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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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PIC16(L)F1614/8
RC1/AN5/C1IN1-/C2IN1-/
T4IN(1)/SMTSIG2(1)/SDI(1)

RC1 TTL/ST CMOS/OD General purpose I/O.

AN5 AN — ADC Channel input.

C1IN1- AN — Comparator negative input.

C2IN1- AN — Comparator negative input.

T4IN TTL/ST — Timer4 input.

SMTSIG2 TTL/ST — SMT2 signal input.

CLCIN2 ST — Configurable Logic Cell source input.

SDI CMOS — SPI data input.

RC2/AN6/C1IN2-/C2IN2- RC2 TTL/ST CMOS/OD General purpose I/O.

AN6 AN — ADC Channel input.

C1IN2- AN — Comparator negative input.

C2IN2- AN — Comparator negative input.

RC3/AN7/C1IN3-/C2IN3-/T5G(1)/
CCP2(1)/CLCIN0(1)/ATCC(1)/SS

RC3 TTL/ST — General purpose input with IOC and WPU.

AN7 AN — ADC Channel input.

C1IN3- AN — Comparator negative input.

C2IN3- AN — Comparator negative input.

T5G ST — Timer5 Gate input.

CCP2 TTL/ST CMOS/OD Capture/Compare/PWM2.

CLCIN0 ST — Configurable Logic Cell source input.

ATCC ST — Angular Timer Capture/Compare input.

SS ST — Slave Select input.

RC4/T3G(1)/CLCIN1(1)/CK(1)/
HIC4

RC4 TTL/ST CMOS/OD General purpose I/O.

T3G TTL/ST — Timer3 Gate input.

CLCIN1 ST — Configurable Logic Cell source input.

CK ST CMOS USART synchronous clock.

HIC4 TTL CMOS High Current I/O.

RC5/T3CKI(1)/CCP1(1)/RX(1)/
ATIN(1)/HIC5

RC5 TTL/ST CMOS/OD General purpose I/O.

T3CKI TTL/ST — Timer3 clock input.

CCP1 TTL/ST CMOS/OD Capture/Compare/PWM1.

RX ST — USART asynchronous input.

ATIN TTL/ST — Angular Timer clock input.

HIC5 TTL — High Current I/O.

VDD VDD Power — Positive supply.

VSS VSS Power — Ground reference.

TABLE 1-2: PIC16(L)F1614 PINOUT DESCRIPTION (CONTINUED)

Name Function Input 
Type

Output 
Type Description

Legend: AN =  Analog input or output CMOS = CMOS compatible input or output OD = Open-Drain
TTL =  TTL compatible input ST = Schmitt Trigger input with CMOS levels I2C = Schmitt Trigger input with I2C
HV =  High Voltage XTAL = Crystal levels

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers. 

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection 
registers. See Register 13-1.
 2014-2016 Microchip Technology Inc. DS40001769B-page 15
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3.3 Data Memory Organization
The data memory is partitioned in 32 memory banks
with 128 bytes in a bank. Each bank consists of
(Figure 3-2):

• 12 core registers

• 20 Special Function Registers (SFR)

• Up to 80 bytes of General Purpose RAM (GPR) 

• 16 bytes of common RAM

The active bank is selected by writing the bank number
into the Bank Select Register (BSR). Unimplemented
memory will read as ‘0’. All data memory can be
accessed either directly (via instructions that use the

file registers) or indirectly via the two File Select
Registers (FSR). See Section 3.6 “Indirect
Addressing” for more information.

Data memory uses a 12-bit address. The upper five bits
of the address define the Bank address and the lower
seven bits select the registers/RAM in that bank.

3.3.1 CORE REGISTERS

The core registers contain the registers that directly
affect the basic operation. The core registers occupy
the first 12 addresses of every data memory bank
(addresses x00h/x80h through x0Bh/x8Bh). These
registers are listed below in Table 3-1. For detailed

TABLE 3-1: CORE REGISTERS

Addresses BANKx
x00h or x80h INDF0
x01h or x81h INDF1
x02h or x82h PCL
x03h or x83h STATUS
x04h or x84h FSR0L
x05h or x85h FSR0H
x06h or x86h FSR1L
x07h or x87h FSR1H
x08h or x88h BSR
x09h or x89h WREG
x0Ah or x8Ah PCLATH
x0Bh or x8Bh INTCON
 2014-2016 Microchip Technology Inc. DS40001769B-page 24
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   B
7

7
— —

71 SEN --qq qqqq --qq qqqq

71 -qqq -qqq -qqq -qqq

71 0000 0000 0000 0000

71 0000 0000 0000 0000

71 17:16> 0000 0000 0000 0000

71 — —

71 — —

71 0000 0000 0000 0000

71 0000 0000 0000 0000

71 1111 1111 1111 1111

71 1111 1111 1111 1111

71 <1:0> 0000 0-00 0000 0-00

71 ---- 0000 ---- 0000

71 — —

71 — —

TA

A Bit 0 Value on
POR, BOR

Value on all 
other Resets

Le ented, read as ‘0’.
No
ank 14
0Ch
to
10h

— Unimplemented

1h WDTCON0 — — WDTPS<4:0>

2h WDTCON1 — WDTCS<2:0> — WINDOW<2:0>

3h WDTPSL PSCNT<7:0>

4h WDTPSH PSCNT<15:8>

5h WDTTMR WDTTMR<4:0> STATE PSCNT<

6h — Unimplemented

7h — Unimplemented

8h SCANLADRL LADR<7:0>

9h SCANLADRH LADR<15:8>

Ah SCANHADRL HADR<7:0>

Bh SCANHADRH HADR<15:8>

Ch SCANCON0 EN SCANGO BUSY INVALID INTM — MODE

Dh SCANTRIG TSEL<3:0>

Eh — Unimplemented

Fh — Unimplemented

BLE 3-14: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

ddr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

gend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplem
te 1: PIC16F1614/8 only.

