor core and instruction set	DSP56300FM
Application Notes	Documents describing specific applications or optimized device operation including code examples	See the DSP56303 product website

Table 2. DSP56303 Documentation

1.5.2 External Data Bus

Table 1-7. External Data Bus Signals	
--	--

Signal Name	Туре	State During Reset	State During Stop or Wait	Signal Description
D[0-23]	Input/ Output	Ignored Input	Last state: <i>Input</i> : Ignored <i>Output</i> : Tri-stated	Data Bus —When the DSP is the bus master, D[0–23] are active-high, bidirectional input/outputs that provide the bidirectional data bus for external program and data memory accesses. Otherwise, D[0–23] are tri-stated.

1.5.3 External Bus Control

Table 1-8.	External Bus Control Signals
	External Bac Control Orginalo

Signal Name	Туре	State During Reset, Stop, or Wait	Signal Description
AA[0-3]	Output	Tri-stated	Address Attribute—When defined as AA, these signals can be used as chip selects or additional address lines. The default use defines a priority scheme under which only one AA signal can be asserted at a time. Setting the AA priority disable (APD) bit (Bit 14) of the Operating Mode Register, the priority mechanism is disabled and the lines can be used together as four external lines that can be decoded externally into 16 chip select signals.
RAS[0-3]	Output		Row Address Strobe —When defined as \overline{RAS} , these signals can be used as \overline{RAS} for DRAM interface. These signals are tri-statable outputs with programmable polarity.
RD	Output	Tri-stated	Read Enable —When the DSP is the bus master, \overline{RD} is an active-low output that is asserted to read external memory on the data bus (D[0–23]). Otherwise, \overline{RD} is tristated.
WR	Output	Tri-stated	Write Enable —When the DSP is the bus master, \overline{WR} is an active-low output that is asserted to write external memory on the data bus (D[0–23]). Otherwise, the signals are tri-stated.
ΤΑ	Input	Ignored Input	Transfer Acknowledge —If the DSP56303 is the bus master and there is no external bus activity, or the DSP56303 is not the bus master, the TA input is ignored. The TA input is a data transfer acknowledge (DTACK) function that can extend an external bus cycle indefinitely. Any number of wait states (1, 2 infinity) can be added to the wait states inserted by the bus control register (BCR) by keeping TA deasserted. In typical operation, TA is deasserted at the start of a bus cycle, is asserted to enable completion of the bus cycle, and is deasserted before the next bus cycle. The current bus cycle completes one clock period after TA is asserted synchronous to CLKOUT. The number of wait states is determined by the TA input or by the BCR, whichever is longer. The BCR can be used to set the minimum number of wait states in external bus cycles.
BR	Output	Reset: Output (deasserted) State during Stop/Wait depends on BRH bit setting: • BRH = 0: Output, deasserted • BRH = 1: Maintains last state (that is, if asserted, remains asserted)	Bus Request —Asserted when the DSP requests bus mastership. \overline{BR} is deasserted when the DSP no longer needs the bus. \overline{BR} may be asserted or deasserted independently of whether the DSP56303 is a bus master or a bus slave. Bus "parking" allows \overline{BR} to be deasserted even though the DSP56303 is the bus master. (See the description of bus "parking" in the \overline{BB} signal description.) The bus request hold (BRH) bit in the BCR allows \overline{BR} to be asserted under software control even though the DSP does not need the bus. \overline{BR} is typically sent to an external bus arbitrator that controls the priority, parking, and tenure of each master on the same external bus. \overline{BR} is affected only by DSP requests for the external bus, never for the internal bus. During hardware reset, \overline{BR} is deasserted and the arbitration is reset to the bus slave state.

1.8 Enhanced Synchronous Serial Interface 0 (ESSI0)

Two synchronous serial interfaces (ESSI0 and ESSI1) provide a full-duplex serial port for serial communication with a variety of serial devices, including one or more industry-standard codecs, other DSPs, microprocessors, and peripherals that implement the serial peripheral interface (SPI).

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
SC00	Input or Output	Ignored Input	Serial Control 0 —For asynchronous mode, this signal is used for the receive clock I/O (Schmitt-trigger input). For synchronous mode, this signal is used either for transmitter 1 output or for serial I/O flag 0.
PC0	Input or Output		Port C 0 —The default configuration following reset is GPIO input PC0. When configured as PC0, signal direction is controlled through the Port C Direction Register. The signal can be configured as ESSI signal SC00 through the Port C Control Register.
SC01	Input/Output	Ignored Input	Serial Control 1 —For asynchronous mode, this signal is the receiver frame sync I/O. For synchronous mode, this signal is used either for transmitter 2 output or for serial I/O flag 1.
PC1	Input or Output		Port C 1 —The default configuration following reset is GPIO input PC1. When configured as PC1, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal SC01 through the Port C Control Register.
SC02	Input/Output	Ignored Input	Serial Control Signal 2—The frame sync for both the transmitter and receiver in synchronous mode, and for the transmitter only in asynchronous mode. When configured as an output, this signal is the internally generated frame sync signal. When configured as an input, this signal receives an external frame sync signal for the transmitter (and the receiver in synchronous operation).
PC2	Input or Output		Port C 2 —The default configuration following reset is GPIO input PC2. When configured as PC2, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal SC02 through the Port C Control Register.
SCK0	Input/Output	Ignored Input	Serial Clock —Provides the serial bit rate clock for the ESSI. The SCK0 is a clock input or output, used by both the transmitter and receiver in synchronous modes or by the transmitter in asynchronous modes.
			Although an external serial clock can be independent of and asynchronous to the DSP system clock, it must exceed the minimum clock cycle time of 6T (that is, the system clock frequency must be at least three times the external ESSI clock frequency). The ESSI needs at least three DSP phases inside each half of the serial clock.
PC3	Input or Output		Port C 3 —The default configuration following reset is GPIO input PC3. When configured as PC3, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal SCK0 through the Port C Control Register.
SRD0	Input	Ignored Input	Serial Receive Data—Receives serial data and transfers the data to the ESSI Receive Shift Register. SRD0 is an input when data is received.
PC4	Input or Output		Port C 4 —The default configuration following reset is GPIO input PC4. When configured as PC4, signal direction is controlled through the Port C Direction Register. The signal can be configured as an ESSI signal SRD0 through the Port C Control Register.

