Microchip Technology - PIC16F1614-E/P Datasheet

E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	14-DIP (0.300", 7.62mm)
Supplier Device Package	14-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1614-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ŋ	20-Pin PDIP, SOIC, SSOP	20-Pin UQFN	A/D	Reference	Comparator	Timers	ССР	CWG	ZCD	CLC	EUSART	SMT	Angular Timer	MSSP	MWG	High Current I/O	Interrupt	Bull-up	Basic
RA0	19	16	AN0	DAC10UT	C1IN+	—	_	_	_	_		_		_		—	IOC	Y	ICSPDAT
RA1	18	15	AN1	VREF+	C1IN0- C2IN0-	—	—	—	—	—	_	—	—	—	_	-	IOC	Y	ICSPCLK
RA2	17	14	AN2	-		T0CKI ⁽¹⁾		CWG1IN ⁽¹⁾	ZCD1IN	Ι		—	-		-		INT IOC	Y	—
RA3	4	1	—	-		T6IN ⁽¹⁾	—	_	_	_		SMTWIN2 ⁽¹⁾	—	—		-	IOC	Y	MCLR VPP
RA4	3	20	AN3	_	_	T1G ⁽¹⁾	_	_	_	_	_	SMTSIG1(1)	_	_	_	_	IOC	Y	CLKOUT
RA5	2	19	—	-		T1CKI ⁽¹⁾ T2IN ⁽¹⁾	—	_	—	CLCIN3 ⁽¹⁾		SMTWIN1 ⁽¹⁾	—	—	_	—	IOC	Y	CLKIN
RB4	13	10	AN10	_	_	_	_	_	_	_	_	_	_	SDI(1)	_	_	IOC	Y	_
RB5	12	9	AN11	_	_	_	_	_	_	_	RX ^(1,3)	_	_	_		-	IOC	Y	_
RB6	11	8	_	_	-	_	_	_	—	—	_	_	_	SCK ^(1,3)	_	_	IOC	Y	_
RB7	10	7	_	_		—		_	_	_	CK ⁽¹⁾	_		_	-	_	IOC	Y	—
RC0	16	13	AN4	—	C2IN+	T5CKI ⁽¹⁾	_	-	_	-	_	-	_	_	—	_	IOC	Y	—
RC1	15	12	AN5	—	C1IN1- C2IN1-	T4IN ⁽¹⁾		-	-	CLCIN2 ⁽²⁾	_	SMTSIG2 ⁽¹⁾	_	—	_	-	IOC	Y	—
RC2	14	11	AN6	_	C1IN2- C2IN2-	—	-	-	-	-	_	—	-	—	_	-	IOC	Y	—
RC3	7	4	AN7	_	C1IN3- C2IN3-	T5G ⁽¹⁾	CCP2 ⁽¹⁾	-	_	CLCIN0 ⁽¹⁾	_	—	ATCC ⁽¹⁾	_	_	-	IOC	Y	—
RC4	6	3	_	_		T3G ⁽¹⁾	_	_		CLCIN1 ⁽¹⁾		_			_	HIC4	IOC	Y	—
RC5	5	2	—	_	_	T3CKI ⁽¹⁾	CCP1 ⁽¹⁾	_	_	_	_	_	ATIN ⁽¹⁾	_	_	HIC5	IOC	Y	—
RC6	8	5	AN8	_		_	_	_	—	_	—	_	_	SS ⁽¹⁾	_	_	IOC	Y	_
RC7	9	6	AN9			—	_	_	_	_		_	_	_	ļ	_	IOC	Y	—
Vdd	1	18	_	_		_	_	_	_	_	_	_		_		_	_	_	_
Vss	20	17	_	_		—	_	_	_	_		_	_	_		—		_	—
								vith the PPS ir cted as a digit			e PPS out	tput selection re	gisters.						_

TABLE 4: 20-PIN ALLOCATION TABLE (PIC16(L)F1618)

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers.

These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections. 3:

PIC16(L)F1614/8

5.2.2 INTERNAL CLOCK SOURCES

The device may be configured to use the internal oscillator block as the system clock by performing one of the following actions:

- Program the FOSC<1:0> bits in Configuration Words to select the INTOSC clock source, which will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to the internal oscillator during run-time. See Section5.3 "Clock Switching"for more information.

In **INTOSC** mode, CLKIN is available for general purpose I/O. CLKOUT is available for general purpose I/O or CLKOUT.

The function of the OSC2/CLKOUT pin is determined by the CLKOUTEN bit in Configuration Words.

The internal oscillator block has two independent oscillators and a dedicated Phase Lock Loop, HFPLL that can produce one of three internal system clock sources.