2: Unimplemented, read as ‘1’.
3: PIC16(L)F1614 only.
4: PIC16(L)F1618 only.



PIC16(L)F1614/8
5.3 Clock Switching
The system clock source can be switched between
external and internal clock sources via software using
the System Clock Select (SCS) bits of the OSCCON
register. The following clock sources can be selected
using the SCS bits:

• Default system oscillator determined by FOSC 
bits in Configuration Words

• Internal Oscillator Block (INTOSC)

5.3.1 SYSTEM CLOCK SELECT (SCS) 
BITS

The System Clock Select (SCS) bits of the OSCCON
register selects the system clock source that is used for
the CPU and peripherals.

• When the SCS bits of the OSCCON register = 00, 
the system clock source is determined by value of 
the FOSC<1:0> bits in the Configuration Words.

• When the SCS bits of the OSCCON register = 1x, 
the system clock source is chosen by the internal 
oscillator frequency selected by the IRCF<3:0> 
bits of the OSCCON register. After a Reset, the 
SCS bits of the OSCCON register are always 
cleared.

When switching between clock sources, a delay is
required to allow the new clock to stabilize. These
oscillator delays are shown in Table 5-1.

TABLE 5-1: OSCILLATOR SWITCHING DELAYS
Switch From Switch To Frequency Oscillator Delay

Sleep
LFINTOSC(1)

MFINTOSC(1)

HFINTOSC(1)

31 kHz
31.25 kHz-500 kHz
31.25 kHz-16 MHz

Oscillator Warm-up Delay (Tiosc st)

Sleep/POR EC(1) DC – 32 MHz 2 cycles

LFINTOSC EC(1) DC – 32 MHz 1 cycle of each

Any clock source
MFINTOSC(1)

HFINTOSC(1)
31.25 kHz-500 kHz
31.25 kHz-16 MHz

2 s (approx.)

Any clock source LFINTOSC(1) 31 kHz 1 cycle of each

PLL inactive PLL active 16-32 MHz 2 ms (approx.)

Note 1: PLL inactive.
 2014-2016 Microchip Technology Inc. DS40001769B-page 80
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20.2 ZCD Logic Output
The ZCD module includes a Status bit, which can be
read to determine whether the current source or sink is
active. The ZCDxOUT bit of the ZCDxCON register is
set when the current sink is active, and cleared when
the current source is active. The ZCDxOUT bit is
affected by the polarity bit.

20.3 ZCD Logic Polarity
The ZCDxPOL bit of the ZCDxCON register inverts the
ZCDxOUT bit relative to the current source and sink
output. When the ZCDxPOL bit is set, a ZCDxOUT high
indicates that the current source is active, and a low
output indicates that the current sink is active.

The ZCDxPOL bit affects the ZCD interrupts. See
Section20.4 “ZCD Interrupts”.

20.4 ZCD Interrupts
An interrupt will be generated upon a change in the
ZCD logic output when the appropriate interrupt
enables are set. A rising edge detector and a falling
edge detector are present in the ZCD for this purpose.

The ZCDIF bit of the PIR3 register will be set when
either edge detector is triggered and its associated
enable bit is set. The ZCDxINTP enables rising edge
interrupts and the ZCDxINTN bit enables falling edge
interrupts. Both are located in the ZCDxCON register.

To fully enable the interrupt, the following bits must be set:

• ZCDIE bit of the PIE3 register

• ZCDxINTP bit of the ZCDxCON register 
(for a rising edge detection)

• ZCDxINTN bit of the ZCDxCON register 
(for a falling edge detection)

• PEIE and GIE bits of the INTCON register

Changing the ZCDxPOL bit will cause an interrupt,
regardless of the level of the ZCDxEN bit.

The ZCDIF bit of the PIR3 register must be cleared in
software as part of the interrupt service. If another edge
is detected while this flag is being cleared, the flag will
still be set at the end of the sequence.

20.5 Correcting for VCPINV offset
The actual voltage at which the ZCD switches is the
reference voltage at the non-inverting input of the ZCD
op amp. For external voltage source waveforms other
than square waves, this voltage offset from zero
causes the zero-cross event to occur either too early or
too late. When the waveform is varying relative to VSS,
then the zero cross is detected too early as the
waveform falls and too late as the waveform rises.
When the waveform is varying relative to VDD, then the
zero cross is detected too late as the waveform rises
and too early as the waveform falls. The actual offset
time can be determined for sinusoidal waveforms with
the corresponding equations shown in Equation 20-2.