Table 1-12.	Enhanced Synchronous Serial Interface ()
		-

1.10 Serial Communication Interface (SCI)

The SCI provides a full duplex port for serial communication with other DSPs, microprocessors, or peripherals such as modems.

Signal Name	Туре	State During Reset ^{1,2}	Signal Description
RXD	Input	Ignored Input	Serial Receive Data—Receives byte-oriented serial data and transfers it to the SCI Receive Shift Register.
PE0	Input or Output		Port E 0 —The default configuration following reset is GPIO input PE0. When configured as PE0, signal direction is controlled through the Port E Direction Register. The signal can be configured as an SCI signal RXD through the Port E Control Register.
TXD	Output	Ignored Input	Serial Transmit Data—Transmits data from the SCI Transmit Data Register.
PE1	Input or Output		Port E 1 —The default configuration following reset is GPIO input PE1. When configured as PE1, signal direction is controlled through the Port E Direction Register. The signal can be configured as an SCI signal TXD through the Port E Control Register.
SCLK	Input/Output	Ignored Input	Serial Clock —Provides the input or output clock used by the transmitter and/or the receiver.
PE2	Input or Output		Port E 2 —The default configuration following reset is GPIO input PE2. When configured as PE2, signal direction is controlled through the Port E Direction Register. The signal can be configured as an SCI signal SCLK through the Port E Control Register.
 In the Stop state, the signal maintains the last state as follows: If the last state is input, the signal is an ignored input. If the last state is output, the signal is tri-stated. The Wait processing state does not affect the signal state. All inputs are 5 V tolerant. 			

Table 1-14. Senai Communication internace	Table 1-14.	Serial Communication	Interface
---	-------------	----------------------	-----------

2.3 Thermal Characteristics

Characteristic	Symbol	TQFP Value	MAP-BGA ³ Value	MAP-BGA ⁴ Value	Unit			
Junction-to-ambient thermal resistance ¹	$R_{\theta JA}$ or θ_{JA}	56	57	28	°C/W			
Junction-to-case thermal resistance ²	$R_{\theta JC}$ or θ_{JC}	11	15	_	°C/W			
Thermal characterization parameter	$\Psi_{\rm JT}$	7	8	_	°C/W			
Notes: 1. Junction-to-ambient thermal resistance is based on measurements on a horizontal single-sided printed circuit board per JEDEC Specification JESD51-3.								

Table 2-2. Thermal Characteristics

2. Junction-to-case thermal resistance is based on measurements using a cold plate per SEMI G30-88, with the exception that

the cold plate temperature is used for the case temperature.

3. These are simulated values. See note 1 for test board conditions.

4. These are simulated values. The test board has two 2-ounce signal layers and two 1-ounce solid ground planes internal to the test board.

2.4 DC Electrical Characteristics

Characteristics	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	3.0	3.3	3.6	V
Input high voltage • D[0–23], BG, BB, TA • MOD ¹ /IRQ ¹ , RESET, PINIT/NMI and all JTAG/ESSI/SCI/Timer/HI08 pins • EXTAL ⁸	V _{IH} V _{IHP} V _{IHX}	2.0 2.0 0.8 × V _{CC}		V _{CC} 5.25 V _{CC}	v v v
Input low voltage • D[0–23], BG, BB, TA, MOD ¹ /IRQ ¹ , RESET, PINIT • All JTAG/ESSI/SCI/Timer/HI08 pins • EXTAL ⁸	V _{IL} V _{ILP} V _{ILX}	-0.3 -0.3 -0.3		0.8 0.8 0.2 × V _{CC}	V V V
Input leakage current	I _{IN}	-10	_	10	μA
High impedance (off-state) input current (@ 2.4 V / 0.4 V)	I _{TSI}	-10	_	10	μA
Output high voltage • TTL $(I_{OH} = -0.4 \text{ mA})^{5,7}$ • CMOS $(I_{OH} = -10 \mu \text{A})^5$	V _{OH}	2.4 V _{CC} – 0.01			V V
Output low voltage • TTL ($I_{OL} = 1.6$ mA, open-drain pins $I_{OL} = 6.7$ mA) ^{5,7} • CMOS ($I_{OL} = 10 \mu A$) ⁵	V _{OL}			0.4 0.01	V V
Internal supply current ² : In Normal mode In Wait mode³ In Stop mode⁴ 	I _{CCI} I _{CCW} I _{CCS}		127 7.5 100		mA mA μA
PLL supply current		_	1	2.5	mA
Input capacitance ⁵	C _{IN}			10	pF

