

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1614-e-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1 Automatic Interrupt Context Saving

During interrupts, certain registers are automatically saved in shadow registers and restored when returning from the interrupt. This saves stack space and user code. See **Section 7.5 "Automatic Context Saving"**, for more information.

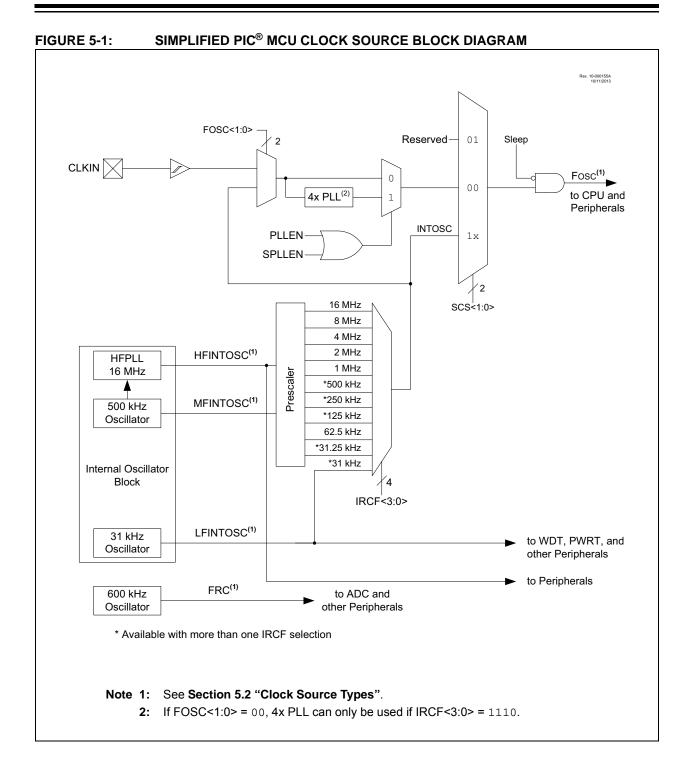
2.2 16-Level Stack with Overflow and Underflow

These devices have a hardware stack memory 15 bits wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF) in the PCON register, and if enabled, will cause a software Reset. See section **Section 3.5** "**Stack**" for more details.

2.3 File Select Registers

There are two 16-bit File Select Registers (FSR). FSRs can access all file registers and program memory, which allows one Data Pointer for all memory. When an FSR points to program memory, there is one additional instruction cycle in instructions using INDF to allow the data to be fetched. General purpose memory can now also be addressed linearly, providing the ability to access contiguous data larger than 80 bytes. There are also new instructions to support the FSRs. See **Section 3.6 "Indirect Addressing"** for more details.

2.4 Instruction Set


There are 49 instructions for the enhanced mid-range CPU to support the features of the CPU. See **Section 34.0** "Instruction Set Summary" for more details.

REGISTER 4-3: CONFIG3: CONFIGURATION WORD 3 (CONTINUED)

bit 4-0 WDTCPS<4:0>: WDT Configuration Period Select bits

		WDTPS a	t POR		0	
WDTCPS <4:0>	Value	Divider Ra	atio	Typical time out (Fıℕ = 31 kHz)	Software control of WDTPS	
11111	01011	1:65536	2 ¹⁶	2 s	Yes	Default fuse = 11111
10011 11110	10011 11110	1:32	2 ⁵	1 ms	No	
10010	10010	1:8388608	2 ²³	256 s		
10001	10001	1:4194304	2 ²²	128 s		
10000	10000	1:2097152	2 ²¹	64 s		
01111	01111	1:1048576	2 ²⁰	32 s		
01110	01110	1:524299	2 ¹⁹	16 s		
01101	01101	1:262144	2 ¹⁸	8 s		
01100	01100	1:131072	2 ¹⁷	4 s		
01011	01011	1:65536	2 ¹⁶	2 s		
01010	01010	1:32768	2 ¹⁵	1 s		
01001	01001	1:16384	2 ¹⁴	512 ms	No	
01000	01000	1:8192	2 ¹³	256 ms		
00111	00111	1:4096	2 ¹²	128 ms		
00110	00110	1:2048	2 ¹¹	64 ms		
00101	00101	1:1024	2 ¹⁰	32 ms		
00100	00100	1:512	2 ⁹	16 ms		
00011	00011	1:256	2 ⁸	8 ms		
00010	00010	1:128	2 ⁷	4 ms		
00001	00001	1:64	2 ⁶	2 ms		
00000	00000	1:32	2 ⁵	1 ms		

Note 1: A window delay of 12.5% is only available in Software Control mode via the WDTCON1 register.