EQUATION 20-2: ZCD EVENT OFFSET

This offset time can be compensated for by adding a
pull-up or pull-down biasing resistor to the ZCD pin. A
pull-up resistor is used when the external voltage
source is varying relative to VSS. A pull-down resistor is
used when the voltage is varying relative to VDD. The
resistor adds a bias to the ZCD pin so that the target
external voltage source must go to zero to pull the pin
voltage to the VCPINV switching voltage. The pull-up or
pull-down value can be determined with the equations
shown in Equation 20-3 or Equation 20-4.

EQUATION 20-3: ZCD PULL-UP/DOWN

TOFFSET

Vcpinv
VPEAK
------------------ 
 asin

2 Freq
----------------------------------=

When External Voltage Source is relative to Vss:

TOFFSET

VDD Vcpinv–
VPEAK

-------------------------------- 
 asin

2 Freq
-------------------------------------------------=

When External Voltage Source is relative to VDD:

RPULLUP
RSERIES VPULLUP Vcpinv– 

Vcpinv
------------------------------------------------------------------------=

When External Signal is relative to Vss:

When External Signal is relative to VDD:

RPULLDOWN
RSERIES Vcpinv 

VDD Vcpinv– 
--------------------------------------------=
 2014-2016 Microchip Technology Inc. DS40001769B-page 217
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21.2 Register Definitions: Option Register
           

TABLE 21-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

REGISTER 21-1: OPTION_REG: OPTION REGISTER

R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1

WPUEN INTEDG TMR0CS TMR0SE PSA PS<2:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 WPUEN: Weak Pull-Up Enable bit
1 = All weak pull-ups are disabled (except MCLR, if it is enabled)
0 = Weak pull-ups are enabled by individual WPUx latch values

bit 6 INTEDG: Interrupt Edge Select bit
1 = Interrupt on rising edge of INT pin
0 = Interrupt on falling edge of INT pin

bit 5 TMR0CS: Timer0 Clock Source Select bit
1 = Transition on T0CKI pin
0 = Internal instruction cycle clock (FOSC/4)

bit 4 TMR0SE: Timer0 Source Edge Select bit
1 = Increment on high-to-low transition on T0CKI pin
0 = Increment on low-to-high transition on T0CKI pin

bit 3 PSA: Prescaler Assignment bit
1 = Prescaler is not assigned to the Timer0 module
0 = Prescaler is assigned to the Timer0 module

bit 2-0 PS<2:0>: Prescaler Rate Select bits

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register 
on Page

ADCON2 TRIGSEL<4:0> — — — 197

INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 97

OPTION_REG WPUEN INTEDG TMR0CS TMR0SE PSA PS<2:0> 222

TMR0 Holding Register for the 8-bit Timer0 Count 220*

TRISA — — TRISA5 TRISA4 —(1) TRISA2 TRISA1 TRISA0 151

Legend: — = Unimplemented location, read as ‘0’. Shaded cells are not used by the Timer0 module.
* Page provides register information.

Note 1: Unimplemented, read as ‘1’.

000
001
010
011
100
101
110
111

1 : 2
1 : 4
1 : 8
1 : 16
1 : 32
1 : 64
1 : 128
1 : 256

Bit Value Timer0 Rate
 2014-2016 Microchip Technology Inc. DS40001769B-page 222
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TABLE 23-5: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2 

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register 
on Page

CCP1CON EN — OUT FMT MODE<3:0> 352

CCP2CON EN — OUT FMT MODE<3:0> 352

INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 97

PIE1 TMR1GIE ADIE — — — CCP1IE TMR2IE TMR1IE 98

PIR1 TMR1GIF ADIF RCIF TXIF SSP1IF CCP1IF TMR2IF TMR1IF 103

PR2 Timer2 Module Period Register 235*

TMR2 Holding Register for the 8-bit TMR2 Register 235*

T2CON ON CKPS<2:0> OUTPS<3:0> 254

T2CLKCON — — — — CS<3:0> 253

T2RST — — — — RSEL<3:0> 256

T2HLT PSYNC CKPOL CKSYNC MODE<4:0> 255

PR4 Timer4 Module Period Register 235*

TMR4 Holding Register for the 8-bit TMR4 Register 235*

T4CON ON CKPS<2:0> OUTPS<3:0> 254

T4CLKCON — — — — CS<3:0> 253

T4RST — — — — RSEL<3:0> 256

T4HLT PSYNC CKPOL CKSYNC MODE<4:0> 255

PR6 Timer6 Module Period Register 235*

TMR6 Holding Register for the 8-bit TMR6 Register 235*

T6CON ON CKPS<2:0> OUTPS<3:0> 254

T6CLKCON — — — — — T6CS<2:0> 253

T6RST — — — — RSEL<3:0> 256

T6HLT PSYNC CKPOL CKSYNC MODE<4:0> 255

Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used for Timer2 module.
* Page provides register information.
 2014-2016 Microchip Technology Inc. DS40001769B-page 257
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24.2.3 SPI MASTER MODE
The master can initiate the data transfer at any time
because it controls the SCK line. The master
determines when the slave (Processor 2, Figure 24-5)
is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as
soon as the SSPxBUF register is written to. If the SPI
is only going to receive, the SDO output could be
disabled (programmed as an input). The SSPSR
register will continue to shift in the signal present on the
SDI pin at the programmed clock rate. As each byte is
received, it will be loaded into the SSPxBUF register as
if a normal received byte (interrupts and Status bits
appropriately set).