 Table 2-3.
 DC Electrical Characteristics⁶

 Table 2-3.
 DC Electrical Characteristics⁶ (Continued)

		Characteristics	Symbol	Min	Тур	Max	Unit		
Notes:	1.	Refers to MODA/IRQA, MODB/IRQB, MODC/IRQC, and		D pins.					
	2. Section 4.3 provides a formula to compute the estimated current requirements in Normal mode. In order to obtain these results, all inputs must be terminated (that is, not allowed to float). Measurements are based on synthetic intensive DSP benchmarks (see Appendix A). The power consumption numbers in this specification are 90 percent of the measured results benchmark. This reflects typical DSP applications. Typical internal supply current is measured with V _{CC} = 3.3 V at T 100°C.								
	3. 4.	In order to obtain these results, all inputs must be terminated (that is, not allowed to float). In order to obtain these results, all inputs that are not disconnected at Stop mode must be terminated (that is, not allowed to float). Float). PLL and XTAL signals are disabled during Stop state.							
	5.	Periodically sampled and not 100 percent tested.							
	6.	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}; T_{J} = -40^{\circ}\text{C} \text{ to} + 100^{\circ}\text{C}, C_{L} = 50 \text{ pF}$							
	7.	This characteristic does not apply to XTAL and PCAP.							
	8.	Driving EXTAL to the low V _{IHX} or the high V _{ILX} value map ower consumption, the minimum V _{IHX} should be no low 0.9 × V _{CC} and the maximum V _{ILX} should be no higher the	ver than		nsumption (DC	C current). To min	imize		

2.5 AC Electrical Characteristics

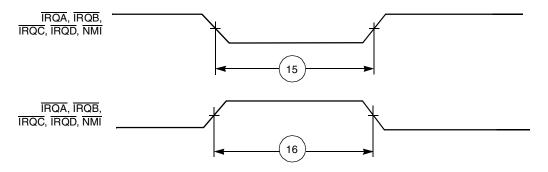
The timing waveforms shown in the AC electrical characteristics section are tested with a V_{IL} maximum of 0.3 V and a V_{IH} minimum of 2.4 V for all pins except EXTAL, which is tested using the input levels shown in Note 6 of the previous table. AC timing specifications, which are referenced to a device input signal, are measured in production with respect to the 50 percent point of the respective input signal transition. DSP56303 output levels are measured with the production test machine V_{OL} and V_{OH} reference levels set at 0.4 V and 2.4 V, respectively.

Note: Although the minimum value for the frequency of EXTAL is 0 MHz, the device AC test conditions are 15 MHz and rated speed.

2.5.1 Internal Clocks

Characteristics	Symbol		Expression ^{1, 2}			
Characteristics	Symbol	Min	Тур	Мах		
Internal operation frequency and CLKOUT with PLL enabled	f	_	$(Ef \times MF)/$ (PDF × DF)	_		
Internal operation frequency and CLKOUT with PLL disabled	f		Ef/2	—		
 Internal clock and CLKOUT high period With PLL disabled With PLL enabled and MF ≤4 With PLL enabled and MF > 4 	Т _Н	$\begin{array}{c}\\ 0.49 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF}\\ 0.47 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF} \end{array}$	ет _с — —	$\begin{array}{c}\\ 0.51 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF}\\ 0.53 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF} \end{array}$		
 Internal clock and CLKOUT low period With PLL disabled With PLL enabled and MF ≤4 With PLL enabled and MF > 4 	TL	$\begin{array}{c}\\ 0.49 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF}\\ 0.47 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF} \end{array}$	ET _C — —	$\begin{array}{c}\\ 0.51 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF}\\ 0.53 \times \text{ET}_{\text{C}} \times\\ \text{PDF} \times \text{DF/MF} \end{array}$		
Internal clock and CLKOUT cycle time with PLL enabled	т _с	_	ET _C × PDF × DF/MF	—		