- The HFINTOSC (High-Frequency Internal Oscillator) is factory calibrated and operates at 16 MHz. The HFINTOSC source is generated from the 500 kHz MFINTOSC source and the dedicated Phase Lock Loop, HFPLL. The frequency of the HFINTOSC can be useradjusted via software using the OSCTUNE register (Register 5-3).
- 2. The **MFINTOSC** (Medium-Frequency Internal Oscillator) is factory calibrated and operates at 500 kHz. The frequency of the MFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 5-3).
- 3. The **LFINTOSC** (Low-Frequency Internal Oscillator) is uncalibrated and operates at 31 kHz.

5.2.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a factory calibrated 16 MHz internal clock source. The frequency of the HFINTOSC can be altered via software using the OSCTUNE register (Register 5-3).

The output of the HFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). One of multiple frequencies derived from the HFINTOSC can be selected via software using the IRCF<3:0> bits of the OSCCON register. See **Section5.2.2.8 "Internal Oscillator Clock Switch Timing**" for more information.

The HFINTOSC is enabled by:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired HF frequency, and
- FOSC<1:0> = 00, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'.

A fast start-up oscillator allows internal circuits to power up and stabilize before switching to HFINTOSC.

The High-Frequency Internal Oscillator Ready bit (HFIOFR) of the OSCSTAT register indicates when the HFINTOSC is running.

The High-Frequency Internal Oscillator Status Locked bit (HFIOFL) of the OSCSTAT register indicates when the HFINTOSC is running within 2% of its final value.

The High-Frequency Internal Oscillator Stable bit (HFIOFS) of the OSCSTAT register indicates when the HFINTOSC is running within 0.5% of its final value.

5.2.2.2 MFINTOSC

The Medium-Frequency Internal Oscillator (MFINTOSC) is a factory calibrated 500 kHz internal clock source. The frequency of the MFINTOSC can be altered via software using the OSCTUNE register (Register 5-3).

The output of the MFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). One of nine frequencies derived from the MFINTOSC can be selected via software using the IRCF<3:0> bits of the OSCCON register. See **Section5.2.2.8 "Internal Oscillator Clock Switch Timing**" for more information.

The MFINTOSC is enabled by:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired HF frequency, and
- FOSC<1:0> = 00, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'

The Medium-Frequency Internal Oscillator Ready bit (MFIOFR) of the OSCSTAT register indicates when the MFINTOSC is running.

5.2.2.3 Internal Oscillator Frequency Adjustment

The 500 kHz internal oscillator is factory calibrated. This internal oscillator can be adjusted in software by writing to the OSCTUNE register (Register 5-3). Since the HFINTOSC and MFINTOSC clock sources are derived from the 500 kHz internal oscillator a change in the OSCTUNE register value will apply to both.

The default value of the OSCTUNE register is '0'. The value is a 6-bit two's complement number. A value of 1Fh will provide an adjustment to the maximum frequency. A value of 20h will provide an adjustment to the minimum frequency.

When the OSCTUNE register is modified, the oscillator frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

OSCTUNE does not affect the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), Watchdog Timer (WDT), and peripherals, are *not* affected by the change in frequency.

5.2.2.4 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is an uncalibrated 31 kHz internal clock source.

The output of the LFINTOSC connects to a multiplexer (see Figure 5-1). Select 31 kHz, via software, using the IRCF<3:0> bits of the OSCCON register. See Section5.2.2.8 "Internal Oscillator Clock Switch Timing" for more information. The LFINTOSC is also the frequency for the Power-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The LFINTOSC is enabled by selecting 31 kHz (IRCF<3:0> bits of the OSCCON register = 000) as the system clock source (SCS bits of the OSCCON register = 1x), or when any of the following are enabled:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired LF frequency, and
- FOSC<1:0> = 00, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'

Peripherals that use the LFINTOSC are:

- Power-up Timer (PWRT)
- Watchdog Timer (WDT)

The Low-Frequency Internal Oscillator Ready bit (LFIOFR) of the OSCSTAT register indicates when the LFINTOSC is running.

5.2.2.5 FRC

The FRC clock is an uncalibrated, nominal 600 kHz peripheral clock source.

The FRC is automatically turned on by the peripherals requesting the FRC clock.

The FRC clock will continue to run during Sleep.

5.2.2.6 Internal Oscillator Frequency Selection

The system clock speed can be selected via software using the Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register.