5.3 **Clock Switching**

The system clock source can be switched between external and internal clock sources via software using the System Clock Select (SCS) bits of the OSCCON register. The following clock sources can be selected using the SCS bits:

- · Default system oscillator determined by FOSC bits in Configuration Words
- Internal Oscillator Block (INTOSC)
- 5.3.1 SYSTEM CLOCK SELECT (SCS) BITS

The System Clock Select (SCS) bits of the OSCCON register selects the system clock source that is used for the CPU and peripherals.

- When the SCS bits of the OSCCON register = 00, the system clock source is determined by value of the FOSC<1:0> bits in the Configuration Words.
- When the SCS bits of the OSCCON register = 1x, the system clock source is chosen by the internal oscillator frequency selected by the IRCF<3:0> bits of the OSCCON register. After a Reset, the SCS bits of the OSCCON register are always cleared.

When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 5-1.

Switch From	Switch To	Frequency	Oscillator Delay		
Sleep	LFINTOSC ⁽¹⁾ MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31 kHz 31.25 kHz-500 kHz 31.25 kHz-16 MHz	Oscillator Warm-up Delay (Tiosc st)		
Sleep/POR	EC ⁽¹⁾	DC – 32 MHz	2 cycles		
LFINTOSC	EC ⁽¹⁾	DC – 32 MHz	1 cycle of each		
Any clock source	MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31.25 kHz-500 kHz 31.25 kHz-16 MHz	2 μs (approx.)		
Any clock source	LFINTOSC ⁽¹⁾	31 kHz	1 cycle of each		
PLL inactive	PLL active	16-32 MHz	2 ms (approx.)		

Note 1: PLL inactive.

TABLE 5-1:

OSCILLATOR SWITCHING DELAYS

7.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1, PIE2 and PIE3 registers)

The INTCON, PIR1, PIR2 and PIR3 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- Current prefetched instruction is flushed
- GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See "Section7.5 "Automatic Context Saving".")
- · PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

- Note 1: Individual interrupt flag bits are set, regardless of the state of any other enable bits.
 - 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

7.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7-3 for more details.

REGISTER 11-16: SCANTRIG: SCAN TRIGGER SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
_	—	—	_		TSEI	_<3:0>	
bit 7							bit (
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
u = Bit is unchanged x = Bit is unknown		nown	-n/n = Value a	at POR and BO	OR/Value at all o	ther Resets	
'1' = Bit is se	t	'0' = Bit is clea	ared				
bit 7-4	Unimplemer	ted: Read as '	0'				
hit 3.0 TSEL < 3:0. Scanner Data Trigger Input Selection hits							

bit 3-0	TSEL<3:0>: Scanner Data Trigger Input Selection bits
	1111-1010 = Reserved
	1001 = SMT2_Match
	1000 = SMT1_Match
	0111 = TMR0_Overflow
	0110 = TMR5_Overflow
	0101 = TMR3_Overflow
	0100 = TMR1_Overflow
	0011 = TMR6_postscaled
	0010 = TMR4_postscaled
	0001 = TMR2_postscaled