The clock polarity is selected by appropriately
programming the CKP bit of the SSPxCON1 register
and the CKE bit of the SSPxSTAT register. This then,
would give waveforms for SPI communication as
shown in Figure 24-6, Figure 24-8, Figure 24-9 and
Figure 24-10, where the MSB is transmitted first. In
Master mode, the SPI clock rate (bit rate) is user
programmable to be one of the following:

• FOSC/4 (or TCY)

• FOSC/16 (or 4 * TCY)

• FOSC/64 (or 16 * TCY)

• Timer2 output/2 

• FOSC/(4 * (SSPxADD + 1))

Figure 24-6 shows the waveforms for Master mode.

When the CKE bit is set, the SDO data is valid before
there is a clock edge on SCK. The change of the input
sample is shown based on the state of the SMP bit. The
time when the SSPxBUF is loaded with the received
data is shown.

Note: In Master mode the clock signal output to
the SCK pin is also the clock signal input
to the peripheral. The pin selected for out-
put with the RxyPPS register must also be
selected as the peripheral input with the
SSPCLKPPS register.
 2014-2016 Microchip Technology Inc. DS40001769B-page 264
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24.3 I2C MODE OVERVIEW

The Inter-Integrated Circuit (I2C) bus is a multi-master
serial data communication bus. Devices communicate
in a master/slave environment where the master
devices initiate the communication. A slave device is
controlled through addressing.

The I2C bus specifies two signal connections:

• Serial Clock (SCL)

• Serial Data (SDA)

Figure 24-11 shows the block diagram of the MSSP
module when operating in I2C mode.

Both the SCL and SDA connections are bidirectional
open-drain lines, each requiring pull-up resistors for the
supply voltage. Pulling the line to ground is considered
a logical zero and letting the line float is considered a
logical one.

Figure 24-11 shows a typical connection between two
processors configured as master and slave devices.

The I2C bus can operate with one or more master
devices and one or more slave devices. 

There are four potential modes of operation for a given
device:

• Master Transmit mode
(master is transmitting data to a slave)

• Master Receive mode
(master is receiving data from a slave)

• Slave Transmit mode
(slave is transmitting data to a master)

• Slave Receive mode
(slave is receiving data from the master)

To begin communication, a master device starts out in
Master Transmit mode. The master device sends out a
Start bit followed by the address byte of the slave it
intends to communicate with. This is followed by a
single Read/Write bit, which determines whether the
master intends to transmit to or receive data from the
slave device.

If the requested slave exists on the bus, it will respond
with an Acknowledge bit, otherwise known as an ACK.
The master then continues in either Transmit mode or
Receive mode and the slave continues in the comple-
ment, either in Receive mode or Transmit mode,
respectively.

A Start bit is indicated by a high-to-low transition of the
SDA line while the SCL line is held high. Address and
data bytes are sent out, Most Significant bit (MSb) first.
The Read/Write bit is sent out as a logical one when the
master intends to read data from the slave, and is sent
out as a logical zero when it intends to write data to the
slave. 

FIGURE 24-11: I2C MASTER/
SLAVE CONNECTION

The Acknowledge bit (ACK) is an active-low signal,
which holds the SDA line low to indicate to the transmit-
ter that the slave device has received the transmitted
data and is ready to receive more.

The transition of a data bit is always performed while
the SCL line is held low. Transitions that occur while the
SCL line is held high are used to indicate Start and Stop
bits.

If the master intends to write to the slave, then it repeat-
edly sends out a byte of data, with the slave responding
after each byte with an ACK bit. In this example, the
master device is in Master Transmit mode and the
slave is in Slave Receive mode.

If the master intends to read from the slave, then it
repeatedly receives a byte of data from the slave, and
responds after each byte with an ACK bit. In this exam-
ple, the master device is in Master Receive mode and
the slave is Slave Transmit mode.

On the last byte of data communicated, the master
device may end the transmission by sending a Stop bit.
If the master device is in Receive mode, it sends the
Stop bit in place of the last ACK bit. A Stop bit is
indicated by a low-to-high transition of the SDA line
while the SCL line is held high.

In some cases, the master may want to maintain
control of the bus and re-initiate another transmission.
If so, the master device may send another Start bit in
place of the Stop bit or last ACK bit when it is in receive
mode.

The I2C bus specifies three message protocols;

• Single message where a master writes data to a 
slave.

• Single message where a master reads data from 
a slave.

• Combined message where a master initiates a 
minimum of two writes, or two reads, or a 
combination of writes and reads, to one or more 
slaves.

Master

SCL

SDA

SCL

SDA

Slave
VDD

VDD
 2014-2016 Microchip Technology Inc. DS40001769B-page 270
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24.6.7 I2C MASTER MODE RECEPTION
Master mode reception (Figure 24-29) is enabled by
programming the Receive Enable bit, RCEN bit of the
SSPxCON2 register.       