The postscaler outputs of the 16 MHz HFINTOSC, 500 kHz MFINTOSC, and 31 kHz LFINTOSC output connect to a multiplexer (see Figure 5-1). The Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register select the frequency output of the internal oscillators. One of the following frequencies can be selected via software:

- 16 MHz
- 8 MHz
- 4 MHz
- 2 MHz
- 1 MHz
- 500 kHz (default after Reset)
- 250 kHz
- 125 kHz
- 62.5 kHz
- 31.25 kHz
- 31 kHz (LFINTOSC)

Note: Following any Reset, the IRCF<3:0> bits of the OSCCON register are set to '0111' and the frequency selection is set to 500 kHz. The user can modify the IRCF bits to select a different frequency.

The IRCF<3:0> bits of the OSCCON register allow duplicate selections for some frequencies. These duplicate choices can offer system design trade-offs. Lower power consumption can be obtained when changing oscillator sources for a given frequency. Faster transition times can be obtained between frequency changes that use the same oscillator source.

9.7 Register Definitions: Windowed Watchdog Timer Control

U-0	U-0	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q	⁽²⁾ R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W-0/0					
—	—			WDTPS<4:0>(1)			SEN					
bit 7							bit (
Legend:												
R = Reada	able bit	W = Writable I	bit	U = Unimplem	ented bit, read	l as '0'						
u = Bit is u	inchanged	x = Bit is unkn	iown	-n/n = Value a	t POR and BO	R/Value at all ot	ner Resets					
'1' = Bit is	set	'0' = Bit is clea	ared	q = Value dep	ends on condit	ion						
bit 7-6	Unimpleme	ented: Read as '	0'									
bit 5-1	WDTPS<4:	WDTPS<4:0>: Watchdog Timer Prescale Select bits ⁽¹⁾										
	Bit Value =	Prescale Rate										
	11111 = F	Reserved. Results	s in minimum	n interval (1:32)								
	•											
	•											
	10011 = F	Reserved. Results	s in minimum	n interval (1:32)								
	10010 = 1	:8388608 (2 ²³) (I	Interval 256s	nominal)								
	10001 = 1	:4194304 (2 ²²) (I	Interval 128s	nominal)								
		:2097152 (2 ²¹) (I										
	01111 = 1	:1048576 (2 ²⁰) (I	Interval 32s i	nominal)								
	01110 = 1 01101 = 1	:524288 (2 ¹⁹) (In	iterval 8s noi	minal)								
	01100 = 1	:262144 (2 ¹⁸) (In :131072 (2 ¹⁷) (In	iterval 4s noi	minal)								
		:65536 (Interval 2										
	01010 = 1	:32768 (Interval	1s nominal)									
		:16384 (Interval §										
		:8192 (Interval 2										
		:4096 (Interval 12		,								
		:2048 (Interval 64 :1024 (Interval 32										
		:512 (Interval 16		,								
		:256 (Interval 8 n		, ,								
		:128 (Interval 4 n	,									
		00001 = 1:64 (Interval 2 ms nominal)										
		:32 (Interval 1 ms										
bit 0		are Enable/Disat	ble for Watch	idog Timer bit								
	If WDTE<1											
	This bit is ig If WDTE<1:											
	1 = WDT is											
	0 = WDT is											
	If WDTE<1:											
	This bit is ig	nored.										
Note 1:	Times are appr	oximate. WDT tin	ne is based	on 31 kHz LFINTO	DSC.							

REGISTER 9-1: WDTCON0: WATCHDOG TIMER CONTROL REGISTER 0

- Note 1: Times are approximate. WDT time is based on 31 kHz LFINTOSC.
 - 2: When WDTCPS <4:0> in CONFIG3 = 11111, the Reset value of WDTPS<4:0> is 01011. Otherwise, the Reset value of WDTPS<4:0> is equal to WDTCPS<4:0> in CONFIG3.
 - 3: When WDTCPS <4:0> in CONFIG3 \neq 11111, these bits are read-only.

TABLE 12-2:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_		—	ANSA4		ANSA2	ANSA1	ANSA0	152
INLVLA	—	_	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	154
LATA	_	_	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	152
ODCONA	—	_	ODA5	ODA4	_	ODA2	ODA1	ODA0	153
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS<2:0>			222
PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	151
SLRCONA	—	_	SLRA5	SLRA4	_	SLRA2	SLRA1	SLRA0	154
TRISA	_	_	TRISA5	TRISA4	(1)	TRISA2	TRISA1	TRISA0	151
WPUA	_	_	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	153

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.**Note 1:**Unimplemented, read as '1'.

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page	
	13:8			_	_	CLKOUTEN	BOREI	N<1:0> —		07	
CONFIG1	7:0	CP	MCLRE	PWRTE		_	— FOSC		<1:0>	67	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTA.