0000 = LFINTOSC	
-----------------	--

TABLE 11-4: SUMMARY OF REGISTERS ASSOCIATED WITH CRC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CRCACCH		•		ACC<	15:8>				142
CRCACCL				ACC<	7:0>				142
CRCCON0	EN CRCGO BUSY ACCM — — SHIFTM FULL							141	
CRCCON1		D	LEN<3:0>	•		PLEN	I<3:0>		141
CRCDATH				DAT<1	5:8>				142
CRCDATL				DAT<	7:0>				142
CRCSHIFTH		SHIFT<15:8>							143
CRCSHIFTL		SHIFT<7:0>							143
CRCXORH		XOR<15:8>							143
CRCXORL				XOR<7:1>				_	143
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	97
PIR4	SCANIF	CRCIF	SMT2PWAIF	SMT2PRAIF	SMT2IF	SMT1PWAIF	SMT1PRAIF	SMT1IF	106
PIE4	SCANIE	CRCIE	SMT2PWAIE	SMT2PRAIE	SMT2IE	SMT1PWAIE	SMT1PRAIE	SMT1IE	101
SCANCON0	EN	EN SCANGO BUSY INVALID INTM — MODE<1:0>						144	
SCANHADRH		HADR<15:8>						146	
SCANHADRL		HADR<7:0>						146	
SCANLADRH		LADR<15:8>						145	
SCANLADRL				LADR	<7:0>				145
SCANTRIG						TSEL	<3:0>		147

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the CRC module.

* Page provides register information.

12.6 Register Definitions: PORTC

REGISTER 12-17: PORTC: PORTC REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
RC7 ⁽¹⁾	RC6 ⁽¹⁾	RC5	RC4	RC3	RC2	RC1	RC0
bit 7		<u>.</u>	<u>.</u>	•			bit 0
Legend:							
0							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				

bit 7-0	RC<7:0>: PORTC I/O Value bits ^(1, 2)
	1 = Port pin is <u>></u> Vін
	0 = Port pin is <u><</u> V IL

Note 1: RC<7:6> on PIC16(L)F1618 only.

2: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is return of actual I/O pin values.

REGISTER 12-18: TRISC: PORTC TRI-STATE REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0	TRISC<7:0>: PORTC Tri-State Control bits ⁽¹⁾
	1 = PORTC pin configured as an input (tri-stated)
	0 = PORTC pin configured as an output

Note 1: TRISC<7:6> on PIC16(L)F1618 only.

REGISTER 13-3: PPSLOCK: PPS LOCK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
_		—	_	—	_	_	PPSLOCKED
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
u = Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets			l other Resets		
'1' = Bit is set		'0' = Bit is clea	ared				

bit 0 PPSLOCKED: PPS Locked	bit
-----------------------------	-----

1 = PPS is locked. PPS selections can not be changed.

0 = PPS is not locked. PPS selections can be changed.

FIGURE 22-6:	TIMER1 GATE SINGLE	-PULSE AND TOGGLE COMBINED MODE
TMR1GE		
T1GPOL		
T1GSPM		
T1GTM		
T1GG <u>O/</u> DONE	← Set by software Counting enabled o	Cleared by hardware on falling edge of T1GVAL
T1G_in	rising edge of T1G	
Т1СКІ		
T1GVAL		
Timer1	Ν	$\begin{array}{ c c c c c c } \hline \hline N+1 & N+2 & N+3 & N+4 \\ \hline \hline \end{array}$
TMR1GIF	 Cleared by software 	Set by hardware on Cleared by falling edge of T1GVAL