The Baud Rate Generator begins counting and on each
rollover, the state of the SCL pin changes (high-to-low/
low-to-high) and data is shifted into the SSPSR. After
the falling edge of the eighth clock, the receive enable
flag is automatically cleared, the contents of the
SSPSR are loaded into the SSPxBUF, the BF flag bit is
set, the SSPxIF flag bit is set and the Baud Rate Gen-
erator is suspended from counting, holding SCL low.
The MSSP is now in Idle state awaiting the next com-
mand. When the buffer is read by the CPU, the BF flag
bit is automatically cleared. The user can then send an
Acknowledge bit at the end of reception by setting the
Acknowledge Sequence Enable, ACKEN bit of the
SSPxCON2 register.

24.6.7.1 BF Status Flag
In receive operation, the BF bit is set when an address
or data byte is loaded into SSPxBUF from SSPSR. It is
cleared when the SSPxBUF register is read.

24.6.7.2 SSPOV Status Flag
In receive operation, the SSPOV bit is set when eight
bits are received into the SSPSR and the BF flag bit is
already set from a previous reception.

24.6.7.3 WCOL Status Flag
If the user writes the SSPxBUF when a receive is
already in progress (i.e., SSPSR is still shifting in a data
byte), the WCOL bit is set and the contents of the buffer
are unchanged (the write does not occur).

24.6.7.4 Typical Receive Sequence:

1. The user generates a Start condition by setting
the SEN bit of the SSPxCON2 register.

2. SSPxIF is set by hardware on completion of the
Start. 

3. SSPxIF is cleared by software.

4. User writes SSPxBUF with the slave address to
transmit and the R/W bit set.

5. Address is shifted out the SDA pin until all eight
bits are transmitted. Transmission begins as
soon as SSPxBUF is written to.

6. The MSSP module shifts in the ACK bit from the
slave device and writes its value into the
ACKSTAT bit of the SSPxCON2 register.

7. The MSSP module generates an interrupt at the
end of the ninth clock cycle by setting the
SSPxIF bit.

8. User sets the RCEN bit of the SSPxCON2 regis-
ter and the master clocks in a byte from the slave.

9. After the eighth falling edge of SCL, SSPxIF and
BF are set.

10. Master clears SSPxIF and reads the received
byte from SSPxBUF, clears BF.

11. Master sets ACK value sent to slave in ACKDT
bit of the SSPxCON2 register and initiates the
ACK by setting the ACKEN bit.

12. Master’s ACK is clocked out to the slave and
SSPxIF is set.

13. User clears SSPxIF.

14. Steps 8-13 are repeated for each received byte
from the slave.

15. Master sends a not ACK or Stop to end
communication.

Note: The MSSP module must be in an Idle
state before the RCEN bit is set or the
RCEN bit will be disregarded. 
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25.1.2 EUSART ASYNCHRONOUS 

RECEIVER

The Asynchronous mode is typically used in RS-232
systems. The receiver block diagram is shown in
Figure 25-2. The data is received on the RX/DT pin and
drives the data recovery block. The data recovery block
is actually a high-speed shifter operating at 16 times
the baud rate, whereas the serial Receive Shift
Register (RSR) operates at the bit rate. When all eight
or nine bits of the character have been shifted in, they
are immediately transferred to a two character First-In-
First-Out (FIFO) memory. The FIFO buffering allows
reception of two complete characters and the start of a
third character before software must start servicing the
EUSART receiver. The FIFO and RSR registers are not
directly accessible by software. Access to the received
data is via the RCxREG register.

25.1.2.1 Enabling the Receiver

The EUSART receiver is enabled for asynchronous
operation by configuring the following three control bits:

• CREN = 1

• SYNC = 0

• SPEN = 1

All other EUSART control bits are assumed to be in
their default state.

Setting the CREN bit of the RCxSTA register enables
the receiver circuitry of the EUSART. Clearing the SYNC
bit of the TXxSTA register configures the EUSART for
asynchronous operation. Setting the SPEN bit of the
RCxSTA register enables the EUSART. The
programmer must set the corresponding TRIS bit to
configure the RX/DT I/O pin as an input. 

25.1.2.2 Receiving Data

The receiver data recovery circuit initiates character
reception on the falling edge of the first bit. The first bit,
also known as the Start bit, is always a zero. The data
recovery circuit counts one-half bit time to the center of
the Start bit and verifies that the bit is still a zero. If it is
not a zero then the data recovery circuit aborts
character reception, without generating an error, and
resumes looking for the falling edge of the Start bit. If
the Start bit zero verification succeeds then the data
recovery circuit counts a full bit time to the center of the
next bit. The bit is then sampled by a majority detect
circuit and the resulting ‘0’ or ‘1’ is shifted into the RSR.
This repeats until all data bits have been sampled and
shifted into the RSR. One final bit time is measured and
the level sampled. This is the Stop bit, which is always
a ‘1’. If the data recovery circuit samples a ‘0’ in the
Stop bit position then a framing error is set for this
character, otherwise the framing error is cleared for this
character. See Section 25.1.2.4 “Receive Framing
Error” for more information on framing errors.

Immediately after all data bits and the Stop bit have
been received, the character in the RSR is transferred
to the EUSART receive FIFO and the RCIF interrupt
flag bit of the PIR1 register is set. The top character in
the FIFO is transferred out of the FIFO by reading the
RCxREG register. 

25.1.2.3 Receive Interrupts

The RCIF interrupt flag bit of the PIR1 register is set
whenever the EUSART receiver is enabled and there is
an unread character in the receive FIFO. The RCIF
interrupt flag bit is read-only, it cannot be set or cleared
by software.