12.3.7 PORTB FUNCTIONS AND OUTPUT PRIORITIES

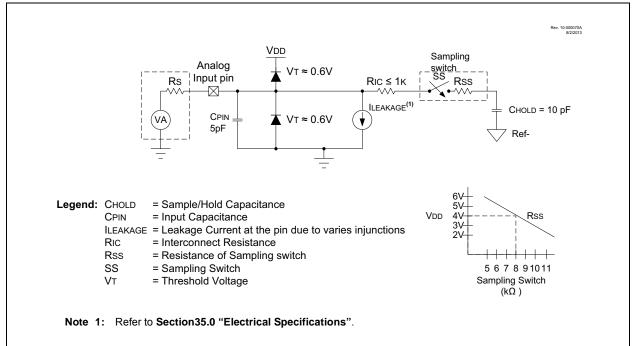

Each pin defaults to the PORT latch data after Reset. Other functions are selected with the peripheral pin select logic. See **Section13.0** "**Peripheral Pin Select (PPS) Module**" for more information. Analog input functions, such as ADC inputs, are not shown in the peripheral pin select lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELB register. Digital output functions continue to may continue to control the pin when it is in Analog mode.

TABLE 13-3: SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE (CONTINUED)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page							
RC1PPS	—	-	_	RC1PPS<4:0>				RC1PPS<4:0>								
RC2PPS	—	_	_		RC2PPS<4:0>											
RC3PPS	—	-	_		RC3PPS<4:0>											
RC4PPS	—	-	_			RC4PPS<4	:0>		172							
RC5PPS	—	_	_		RC5PPS<4:0>											
RC6PPS ⁽¹⁾	—	_	_		172											
RC7PPS ⁽¹⁾	—	_				RC7PPS<4	:0>		172							

Note 1: PIC16(L)F1618 only.

23.5.4 LEVEL-TRIGGERED HARDWARE LIMIT MODE

In the Level-Triggered Hardware Limit Timer modes the counter is reset by high or low levels of the external signal TMRx_ers, as shown in Figure 23-7. Selecting MODE<4:0> = 00110 will cause the timer to reset on a low level external signal. Selecting MODE<4:0> = 00111 will cause the timer to reset on a high level external signal. In the example, the counter is reset while TMRx_ers = 1. ON is controlled by BSF and BCF instructions. When ON = 0 the external signal is ignored.

When the CCP uses the timer as the PWM time base then the PWM output will be set high when the timer starts counting and then set low only when the timer count matches the CCPRx value. The timer is reset when either the timer count matches the PRx value or two clock periods after the external Reset signal goes true and stays true.

The timer starts counting, and the PWM output is set high, on either the clock following the PRx match or two clocks after the external Reset signal relinquishes the Reset. The PWM output will remain high until the timer counts up to match the CCPRx pulse width value. If the external Reset signal goes true while the PWM output is high then the PWM output will remain high until the Reset signal is released allowing the timer to count up to match the CCPRx value.

	Rev. 10-000368 500/2014
MODE	0600111
TMRx_clk	
PRx	5
Instruction ⁽¹⁾ -	BSF BSF
ON	
TMRx_ers	
TMRx	0 1 2 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 1 2 3 4 5 0 1 1 2 3 4 5 0 1 1 2 3 4 5 0 1 1 1 2 3 4 5 0 1 1 1 2 3 4 5 0 1 1 1 2 1 3 4 5 0 1 1 1 2 3 4 5 0 1 1 1 1 1 1 1 1 1
TMRx_postscaled	
PWM Duty	3
Cycle	3
PWM Output	
	: BSF and BCF represent Bit-Set File and Bit-Clear File instructions executed by the CPU to set or clear the ON bit of TxCON. CPU execution is asynchronous to the timer clock input.

24.2 SPI Mode Overview

The Serial Peripheral Interface (SPI) bus is a synchronous serial data communication bus that operates in Full-Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave device is controlled through a Chip Select known as Slave Select.

The SPI bus specifies four signal connections:

- Serial Clock (SCK)
- Serial Data Out (SDO)
- Serial Data In (SDI)
- Slave Select (SS)

Figure 24-1 shows the block diagram of the MSSP module when operating in SPI mode.

The SPI bus operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

Figure 24-4 shows a typical connection between a master device and multiple slave devices.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

Transmissions involve two shift registers, eight bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new Least Significant bit (LSb) is shifted into the same register.

Figure 24-5 shows a typical connection between two processors configured as master and slave devices.

Data is shifted out of both shift registers on the programmed clock edge and latched on the opposite edge of the clock.

The master device transmits information out on its SDO output pin which is connected to, and received by, the slave's SDI input pin. The slave device transmits information out on its SDO output pin, which is connected to, and received by, the master's SDI input pin.

To begin communication, the master device first sends out the clock signal. Both the master and the slave devices should be configured for the same clock polarity.