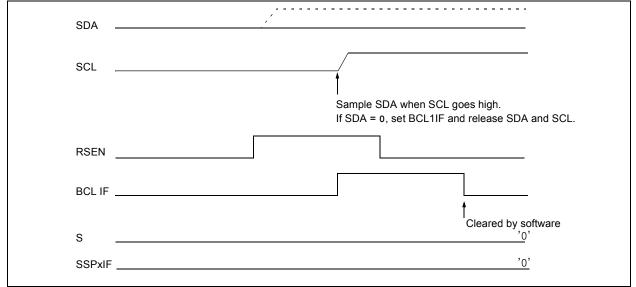
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	—	_	ANSA4	—	ANSA2	ANSA1	ANSA0	152
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	97
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	98
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	103
TMR1H	Holding Regi	ister for the M	ost Significant	t Byte of the 1	l6-bit TMR1 C	ount			227*
TMR1L	Holding Regi	ister for the Le	ast Significar	t Byte of the	16-bit TMR1 (Count			227*
TMR3H	Holding Regi	Holding Register for the Most Significant Byte of the 16-bit TMR3 Count						227*	
TMR3L	Holding Register for the Least Significant Byte of the 16-bit TMR3 Count						227*		
TMR5H	Holding Regi	Holding Register for the Most Significant Byte of the 16-bit TMR5 Count						227*	
TMR5L	Holding Regi	Holding Register for the Least Significant Byte of the 16-bit TMR5 Count						227*	
TRISA	_	_	TRISA5	TRISA4	_(1)	TRISA2	TRISA1	TRISA0	151
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	_	T1SYNC	_	TMR10N	231
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GS	S<1:0>	232
T3CON	TMR3C	S<1:0>	T3CKP	S<1:0>	_	T3SYNC	_	TMR3ON	231
T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/ DONE	T3GVAL	T3GS	S<1:0>	232
T5CON	TMR5C	S<1:0>	T5CKP	S<1:0>	—	T5SYNC	—	TMR5ON	231
T5GCON	TMR5GE	T5GPOL	T5GTM	T5GSPM	T5GGO/ DONE	T5GVAL	T5GS	S<1:0>	232

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Timer1 module. * Page provides register information.

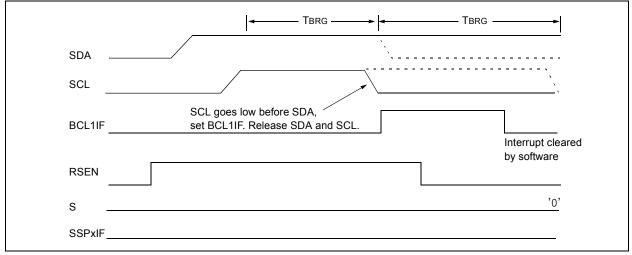
Note 1: Unimplemented, read as '1'.

24.6.13.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:


- a) A low level is sampled on SDA when SCL goes from low level to high level (Case 1).
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1' (Case 2).

When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPxADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled. If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 24-36). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.


If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 24-37.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 24-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
			CCPR	<15:8>				
bit 7							bit 0	
Legend:								
R = Readable bit W		W = Writable bit		U = Unimplemented bit, read as '0'				
u = Bit is unchanged		x = Bit is unknown		-n/n = Value a	at POR and BC	R/Value at all	other Reset	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7-0	<u>MODE = Ca</u>	<u>pture Mode</u>						
CCPRxH<7:0>: MSB of captured TMR1 value								

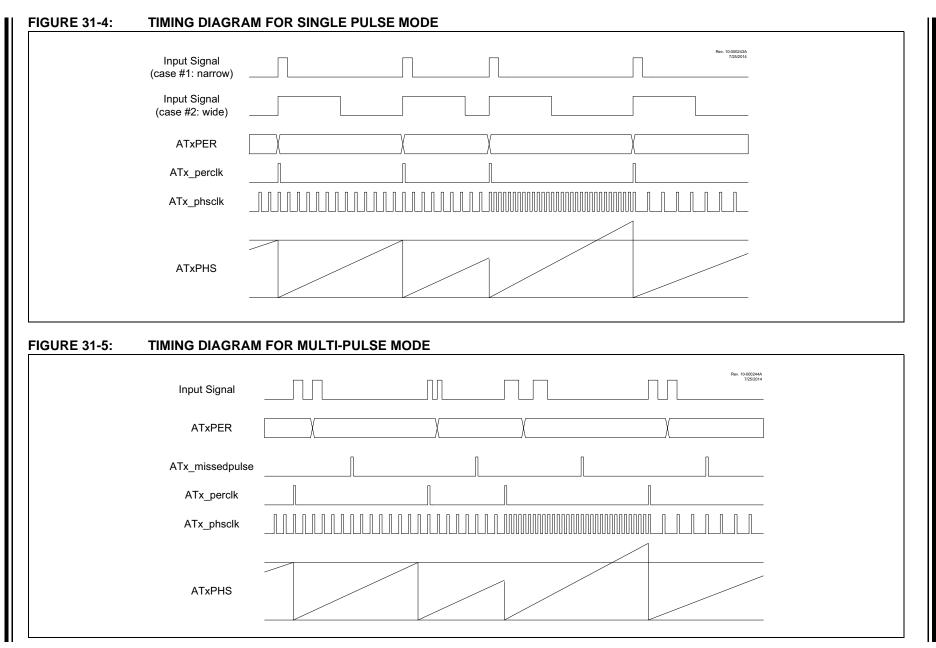
REGISTER 26-4: CCPRxH: CCPx HIGH BYTE REGISTER