Table 2-4. Internal Clocks, CLKOUT



2.5.4 Reset, Stop, Mode Select, and Interrupt Timing

Ne	Characteristics	Everencian	100	MHz	l la it
No.	Characteristics	Expression	Min	Max	Unit
8	Delay from RESET assertion to all pins at reset value ³	—		26.0	ns
9	 Required RESET duration⁴ Power on, external clock generator, PLL disabled Power on, external clock generator, PLL enabled Power on, internal oscillator During STOP, XTAL disabled (PCTL Bit 16 = 0) During STOP, XTAL enabled (PCTL Bit 16 = 1) During normal operation 	$\begin{array}{c} 50 \times \text{ET}_{\text{C}} \\ 1000 \times \text{ET}_{\text{C}} \\ 75000 \times \text{ET}_{\text{C}} \\ 75000 \times \text{ET}_{\text{C}} \\ 2.5 \times \text{T}_{\text{C}} \\ 2.5 \times \text{T}_{\text{C}} \end{array}$	500.0 10.0 0.75 0.75 25.0 25.0		ns μs ms ms ns ns
10	 Delay from asynchronous RESET deassertion to first external address output (internal reset deassertion)⁵ Minimum Maximum 	$3.25 \times T_{C} + 2.0$ $20.25 \times T_{C} + 10$	34.5 —	 212.5	ns ns
11	Synchronous reset set-up time from RESET deassertion to CLKOUT Transition 1 • Minimum • Maximum	т _с	5.9 —	 10.0	ns ns
12	Synchronous reset deasserted, delay time from the CLKOUT Transition 1 to the first external address output • Minimum • Maximum	$3.25 \times T_{C} + 1.0$ $20.25 \times T_{C} + 1.0$	33.5 —	 203.5	ns ns
13	Mode select setup time		30.0		ns
14	Mode select hold time		0.0	—	ns
15	Minimum edge-triggered interrupt request assertion width		6.6	_	ns
16	Minimum edge-triggered interrupt request deassertion width		6.6	—	ns
17	 Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to external memory access address out valid Caused by first interrupt instruction fetch Caused by first interrupt instruction execution 	$4.25 \times T_{C} + 2.0$ $7.25 \times T_{C} + 2.0$	44.5 74.5	_	ns ns
18	Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to general- purpose transfer output valid caused by first interrupt instruction execution	10 × T _C + 5.0	105.0	_	ns
19	Delay from address output valid caused by first interrupt instruction execute to interrupt request deassertion for level sensitive fast interrupts ^{1, 7, 8}	$(WS + 3.75) \times T_C - 10.94$		Note 8	ns
20	Delay from $\overline{\text{RD}}$ assertion to interrupt request deassertion for level sensitive fast interrupts ^{1, 7, 8}	(WS + 3.25) \times T _C - 10.94	_	Note 8	ns
21	Delay from \overline{WR} assertion to interrupt request deassertion for level sensitive fast interrupts ^{1, 7, 8} • DRAM for all WS • SRAM WS = 1 • SRAM WS = 2, 3 • SRAM WS \geq 4	$\begin{array}{l} (WS+3.5)\times T_C-10.94 \\ (WS+3.5)\times T_C-10.94 \\ (WS+3)\times T_C-10.94 \\ (WS+2.5)\times T_C-10.94 \end{array}$	 	Note 8 Note 8 Note 8 Note 8	ns ns ns ns
22	Synchronous interrupt set-up time from IRQA, IRQB, IRQC, IRQD, NMI assertion to the CLKOUT Transition 2		5.9	т _с	ns
23	Synchronous interrupt delay time from the CLKOUT Transition 2 to the first external address output valid caused by the first instruction fetch after coming out of Wait Processing state • Minimum • Maximum	$8.25 \times T_{C} + 1.0$ 24.75 × T _C + 5.0	83.5 —	 252.5	ns ns

 Table 2-7.
 Reset, Stop, Mode Select, and Interrupt Timing⁶

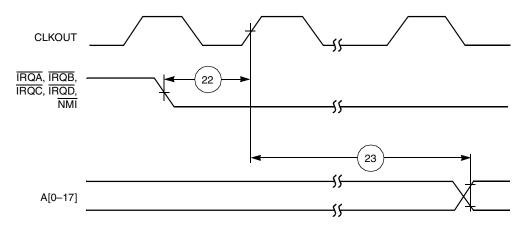


Figure 2-7. Synchronous Interrupt from Wait State Timing

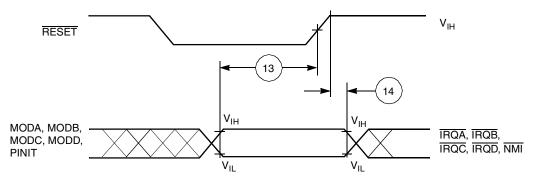
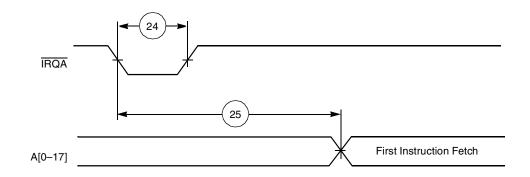
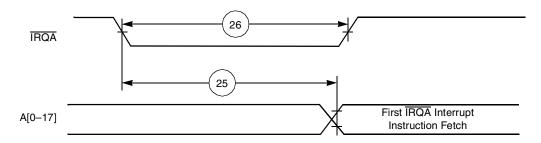