The master device starts a transmission by sending out the MSb from its shift register. The slave device reads this bit from that same line and saves it into the LSb position of its shift register.

During each SPI clock cycle, a full-duplex data transmission occurs. This means that while the master device is sending out the MSb from its shift register (on

its SDO pin) and the slave device is reading this bit and saving it as the LSb of its shift register, that the slave device is also sending out the MSb from its shift register (on its SDO pin) and the master device is reading this bit and saving it as the LSb of its shift register.

After eight bits have been shifted out, the master and slave have exchanged register values.

If there is more data to exchange, the shift registers are loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data), depends on the application software. This leads to three scenarios for data transmission:

- Master sends useful data and slave sends dummy data.
- Master sends useful data and slave sends useful data.
- Master sends dummy data and slave sends useful data.

Transmissions may involve any number of clock cycles. When there is no more data to be transmitted, the master stops sending the clock signal and it deselects the slave.

Every slave device connected to the bus that has not been selected through its slave select line must disregard the clock and transmission signals and must not transmit out any data of its own.

24.4 I²C MODE OPERATION

All MSSP I²C communication is byte oriented and shifted out MSb first. Six SFR registers and two interrupt flags interface the module with the PIC[®] microcontroller and user software. Two pins, SDA and SCL, are exercised by the module to communicate with other external I²C devices.

24.4.1 BYTE FORMAT

All communication in I^2C is done in 9-bit segments. A byte is sent from a master to a slave or vice-versa, followed by an Acknowledge bit sent back. After the eighth falling edge of the SCL line, the device outputting data on the SDA changes that pin to an input and reads in an acknowledge value on the next clock pulse.

The clock signal, SCL, is provided by the master. Data is valid to change while the SCL signal is low, and sampled on the rising edge of the clock. Changes on the SDA line while the SCL line is high define special conditions on the bus, explained below.

24.4.2 DEFINITION OF I²C TERMINOLOGY

There is language and terminology in the description of I^2C communication that have definitions specific to I^2C . That word usage is defined below and may be used in the rest of this document without explanation. This table was adapted from the Philips I^2C specification.

24.4.3 SDA AND SCL PINS

Selection of any I²C mode with the SSPEN bit set, forces the SCL and SDA pins to be open-drain. These pins should be set by the user to inputs by setting the appropriate TRIS bits.

- Note 1: Data is tied to output zero when an I²C mode is enabled.
 - 2: Any device pin can be selected for SDA and SCL functions with the PPS peripheral. These functions are bidirectional. The SDA input is selected with the SSPDATPPS registers. The SCL input is selected with the SSPCLKPPS registers. Outputs are selected with the RxyPPS registers. It is the user's responsibility to make the selections so that both the input and the output for each function is on the same pin.

24.4.4 SDA HOLD TIME

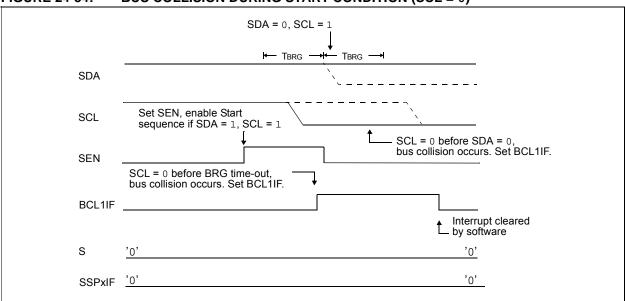
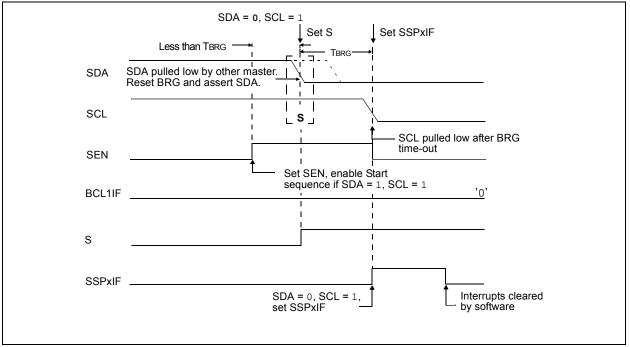
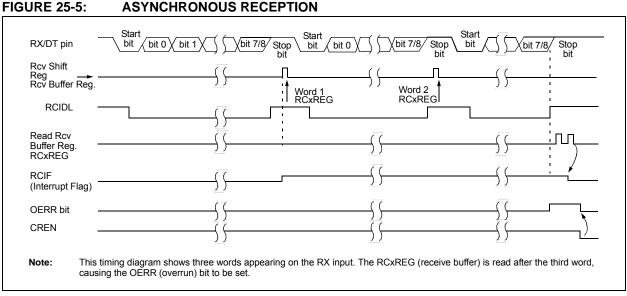

The hold time of the SDA pin is selected by the SDAHT bit of the SSPxCON3 register. Hold time is the time SDA is held valid after the falling edge of SCL. Setting the SDAHT bit selects a longer 300 ns minimum hold time and may help on buses with large capacitance.