t 7-0 MODE = Capture Mode CCPRxH<7:0>: MSB of captured TMR1 value MODE = Compare Mode CCPRxH<7:0>: MSB compared to TMR1 value MODE = PWM Mode && FMT = 0 CCPRxH<7:2>: Not used CCPRxH<1:0>: CCPW<9:8> — Pulse width Most Significant two bits MODE = PWM Mode && FMT = 1 CCPRxH<7:0>: CCPW<9:2> — Pulse width Most Significant eight bits

REGISTER 26-5: CCPxCAP: CCPx CAPTURE INPUT SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
	—	—	—	—		CTS<2:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Reset
'1' = Bit is set	'0' = Bit is cleared	


bit 7-3 Unimplemented: Read as '0'

bit 2-0

- CTS<2:0>: Capture Trigger Input Selection bits
 - 111 = Reserved. No channel connected.
 - 110 = Reserved. No channel connected.
 - 101 = LC2_out
 - 100 = LC1_out
 - 011 = IOC_interrupt
 - 010 = C2_OUT_sync
 - 001 = C1_OUT_sync
 - 000 = CCPx pin

30.6.4 HIGH AND LOW MEASURE MODE

This mode measures the high and low pulse time of the SMTSIGx relative to the SMT clock. It begins incrementing the SMTxTMR on a rising edge on the SMTSIGx input, then updates the SMTxCPW register with the value and resets the SMTxTMR on a falling edge, starting to increment again. Upon observing another rising edge, it updates the SMTxCPR register with its current value and once again resets the SMTxTMR value and begins incrementing again. See Figure 30-8 and Figure 30-9.

PIC16(L)F1614/8

REGISTER 32-20: PIDxZ2U: PID Z2 UPPER REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
—	_	—	—		—		Z216
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-1	Unimplemented: Read as '0'
---------	----------------------------

bit 0 **Z216:** Bit 16 of Z2. In PID mode, Z2 is the value of the error (IN minus SET) from the previous iteration of the PID control loop.

REGISTER 32-21: PIDxZ2H: PID Z2 HIGH REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
Z2<15:8>							
bit 7 bit 0							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-0 **Z2<15:8>:** Bits <15:8> of Z2. In PID mode, Z2 is the value of the error (IN minus SET) from the previous iteration of the PID control loop.

REGISTER 32-22: PIDxZ2L: PID Z2 LOW REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
Z2<7:0>							
bit 7 bit 0							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-0 **Z2<7:0>:** Bits <7:0> of Z2. In PID mode, Z2 is the value of the error (IN minus SET) from the previous iteration of the PID control loop.

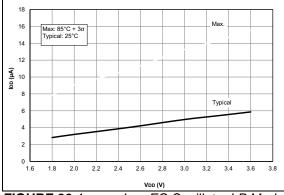


FIGURE 36-1: IDD, EC Oscillator LP Mode, Fosc = 32 kHz, PIC16LF1614/8 Only.

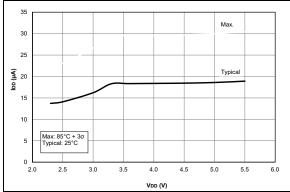


FIGURE 36-2: IDD, EC Oscillator LP Mode, Fosc = 32 kHz, PIC16F1614/8 Only.

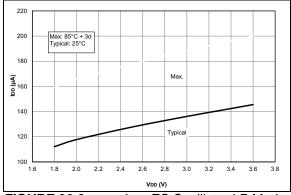


FIGURE 36-3: IDD, EC Oscillator LP Mode, Fosc = 500 kHz, PIC16LF1614/8 Only.