RCIF interrupts are enabled by setting all of the
following bits:

• RCIE, Interrupt Enable bit of the PIE1 register

• PEIE, Peripheral Interrupt Enable bit of the 
INTCON register

• GIE, Global Interrupt Enable bit of the INTCON 
register

The RCIF interrupt flag bit will be set when there is an
unread character in the FIFO, regardless of the state of
interrupt enable bits.

Note: If the RX/DT function is on an analog pin,
the corresponding ANSEL bit must be
cleared for the receiver to function.

Note: If the receive FIFO is overrun, no additional
characters will be received until the overrun
condition is cleared. See Section
25.1.2.5 “Receive Overrun Error” for
more information on overrun errors.
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25.1.2.4 Receive Framing Error

Each character in the receive FIFO buffer has a
corresponding framing error Status bit. A framing error
indicates that a Stop bit was not seen at the expected
time. The framing error status is accessed via the
FERR bit of the RCxSTA register. The FERR bit
represents the status of the top unread character in the
receive FIFO. Therefore, the FERR bit must be read
before reading the RCxREG.

The FERR bit is read-only and only applies to the top
unread character in the receive FIFO. A framing error
(FERR = 1) does not preclude reception of additional
characters. It is not necessary to clear the FERR bit.
Reading the next character from the FIFO buffer will
advance the FIFO to the next character and the next
corresponding framing error.

The FERR bit can be forced clear by clearing the SPEN
bit of the RCxSTA register which resets the EUSART.
Clearing the CREN bit of the RCxSTA register does not
affect the FERR bit. A framing error by itself does not
generate an interrupt.

25.1.2.5 Receive Overrun Error

The receive FIFO buffer can hold two characters. An
overrun error will be generated if a third character, in its
entirety, is received before the FIFO is accessed. When
this happens the OERR bit of the RCxSTA register is
set. The characters already in the FIFO buffer can be
read but no additional characters will be received until
the error is cleared. The error must be cleared by either
clearing the CREN bit of the RCxSTA register or by
resetting the EUSART by clearing the SPEN bit of the
RCxSTA register.

25.1.2.6 Receiving 9-Bit Characters

The EUSART supports 9-bit character reception. When
the RX9 bit of the RCxSTA register is set, the EUSART
will shift nine bits into the RSR for each character
received. The RX9D bit of the RCxSTA register is the
ninth and Most Significant data bit of the top unread
character in the receive FIFO. When reading 9-bit data
from the receive FIFO buffer, the RX9D data bit must
be read before reading the eight Least Significant bits
from the RCxREG.

25.1.2.7 Address Detection

A special Address Detection mode is available for use
when multiple receivers share the same transmission
line, such as in RS-485 systems. Address detection is
enabled by setting the ADDEN bit of the RCxSTA
register.

Address detection requires 9-bit character reception.
When address detection is enabled, only characters
with the ninth data bit set will be transferred to the
receive FIFO buffer, thereby setting the RCIF interrupt
bit. All other characters will be ignored.

Upon receiving an address character, user software
determines if the address matches its own. Upon
address match, user software must disable address
detection by clearing the ADDEN bit before the next
Stop bit occurs. When user software detects the end of
the message, determined by the message protocol
used, software places the receiver back into the
Address Detection mode by setting the ADDEN bit.

Note: If all receive characters in the receive
FIFO have framing errors, repeated reads
of the RCxREG will not clear the FERR bit.
 2014-2016 Microchip Technology Inc. DS40001769B-page 317



PIC16(L)F1614/8

TABLE 25-9: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE 

TRANSMISSION 

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register 
on Page

ANSELA — — — ANSA4 — ANSA2 ANSA1 ANSA0 152

ANSELB(1) — — ANSB5 ANSB4 — — — — 159

ANSELC ANSC7(1) ANSC6(1) — — ANSC3 ANSC2 ANSC1 ANSC0 166

BAUD1CON ABDOVF RCIDL — SCKP BRG16 — WUE ABDEN 323

CKPPS — — — CKPPS<4:0> 174, 172

INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 97

PIE1 TMR1GIE ADIE RCIE TXIE SSP1IE CCP1IE TMR2IE TMR1IE 98

PIR1 TMR1GIF ADIF RCIF TXIF SSP1IF CCP1IF TMR2IF TMR1IF 103

RC1STA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 322

RXPPS — — — RXPPS<4:0> 174, 172

RxyPPS — — — RxyPPS<4:0> 172

TRISA — — TRISA5 TRISA4 —(2) TRISA2 TRISA1 TRISA0 151

TRISB(1) TRISB7 TRISB6 TRISB5 TRISB4 — — — — 158

TRISC TRISC7(1) TRISC6(1) TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 165

TX1REG EUSART Transmit Data Register 313*

TX1STA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 321

Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used for synchronous slave transmission.
* Page provides register information.

Note 1: PIC16(L)F1618 only.
2: Unimplemented, read as ‘1’. 
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26.2 Compare Mode
The Compare mode function described in this section
is available and identical for all CCP modules.