Figure 2-8. Operating Mode Select Timing

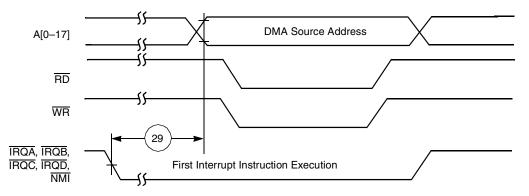


Figure 2-11. External Memory Access (DMA Source) Timing

Na	Characteristics Symbol Expression ¹		100	MHz	Unit	
No.	Characteristics	Symbol	Expression	Min	Max	Unit
111	WR deassertion to data high impedance	_	$0.25 \times T_{C} + 0.2$	_	2.7	ns
			[1 ≤WS ≤3] 1.25 × TC + 0.2 [4 ≤WS ≤7]	_	12.7	ns
			$2.25 \times T_{C} + 0.2$ [WS > 8]	—	22.7	ns
112	Previous $\overline{\text{RD}}$ deassertion to data active (write)	_	1.25 × T _C − 4.0 [1 ≤WS ≤3]	8.5	_	ns
			[1 = 1.0 = 5] 2.25 × T _C − 4.0 [4 ≤WS ≤7]	18.5	—	ns
			$3.25 \times T_{\rm C} - 4.0$ [WS > 8]	28.5	—	ns
113	RD deassertion time	_	0.75 × T _C −4.0 [1 ≤WS ≤3]	3.5	—	ns
			1.75 × T _C −4.0 [4 ≤WS ≤7]	13.5	—	ns
			2.75 × T _C −4.0 [WS ≥ 8]	23.5	—	ns
114	WR deassertion time	_	0.5 × T _C –4.0 [WS = 1]	1.0	_	ns
			[((() = 1)] T _C −4.0 [2 ≤WS ≤3]	6.0	—	ns
			[2 ⊴W3 ⊴5] 2.5 × T _C −4.0 [4 ≤WS ≤7]	21.0	—	ns
			$3.5 \times T_{C} - 4.0$ [WS ≥ 8]	31.0	—	ns
115	Address valid to RD assertion	_	$0.5 imes T_C - 4.0$	1.0	_	ns
116	RD assertion pulse width	_	(WS + 0.25) \times T _C -4.0	8.5	_	ns
117	RD deassertion to address not valid	—	0.25 × T _C −2.0 [1 ≤WS ≤3]	0.5	—	ns
			1.25 × T _C −2.0 [4 ≤WS ≤7]	10.5	—	ns
			$2.25 \times T_{C} - 2.0$ [WS ≥ 8]	20.5	—	ns
118	TA setup before \overline{RD} or \overline{WR} deassertion ⁴	_	$0.25 imes T_{C}$ + 2.0	4.5	_	ns
119	TA hold after RD or WR deassertion			0	I	ns

Table 2-8.	SRAM	Read and	Write	Accesses	(Continued)
------------	------	----------	-------	----------	-------------

Timings 100, 107 are guaranteed by design, not tested.
 All timings for 100 MHz are measured from 0.5 × Vcc to 0.5 × Vcc.
 Timing 118 is relative to the deassertion edge of RD or WR even if TA remains asserted.
 V_{CC} = 3.3 V ±0.3 V; T_J = -40°C to +100°C, C_L = 50 pF

Na	Characteristics	Symbol	 4	100	Unit	
No.			Expression ⁴	Min	Max	Unit
131	Page mode cycle time for two consecutive accesses of the same direction		$4 \times T_C$	40.0	_	ns
	Page mode cycle time for mixed (read and write) accesses	t _{PC}	$3.5 imes T_C$	35.0	_	ns
132	CAS assertion to data valid (read)	t _{CAC}	$2 \times T_C - 5.7$	_	14.3	ns
133	Column address valid to data valid (read)	t _{AA}	$3 \times T_C - 5.7$	_	24.3	ns
134	CAS deassertion to data not valid (read hold time)	t _{OFF}		0.0	—	ns
135	Last CAS assertion to RAS deassertion	t _{RSH}	$2.5 imes T_C - 4.0$	21.0	—	ns
136	Previous CAS deassertion to RAS deassertion	t _{RHCP}	$4.5 imes T_C - 4.0$	41.0	—	ns
137	CAS assertion pulse width	t _{CAS}	$2 \times T_C - 4.0$	16.0	—	ns
138	Last \overline{CAS} deassertion to \overline{RAS} assertion ⁵ • BRW[1-0] = 00, 01—not applicable • BRW[1-0] = 10 • BRW[1-0] = 11	t _{CRP}	 4.75 × T _C -6.0 6.75 × T _C -6.0	 41.5 61.5		— ns ns
139	CAS deassertion pulse width	t _{CP}	$1.5 imes T_C - 4.0$	11.0	_	ns
140	Column address valid to CAS assertion	t _{ASC}	T _C -4.0	6.0	_	ns
141	CAS assertion to column address not valid	t _{CAH}	$2.5 imes T_C - 4.0$	21.0	_	ns
142	Last column address valid to RAS deassertion	t _{RAL}	$4 \times T_C - 4.0$	36.0	—	ns
143	WR deassertion to CAS assertion	t _{RCS}	$1.25 imes T_C - 4.0$	8.5	—	ns
144	CAS deassertion to WR assertion	t _{RCH}	$0.75 imes T_C$ –4.0	3.5	—	ns
145	CAS assertion to WR deassertion	t _{WCH}	$2.25 imes T_C - 4.2$	18.3	—	ns
146	WR assertion pulse width	t _{WP}	$3.5 imes T_C - 4.5$	30.5	—	ns
147	Last WR assertion to RAS deassertion	t _{RWL}	$3.75 imes T_C - 4.3$	33.2	—	ns
148	WR assertion to CAS deassertion	t _{CWL}	$3.25 imes T_C - 4.3$	28.2	—	ns
149	Data valid to CAS assertion (write)	t _{DS}	$0.5 imes T_C - 4.5$	0.5	—	ns
150	CAS assertion to data not valid (write)	t _{DH}	$2.5\timesT_C^{}-\!4.0$	21.0	—	ns
151	WR assertion to CAS assertion	t _{WCS}	$1.25 imes T_C - 4.3$	8.2	—	ns
152	Last RD assertion to RAS deassertion	t _{ROH}	$3.5 imes T_C - 4.0$	31.0	—	ns
153	RD assertion to data valid	t _{GA}	$2.5 imes T_C - 5.7$	_	19.3	ns
154	RD deassertion to data not valid ⁶	t _{GZ}		0.0	—	ns
155	WR assertion to data active		$0.75 imes T_{C} - 1.5$	6.0	—	ns
156	WR deassertion to data high impedance		$0.25 imes T_C$	—	2.5	ns