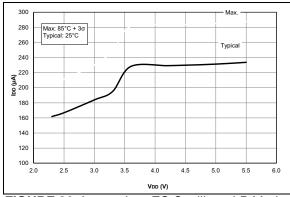


FIGURE 36-4: IDD, EC Oscillator LP Mode, Fosc = 500 kHz, PIC16F1614/8 Only.

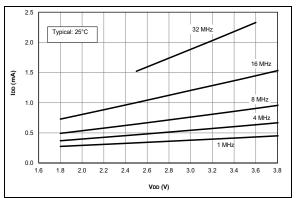


FIGURE 36-5: IDD Typical, EC Oscillator MP Mode, PIC16LF1614/8 Only.

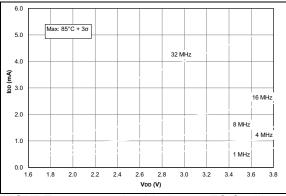


FIGURE 36-6: IDD Maximum, EC Oscillator MP Mode, PIC16LF1614/8 Only.

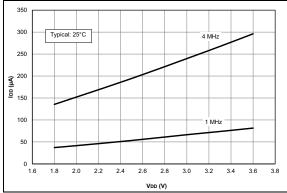


FIGURE 36-13: IDD, LFINTOSC Mode, Fosc = 31 kHz, PIC16LF1614/8 Only.

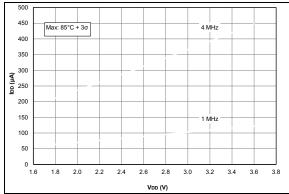
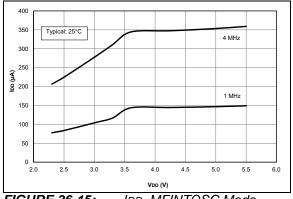



FIGURE 36-14: IDD, LFINTOSC Mode, Fosc = 31 kHz, PIC16F1614/8 Only.

FIGURE 36-15: IDD, MFINTOSC Mode, Fosc = 500 kHz, PIC16LF1614/8 Only.

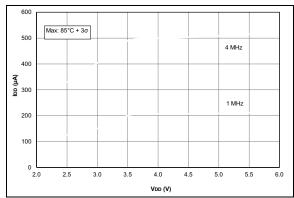


FIGURE 36-16: IDD, MFINTOSC Mode, Fosc = 500 kHz, PIC16F1614/8 Only.

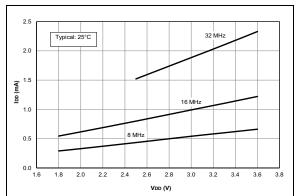


FIGURE 36-17: IDD Typical, HFINTOSC Mode, PIC16LF1614/8 Only.

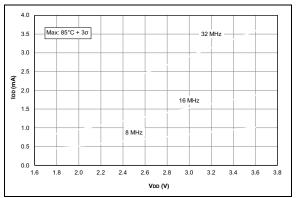


FIGURE 36-18: IDD Maximum, HFINTOSC Mode, PIC16LF1614/8 Only.

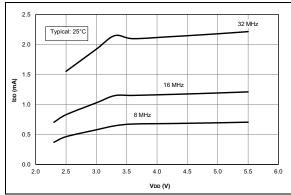


FIGURE 36-19: IDD Typical, HFINTOSC Mode, PIC16F1614/8 Only.

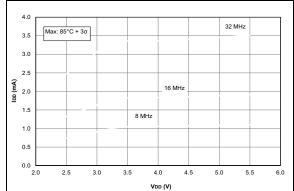


FIGURE 36-20: IDD Maximum, HFINTOSC Mode, PIC16F1614/8 Only.

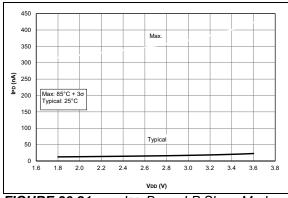


FIGURE 36-21: IPD Base, LP Sleep Mode, PIC16LF1614/8 Only.