TABLE 24-2: I²C BUS TERMS


TABLE 24-2: I ² C BUS TERMS							
TERM	Description						
Transmitter	The device which shifts data out onto the bus.						
Receiver	The device which shifts data in from the bus.						
Master	The device that initiates a transfer, generates clock signals and termi- nates a transfer.						
Slave	The device addressed by the master.						
Multi-master	A bus with more than one device that can initiate data transfers.						
Arbitration	Procedure to ensure that only one master at a time controls the bus. Winning arbitration ensures that the message is not corrupted.						
Synchronization	Procedure to synchronize the clocks of two or more devices on the bus.						
Idle	No master is controlling the bus, and both SDA and SCL lines are high.						
Active	Any time one or more master devices are controlling the bus.						
Addressed Slave	Slave device that has received a matching address and is actively being clocked by a master.						
Matching Address	Address byte that is clocked into a slave that matches the value stored in SSPxADD.						
Write Request	Slave receives a matching address with R/W bit clear, and is ready to clock in data.						
Read Request	Master sends an address byte with the R/\overline{W} bit set, indicating that it wishes to clock data out of the Slave. This data is the next and all following bytes until a Restart or Stop.						
Clock Stretching	When a device on the bus holds SCL low to stall communication.						
Bus Collision	Any time the SDA line is sampled low by the module while it is out- putting and expected high state.						

© 2014-2016 Microchip Technology Inc.


25.1.2.8 Asynchronous Reception Set-up

- Initialize the SPxBRGH, SPxBRGL register pair 1 and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 25.4 "EUSART Baud Rate Generator (BRG)").
- Clear the ANSEL bit for the RX pin (if applicable). 2.
- 3. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 4. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- If 9-bit reception is desired, set the RX9 bit. 5.
- Enable reception by setting the CREN bit. 6.
- 7. The RCIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- Read the RCxSTA register to get the error flags 8. and, if 9-bit data reception is enabled, the ninth data bit.
- 9. Get the received eight Least Significant data bits from the receive buffer by reading the RCxREG register.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

25.1.2.9 9-bit Address Detection Mode Set-up

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPxBRGH, SPxBRGL register pair 1 and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 25.4 "EUSART Baud Rate Generator (BRG)").
- Clear the ANSEL bit for the RX pin (if applicable). 2.
- Enable the serial port by setting the SPEN bit. 3. The SYNC bit must be clear for asynchronous operation.
- 4 If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. Enable 9-bit reception by setting the RX9 bit.
- Enable address detection by setting the ADDEN 6. bit.
- Enable reception by setting the CREN bit. 7.
- 8. The RCIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- Read the RCxSTA register to get the error flags. 9. The ninth data bit will always be set.
- 10. Get the received eight Least Significant data bits from the receive buffer by reading the RCxREG register. Software determines if this is the device's address.
- 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 12. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0					
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D					
bit 7	•					•	bit (
Legend:												
R = Readable		W = Writable			mented bit, read							
u = Bit is unch	0		c = Bit is unknown -n/n = Value at POR and BOR/Value at all other									
'1' = Bit is set		'0' = Bit is cle	ared									
bit 7	SPEN: Seria	l Port Enable b	it									
Sit 7	1 = Serial port enabled											
	0 = Serial port disabled (held in Reset)											
bit 6	RX9: 9-Bit R	eceive Enable	bit									
	1 = Selects 9-bit reception											
	0 = Selects	8-bit reception										
bit 5	-	e Receive Ena	ole bit									
	<u>Asynchronous mode</u> : Don't care											
		s mode – Maste	\ r .									
	-	single receive	<u>.</u> .									
		single receive										
	This bit is cle	This bit is cleared after reception is complete.										
	Synchronous mode – Slave											
	Don't care											
bit 4	CREN: Continuous Receive Enable bit											
	Asynchronous mode:											
	1 = Enables receiver 0 = Disables receiver											
	0 = Disables receiver Synchronous mode:											
	 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive 											
bit 3												
	ADDEN: Address Detect Enable bit Asynchronous mode 9-bit (RX9 = 1):											
	-	-	-	terrupt and loa	d the receive bu	uffer when RSF	R<8> is set					
				are received a	nd ninth bit can	be used as pa	rity bit					
		<u>is mode 8-bit (F</u>	RX9 = <u>0)</u> :									
	Don't care											
bit 2	FERR: Fram	•										
	1 = Framing 0 = No frami		ipdated by rea	ading RCxREG	register and re	ceive next valio	l byte)					
bit 1	OERR: Over	run Error bit										
	 1 = Overrun error (can be cleared by clearing bit CREN) 0 = No overrun error 											
bit 0	0 = No overrun error RX9D: Ninth bit of Received Data											
		DIL UI RECEIVEL	IDala									