 Table 2-9.
 DRAM Page Mode Timings, Three Wait States^{1,2,3}

1. The number of wait states for Page mode access is specified in the DRAM Control Register.

2. The refresh period is specified in the DRAM Control Register.

3. The asynchronous delays specified in the expressions are valid for the DSP56303.

4. All the timings are calculated for the worst case. Some of the timings are better for specific cases (for example, t_{PC} equals $4 \times T_C$ for read-after-read or write-after-write sequences). An expression is used to compute the number listed as the minimum or maximum value listed, as appropriate.

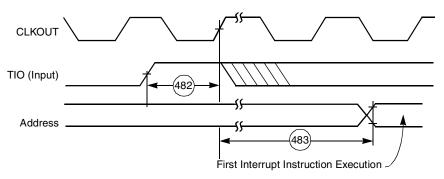
 BRW[1–0] (DRAM control register bits) defines the number of wait states that should be inserted in each DRAM out-of pageaccess.

6. \overline{RD} deassertion always occurs after \overline{CAS} deassertion; therefore, the restricted timing is t_{OFF} and not t_{GZ}.

Notes:

2.5.9 Timer Timing

Na	Characteristics	2	100	1114	
No.		Expression ²	Min	Max	Unit
480	TIO Low	$2 \times T_{C} + 2.0$	22.0	_	ns
481	TIO High	$2 \times T_{C} + 2.0$	22.0	_	ns
482	Timer set-up time from TIO (Input) assertion to CLKOUT rising edge		9.0	10.0	ns
483	Synchronous timer delay time from CLKOUT rising edge to the external memory access address out valid caused by first interrupt instruction execution	10.25 × T _C + 1.0	103.5	_	ns
484	CLKOUT rising edge to TIO (Output) assertion Minimum Maximum 	$0.5 \times T_{C} + 0.5$ $0.5 \times T_{C} + 19.8$	5.5	 24.8	ns ns
485	CLKOUT rising edge to TIO (Output) deassertion Minimum Maximum 	$0.5 imes T_{C} + 0.5$ $0.5 imes T_{C} + 19.8$	5.5	 24.8	ns ns


Table 2-19.Timer Timing¹

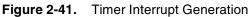

2. An expression is used to compute the number listed as the minimum or maximum value as appropriate.

Figure 2-40. TIO Timer Event Input Restrictions

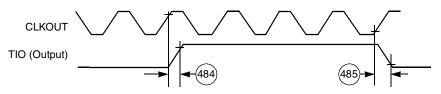


Figure 2-42. External Pulse Generation

2.5.12 OnCE Module TimIng

No.	. Characteristics Expression Min Max Unit					
500	TCK frequency of operation	Max 22.0 MHz	0.0	22.0	MHz	
514	DE assertion time in order to enter Debug mode	$1.5 \times T_{C} + 10.0$	20.0	—	ns	
515	5Response time when DSP56303 is executing NOP instructions from internal memory $5.5 \times T_{C} + 30.0$ —67.0ns					
516	Debug acknowledge assertion time	$3 \times T_{C} + 5.0$	25.0	—	ns	
Note:	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, V_{CC} = 1.8 \text{ V} \pm 0.1 \text{ V}; T_{J} = -40^{\circ}\text{C} \text{ to } +100 ^{\circ}\text{C}, C_{L} = 50 \text{ pF}.$					

Table 2-22. OnCE Module Timing

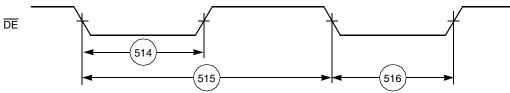


Figure 2-48. OnCE—Debug Request

Table 3-1.	DSP56303 TQFP	Signal Identification	by Pin Number
------------	---------------	-----------------------	---------------