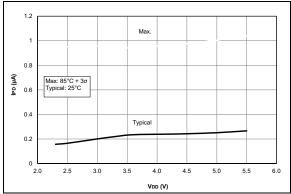


FIGURE 36-22: IPD Base, LP Sleep Mode (VREGPM = 1), PIC16F1614/8 Only.

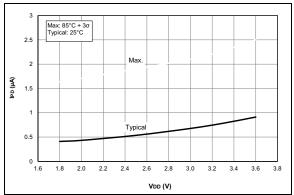


FIGURE 36-23: IPD, Watchdog Timer (WDT), PIC16LF1614/8 Only.

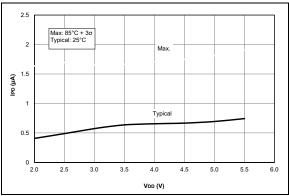
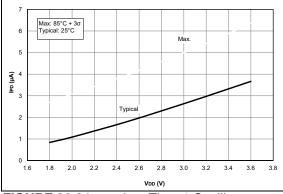
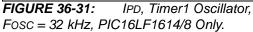




FIGURE 36-24: IPD, Watchdog Timer (WDT), PIC16F1614/8 Only.

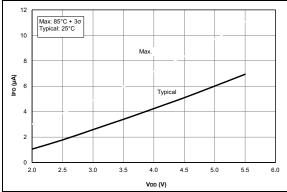


FIGURE 36-32: IPD, Timer1 Oscillator, Fosc = 32 kHz, PIC16F1614/8 Only.

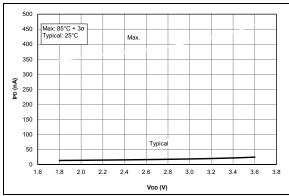


FIGURE 36-33: IPD, ADC Non-Converting, PIC16LF1614/8 Only.

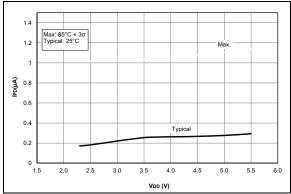
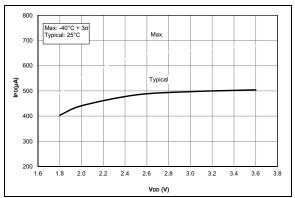
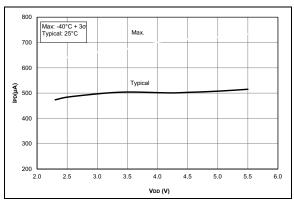




FIGURE 36-34: IPD, ADC Non-Converting, PIC16F1614/8 Only.

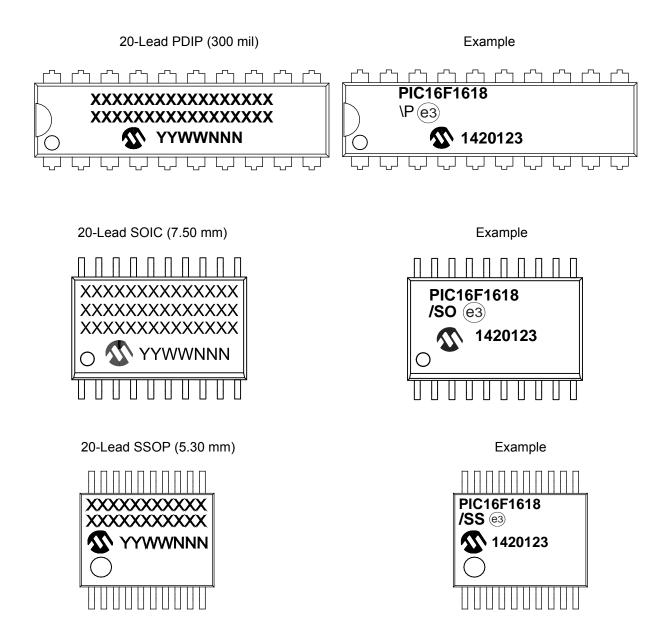


FIGURE 36-35: IPD, Comparator, NP Mode (CxSP = 1), PIC16LF1614/8 Only.

FIGURE 36-36: IPD, Comparator, NP Mode (CxSP = 1), PIC16F1614/8 Only.

38.1 Package Marking Information (Continued)