REGISTER 25-2: RC1STA: RECEIVE STATUS AND CONTROL REGISTER

TABLE 25-7:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	_		ANSA4	—	ANSA2	ANSA1	ANSA0	152
ANSELB ⁽¹⁾	_	_	ANSB5	ANSB4	_	_	_	_	159
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	_		ANSC3	ANSC2	ANSC1	ANSC0	166
BAUD1CON	ABDOVF	RCIDL		SCKP	BRG16	_	WUE	ABDEN	323
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	97
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	98
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	103
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	322
RxyPPS	—	_	_		F	RxyPPS<4:0	>		172
SP1BRGL				BRG<	:7:0>				324
SP1BRGH				BRG<	15:8>				324
TRISA	—	_	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	151
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	—		—	—	158
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	165
TX1REG			EUS	ART Transm	nit Data Regis	ter			313*
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	321

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master transmission. * Page provides register information.

Note 1: PIC16(L)F1618 only.

2: Unimplemented, read as '1'.

TADLE 20-1. EXAMIFLE FWW FREQUENCIES AND RESOLUTIONS (FUSC = 20 MITZ)	TABLE 26-1:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (I	Fosc = 20 MHz)
---	-------------	---	----------------

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6

TABLE 26-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

26.4.5 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See **Section5.0 "Oscillator Module"** for additional details.

26.4.6 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

26.4.7 PWM OUTPUT

The output of the CCP in PWM mode is the PWM signal generated by the module and described above. This output is available as an input signal to the CWG, as an auto-conversion trigger for the ADC, as an external Reset signal for the TMR2 modules, as a window input to the SMT, and as an input to the CLC module. In addition, the CCPx pin output can be mapped to output pins through the use of PPS (see Section13.2 "PPS Outputs").

PIC16(L)F1614/8

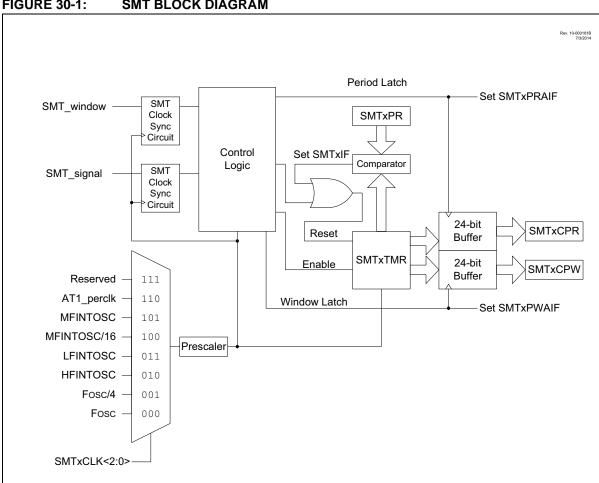
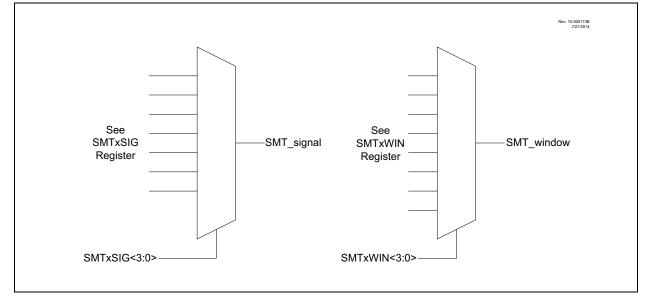
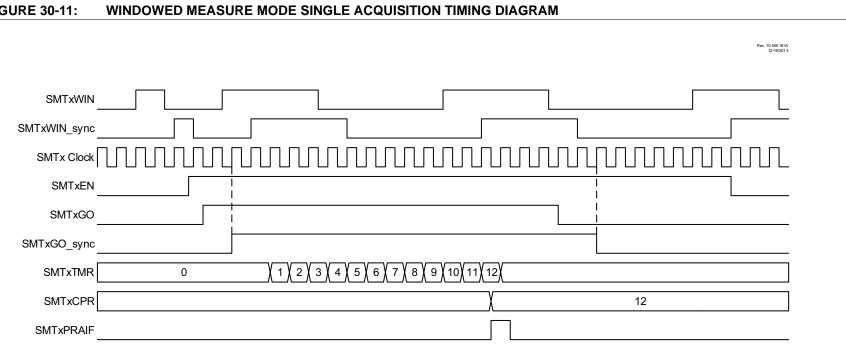