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
1	SRD1 or PD4	26	GND _S	51	AA2/RAS2
2	STD1 or PD5	27	TIO2	52	CAS
3	SC02 or PC2	28	TIO1	53	XTAL
4	SC01 or PC1	29	TIO0	54	GND _Q
5	DE	30	HCS/HCS, HA10, or PB13	55	EXTAL
6	PINIT/NMI	31	HA2, HA9, or PB10	56	V _{CCQ}
7	SRD0 or PC4	32	HA1, HA8, or PB9	57	V _{CCC}
8	V _{CCS}	33	HA0, HAS/HAS, or PB8	58	GND _C
9	GND _S	34	H7, HAD7, or PB7	59	CLKOUT
10	STD0 or PC5	35	H6, HAD6, or PB6	60	BCLK
11	SC10 or PD0	36	H5, HAD5, or PB5	61	BCLK
12	SC00 or PC0	37	H4, HAD4, or PB4	62	TA
13	RXD or PE0	38	V _{CCH}	63	BR
14	TXD or PE1	39	GND _H	64	BB
15	SCLK or PE2	40	H3, HAD3, or PB3	65	V _{CCC}
16	SCK1 or PD3	41	H2, HAD2, or PB2	66	GND _C
17	SCK0 or PC3	42	H1, HAD1, or PB1	67	WR
18	V _{CCQ}	43	H0, HAD0, or PB0	68	RD
19	GNDQ	44	RESET	69	AA1/RAS1
20	Not Connected (NC), reserved	45	V _{CCP}	70	AA0/RAS0
21	HDS/HDS, HWR/HWR, or PB12	46	PCAP	71	BG
22	HRW, HRD/HRD, or PB11	47	GND _P	72	AO
23	HACK/HACK, HRRQ/HRRQ, or PB15	48	GND _{P1}	73	A1
24	HREQ/HREQ, HTRQ/HTRQ, or PB14	49	Not Connected (NC), reserved	74	V _{CCA}
25	V _{CCS}	50	AA3/RAS3	75	GND _A

Table 3-2.	DSP56303	TQFP Signal Ide	entification by Name	(Continued)
------------	----------	-----------------	----------------------	-------------

Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.
H1	42	HRD/HRD	22	PB2	41
H2	41	HREQ/HREQ	24	PB3	40
НЗ	40	HRRQ/HRRQ	23	PB4	37
H4	37	HRW	22	PB5	36
H5	36	HTRQ/HTRQ	24	PB6	35
H6	35	HWR/HWR	21	PB7	34
H7	34	IRQA	137	PB8	33
HA0	33	ĪRQB	136	PB9	32
HA1	32	IRQC	135	PC0	12
HA10	30	IRQD	134	PC1	4
HA2	31	MODA	137	PC2	3
HA8	32	MODB	136	PC3	17
HA9	31	MODC	135	PC4	7
HACK/HACK	23	MODD	134	PC5	10
HAD0	43	NC	20	PCAP	46
HAD1	42	NMI	6	PD0	11
HAD2	41	NC	49	PD1	144
HAD3	40	PB0	43	PD2	143
HAD4	37	PB1	42	PD3	16
HAD5	36	PB10	31	PD4	1
HAD6	35	PB11	22	PD5	2
HAD7	34	PB12	21	PE0	13
HAS/HAS	33	PB13	30	PE1	14
HCS/HCS	30	PB14	24	PE2	15
HDS/HDS	21	PB15	23	PINIT	6

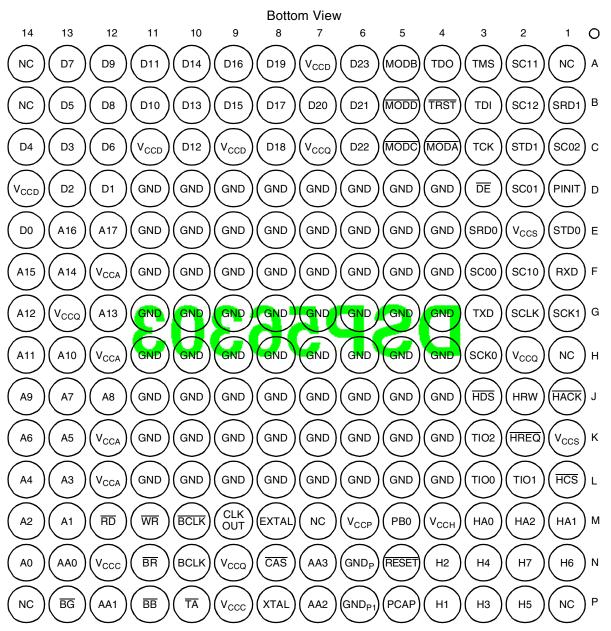


Figure 3-5. DSP56303 Molded Array Process-Ball Grid Array (MAP-BGA), Bottom View

 Table 3-4.
 DSP56303 MAP-BGA Signal Identification by Name (Continued)

Pin Pin		Pin			Pin
Signal Name	No.	Signal Name	No.	Signal Name	No.
GND	F8	GND	J9	H4	N3
GND	F9	GND	J10	H5	P2
GND	F10	GND	J11	H6	N1
GND	F11	GND	K4	H7	N2
GND	G4	GND	K5	HA0	М3
GND	G5	GND	K6	HA1	M1
GND	G6	GND	K7	HA10	L1
GND	G7	GND	K8	HA2	M2
GND	G8	GND	К9	HA8	M1
GND	G9	GND	K10	HA9	M2
GND	G10	GND	K11	HACK/HACK	J1
GND	G11	GND	L4	HAD0	M5
GND	H4	GND	L5	HAD1	P4
GND	H5	GND	L6	HAD2	N4
GND	H6	GND	L7	HAD3	P3
GND	H7	GND	L8	HAD4	N3
GND	H8	GND	L9	HAD5	P2
GND	H9	GND	L10	HAD6	N1
GND	H10	GND	L11	HAD7	N2
GND	H11	GND _P	N6	HAS/HAS	М3
GND	J4	GND _{P1}	P6	HCS/HCS	L1
GND	J5	НО	M5	HDS/HDS	J3
GND	J6	H1	P4	HRD/HRD	J2
GND	J7	H2	N4	HREQ/HREQ	K2
GND	J8	НЗ	P3	HRRQ/HRRQ	J1