Compare mode makes use of the 16-bit Timer1
resource. The 16-bit value of the CCPRxH:CCPRxL
register pair is constantly compared against the 16-bit
value of the TMR1H:TMR1L register pair. When a
match occurs, one of the following events can occur:

• Toggle the CCPx output

• Set the CCPx output

• Clear the CCPx output

• Pulse the CCPx output

• Generate a Software Interrupt

• Optionally Reset TMR1

The action on the pin is based on the value of the
MODE<3:0> control bits of the CCPxCON register. At
the same time, the interrupt flag CCPxIF bit is set.

All Compare modes can generate an interrupt.

Figure 26-2 shows a simplified diagram of the compare
operation.

26.2.1 CCPx PIN CONFIGURATION

The user must configure the CCPx pin as an output by
clearing the associated TRIS bit.

FIGURE 26-2: COMPARE MODE OPERATION BLOCK DIAGRAM

Rev. 10-000 159B
9/5/201 4

CCPRxH CCPRxL

TMR1H TMR1L

Comparator
S

R

QOutput
Logic

set CCPxIF

MODE<3:0>

4

To Peripherals

TRIS Control

CCPx

RxyPPS

PPS
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TABLE 26-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 20 MHz)

TABLE 26-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 8 MHz)

26.4.5 CHANGES IN SYSTEM CLOCK 
FREQUENCY

The PWM frequency is derived from the system clock
frequency. Any changes in the system clock frequency
will result in changes to the PWM frequency. See
Section5.0 “Oscillator Module” for additional details.

26.4.6 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the
CCP registers to their Reset states.

26.4.7 PWM OUTPUT

The output of the CCP in PWM mode is the PWM signal
generated by the module and described above. This
output is available as an input signal to the CWG, as an
auto-conversion trigger for the ADC, as an external
Reset signal for the TMR2 modules, as a window input
to the SMT, and as an input to the CLC module. In addi-
tion, the CCPx pin output can be mapped to output pins
through the use of PPS (see Section13.2 “PPS Out-
puts”).

PWM Frequency 1.22 kHz 4.88 kHz 19.53 kHz 78.12 kHz 156.3 kHz 208.3 kHz

Timer Prescale 16 4 1 1 1 1

PR2 Value 0xFF 0xFF 0xFF 0x3F 0x1F 0x17

Maximum Resolution (bits) 10 10 10 8 7 6

PWM Frequency 1.22 kHz 4.90 kHz 19.61 kHz 76.92 kHz 153.85 kHz 200.0 kHz

Timer Prescale 16 4 1 1 1 1

PR2 Value 0x65 0x65 0x65 0x19 0x0C 0x09

Maximum Resolution (bits) 8 8 8 6 5 5
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TABLE 30-3: SUMMARY OF REGISTERS ASSOCIATED WITH SMTx    

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register on 
Page

PIE4 SCANIE CRCIE SMT2PWAIE SMT2PRAIE SMT2IE SMT1PWAIE SMT1PRAIE SMT1IE 101

PIR4 SCANIF CRCIF SMT2PWAIF SMT2PRAIF SMT2IF SMT1PWAIF SMT1PRAIF SMT1IF 106

SMT1CLK — — — — — CSEL<2:0> 438

SMT1CON0 EN — STP WPOL SPOL CPOL SMT1PS<1:0> 435

SMT1CON1 SMT1GO REPEAT — — MODE<3:0> 436

SMT1CPRH SMT1CPR<15:8> 444

SMT1CPRL SMT1CPR<7:0> 444

SMT1CPRU SMT1CPR<23:16> 444

SMT1CPWH SMT1CPW<15:8> 445

SMT1CPWL SMT1CPW<7:0> 445

SMT1CPWU SMT1CPW<23:16> 445

SMT1PRH SMT1PR<15:8> 446

SMT1PRL SMT1PR<7:0> 446

SMT1PRU SMT1PR<23:16> 446

SMT1SIG — — — SSEL<4:0> 441

SMT1STAT CPRUP CPWUP RST — — TS WS AS 437

SMT1TMRH SMT1TMR<15:8> 443

SMT1TMRL SMT1TMR<7:0> 443

SMT1TMRU SMT1TMR<23:16> 443

SMT1WIN — — — WSEL<4:0> 439

SMT2CLK — — — — — CSEL<2:0> 438

SMT2CON0 EN — STP WPOL SPOL CPOL SMT2PS<1:0> 435

SMT2CON1 SMT2GO REPEAT — — MODE<3:0> 436

SMT2CPRH SMT2CPR<15:8> 444

SMT2CPRL SMT2CPR<7:0> 444

SMT2CPRU SMT2CPR<23:16> 444

SMT2CPWH SMT2CPW<15:8> 445

SMT2CPWL SMT2CPW<7:0> 445

SMT2CPWU SMT2CPW<23:16> 445

SMT2PRH SMT2PR<15:8> 446

SMT2PRL SMT2PR<7:0> 446

SMT2PRU SMT2PR<23:16> 446

SMT2SIG — — — — — SSEL<2:0> 441

SMT2STAT CPRUP CPWUP RST — — TS WS AS 437

SMT2TMRH SMT2TMR<15:8> 443

SMT2TMRL SMT2TMR<7:0> 443

SMT2TMRU SMT2TMR<23:16> 443

SMT2WIN — — — WSEL<4:0> 438

Legend: x = unknown, u = unchanged, — = unimplemented read as ‘0’, q = value depends on condition. Shaded cells are not used for SMTx module.
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31.2.1 SINGLE-PULSE MODE

The operation of Single-Pulse mode is illustrated in
Figure 31-1. The calculations on the input signal are done
in a few distinct steps. First, there is a divider that divides
the module clock by the ATxRES register pair and uses
the resulting signal to increment a period counter. This
operation is expressed by Equation 31-2. This equation
differs slightly from that of Equation 31-1 because the
counters include the count of zero. To compensate for
this, the number written to the resolution register,
ATxRES, must be one less than the desired resolution.