FIGURE 30-1: SMT BLOCK DIAGRAM

FIGURE 30-11:

REGISTER 32-6: PIDxK1H: PID K1 HIGH REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
			K1<	15:8>				
bit 7							bit 0	
Legend:								
R = Readable bi	t	W = Writable bit	:	U = Unimpleme	ented bit, read as	ʻ0'		
u = Bit is unchan	nged	x = Bit is unknow	wn	-n/n = Value at	POR and BOR/V	alue at all other I	Resets	
'1' = Bit is set		'0' = Bit is cleare	ed	q = Value depends on condition				

bit 7-0

K1<15:8>: K1 upper eight bits. K1 is the 16-bit user-controlled coefficient calculated from Kp + Ki + Kd

REGISTER 32-7: PIDxK1L: PID K1 LOW REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | K1< | 7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Legend: | | | | | | | |

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-0 K1<7:0>: K1 lower eight bits. K1 is the 16-bit user-controlled coefficient calculated from Kp + Ki + Kd

REGISTER 32-8: PIDxK2H: PID K2 HIGH REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
K2<15:8>								
bit 7 bit 0								

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-0 K2<15:8>: K2 upper eight bits. K2 is the 16-bit user-controlled coefficient calculated from -(Kp + 2Kd)

REGISTER 32-9: PIDxK2L: PID K2 LOW REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
K2<7:0>								
bit 7 bit 0								

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-0

K2<7:0>: K2 lower eight bits. K2 is the 16-bit user-controlled coefficient calculated from -(Kp + 2Kd)

35.3 DC Characteristics

TABLE 35-1: SUPPLY VOLTAGE

PIC16F1614/8			Standard Operating Conditions (unless otherwise stated)					
PIC16F1	614/8							
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
D001	Vdd	Supply Voltage			•			
			VDDMIN		VDDMAX			
			1.8	—	3.6	V	Fosc ≤ 16 MHz	
			2.5	_	3.6	V	Fosc ≤ 32 MHz	
D001			2.3 2.5	—	5.5 5.5	V V	$FOSC \le 16 \text{ MHz}$ $FOSC \le 32 \text{ MHz}$	
D002*	VDR	DAM Data Datantian Valtara(1)	2.0	_	0.0	v	FUSC SZ MIHZ	
D002	VDR	RAM Data Retention Voltage ⁽¹⁾	4 5					
Decet			1.5	_	—	V	Device in Sleep mode	
D002*			1.7	—	—	V	Device in Sleep mode	
D002A*	VPOR	Power-on Reset Release Voltage					Ι	
			-	1.6	—	V		
D002A*			<u> </u>	1.6	—	V		
D002B*	VPORR*	Power-on Reset Rearm Voltage ⁽²	:)				1	
			—	0.8	—	V		
D002B*			—	1.5	—	V		
D003	VFVR	Fixed Voltage Reference Voltage	_					
			_	1.024	—	V	$-40^\circ C \le T_A \le +85^\circ C$	
D003			—	1.024	_	V	$-40^{\circ}C \leq TA \leq +85^{\circ}C$	
D003A	VADFVR	FVR Gain Voltage Accuracy for A	ADC					
						0/	$1x \text{ VFVR}, \text{ VDD} \ge 2.5 \text{V}$	
			-4	—	+4	%	$2x \text{ VFVR}, \text{ VDD} \geq 2.5 \text{V}$	
D003A			-5		+5	%	1x VFVR, VDD $\geq 2.5V$	
			-5		10	70	$2x VFVR, VDD \ge 2.5V$ $4x VFVR, VDD \ge 4.75V$	
DOODD							4X VEVR, VDD \ge 4.75V	
D003B	VCDAFVR	FVR Gain Voltage Accuracy for C	omparate	or/ADC				
			-4	—	+4	%	1x VFVR, VDD \ge 2.5V 2x VFVR, VDD \ge 2.5V	
D003B							$2x$ VFVR, VDD $\ge 2.5V$ 1x VFVR, VDD $\ge 2.5V$	
D000D			-7	—	+7	%	$2x VFVR, VDD \ge 2.5V$	
							$4x$ VFVR, VDD ≥ 4.75 V	
D004*	SVDD	VDD Rise Rate ⁽²⁾						
			0.05	—	—	V/ms	Ensures that the Power-on Reset	
							signal is released properly.	
D004*			0.05	—	_	V/ms	Ensures that the Power-on Reset	
							signal is released properly.	

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: See Figure 35-3, POR and POR REARM with Slow Rising VDD.