r Consumption Benchmark

M_BRP EQU 23 ; Refresh prescaler Address Attribute Registers ; M BAT EOU \$3 ; Ext. Access Type and Pin Def. Bits Mask (BAT0-BAT1) M BAAP EOU 2 ; Address Attribute Pin Polarity M_BPEN EQU 3 ; Program Space Enable M_BXEN EQU 4 ; X Data Space Enable M_BYEN EQU 5 ; Y Data Space Enable M_BAM EQU 6 ; Address Muxing ; Packing Enable M BPAC EOU 7 M_BNC EQU \$F00 ; Number of Address Bits to Compare Mask (BNC0-BNC3) M_BAC EQU \$FFF000 ; Address to Compare Bits Mask (BAC0-BAC11) control and status bits in SR : M CP EOU Sc00000 ; mask for CORE-DMA priority bits in SR M_CA EQU 0 ; Carry M_V EQU 1 ; Overflow MZEOU2 ; Zero M_N EQU 3 ; Negative M U EOU 4 ; Unnormalized M_E EQU 5 : Extension M_L EQU 6 ; Limit M_S EQU 7 ; Scaling Bit M_IO EQU 8 ; Interupt Mask Bit 0 M_I1 EQU 9 ; Interupt Mask Bit 1 M_S0 EQU 10 ; Scaling Mode Bit 0 M_S1 EQU 11 ; Scaling Mode Bit 1 M_SC EQU 13 ; Sixteen_Bit Compatibility M_DM EQU 14 ; Double Precision Multiply M_LF EQU 15 ; DO-Loop Flag M_FV EQU 16 ; DO-Forever Flag ; Sixteen-Bit Arithmetic M_SA EQU 17 M_CE EQU 19 ; Instruction Cache Enable M_SM EQU 20 ; Arithmetic Saturation M_RM EQU 21 ; Rounding Mode M_CP0 EQU 22 ; bit 0 of priority bits in SR M_CP1 EQU 23 ; bit 1 of priority bits in SR control and status bits in OMR ; M_CDP EQU \$300 ; mask for CORE-DMA priority bits in OMR M_MA equ0 ; Operating Mode A M_MB equ1 ; Operating Mode B M MC equ2 ; Operating Mode C M MD ; Operating Mode D equ3 M_EBD EQU 4 ; External Bus Disable bit in OMR M_SD EQU 6 ; Stop Delay M_MS EQU 7 ; Memory Switch bit in OMR ; bit 0 of priority bits in OMR M_CDP0 EQU 8 M_CDP1 EQU 9 ; bit 1 of priority bits in OMR ; Burst Enable M_BEN EQU 10 ; TA Synchronize Select M_TAS EQU 11 M_BRT EQU 12 ; Bus Release Timing M_ATE EQU 15 ; Address Tracing Enable bit in OMR. M_XYS EQU 16 ; Stack Extension space select bit in OMR. M_EUN EQU 17 ; Extensed stack UNderflow flag in OMR. M_EOV EQU 18 ; Extended stack OVerflow flag in OMR. M_WRP EQU 19 ; Extended WRaP flag in OMR.

Provide the sector of the sect

N

I_TIM1OF EQU I_VEC+\$2A I_TIM2C EQU I_VEC+\$2C I_TIM2OF EQU I_VEC+\$2E	; TIMER 1 overflow ; TIMER 2 compare ; TIMER 2 overflow
; ESSI Interrupts	
I_SIORD EQU I_VEC+\$30 I_SIORDE EQU I_VEC+\$32 I_SIORLS EQU I_VEC+\$34 I_SIOTD EQU I_VEC+\$36 I_SIOTDE EQU I_VEC+\$38 I_SIOTLS EQU I_VEC+\$38 I_SI1RD EQU I_VEC+\$40 I_SI1RDE EQU I_VEC+\$42 I_SI1RLS EQU I_VEC+\$44 I_SI1TD EQU I_VEC+\$46 I_SI1TDE EQU I_VEC+\$48 I_SI1TLS EQU I_VEC+\$48	<pre>; ESSI0 Receive Data ; ESSI0 Receive Data w/ exception Status ; ESSI0 Receive last slot ; ESSI0 Transmit data ; ESSI0 Transmit Data w/ exception Status ; ESSI0 Transmit last slot ; ESSI1 Receive Data ; ESSI1 Receive Data w/ exception Status ; ESSI1 Receive last slot ; ESSI1 Transmit data ; ESSI1 Transmit Data w/ exception Status ; ESSI1 Transmit last slot</pre>
;; SCI Interrupts	
I_SCIRD EQU I_VEC+\$50	; SCI Receive Data ; SCI Receive Data With Exception Status ; SCI Transmit Data ; SCI Idle Line ; SCI Timer
; HOST Interrupts	
I_HC EQU I_VEC+\$64 ; ; INTERRUPT ENDING ADDRESS	; Host Receive Data Full ; Host Transmit Data Empty ; Default Host Command
	; last address of interrupt vector space