EQUATION 31-2:

Variables in Equation 31-2 are as follows:

• ATxPER is the value of the period counter latched 
by the input signal.

• ATxRES is the user-specified resolution. The 
phase counter will count up to this value.

• F(ATxclk) is the ATx clock frequency.
• F(ATxsig) is the input signal frequency.

The second step in the angular timer’s operation is the
creation of the phase clock, which is also illustrated in
Figure 31-1. The input clock is divided by the ATxPER
value, latched-in during the previous step, and the
resulting signal is used to increment the phase counter.
This signal also is used as the phase clock output, and for
setting the PHSIF interrupt flag bit of the ATxIR0 register.
The result is that the phase counter counts from zero to
a final value expressed in Equation 31-3, outputting a
pulse each time the counter increments. The value of the
phase counter can be accessed by software by reading
the ATxPHS register pair. However, because of the
synchronization required, in order for reads of this
register pair to be accurate, the instruction clock (FOSC/4)
needs to be at least 3x the ATx_phsclk output frequency.

EQUATION 31-3:

The variables in Equation 31-3 are as follows:

• ATxPHS(final) is the maximum value that the 
phase counter will reach before being reset by the 
input signal. As noted in Equation 31-1, this will 
equal ATxRES.

• ATxPER is the maximum value of the period 
counter.

• F(ATxclk) is the ATx clock frequency.
• F(ATxsig) is the input signal frequency.

Notice that the division is ATxPER + 1. Ideally, this would
be just ATxPER but the divider includes zero in the
count. In most applications, ATxPER is a large number
so the error introduced by adding one is negligible.

ATxPHS counting from 0 to ATxRES is useful when the
input signal represents a rotation (for example, a motor
or A/C mains). In this case, the input signal is under-
stood to provide a period pulse every 360 degrees.
Since the phase clock equally divides the signal period
into a number of intervals determined by the ATxRES
register pair, each pulse on the phase clock output
marks a fixed phase angle in that rotation, as
expressed by Equation 31-4.

EQUATION 31-4:

ATxRES can then be used with the instantaneous value
of the ATxPHS register pair to get the instantaneous
angle of the rotation using Equation 31-5.

EQUATION 31-5:

31.2.2 MULTI-PULSE MODE

The operation of Multi-Pulse mode is illustrated in
Figure 31-3. The calculations on the input signal are
similar to those in Single-Pulse mode, with the primary
difference relating to when the ATxPHS register pair is
reset.

The period counter is latched into the ATxPER register
pair and reset on every input pulse except the pulse
immediately following a missing pulse. The first active
pulse following a missing pulse triggers all of the following:

• Period clock output
• PERIF interrupt
• Phase counter reset

The result is a period clock output that has a period
length equal to the time between missing pulses (e.g.,
a missing tooth in a gear). This leads to a significantly
different relation between ATxRES and the maximum
phase count, ATxPHS, as shown in Equation 31-6.

EQUATION 31-6:

ATxPER

F ATxclk 
F ATxsig 
---------------------------

ATxRES 1+ 
------------------------------------=

ATxPHS final 

F ATxclk 
F ATxsig 
--------------------------- 
 

ATxPER 1+ 
-------------------------------------=

AngleResolution
360degrees

ATxRES 1+
----------------------------------=

Angle 360degrees
ATxPHS

ATxRES 1+
-------------------------------=

ATxPHS final  ATxRES
MissP
PulseP
------------------ 
 =
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REGISTER 31-11: ATxPHSH: ANGULAR TIMER PHASE COUNTER HIGH REGISTER

U-0 U-0 U-0 U-0 U-0 U-0 R-x/x R-x/x

— — — — — — PHS<9:8>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition

bit 7-2 Unimplemented: Read as ‘0’

bit 1-0 PHS<9:8>: Most Significant bits of ATxPHS. ATxPHS is the instantaneous value of the phase counter.

REGISTER 31-12: ATxPHSL: ANGULAR TIMER PHASE COUNTER LOW REGISTER

R-x/x R-x/x R-x/x R-x/x R-x/x R-x/x R-x/x R-x/x

PHS<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition

bit 7-0 PHS<7:0>: Least Significant bits of ATxPHS. ATxPHS is the instantaneous value of the phase 
counter.
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REGISTER 32-6: PIDxK1H: PID K1 HIGH REGISTER

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

K1<15:8>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition

bit 7-0 K1<15:8>: K1 upper eight bits. K1 is the 16-bit user-controlled coefficient calculated from Kp + Ki + Kd

REGISTER 32-7: PIDxK1L: PID K1 LOW REGISTER

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

K1<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition

bit 7-0 K1<7:0>: K1 lower eight bits. K1 is the 16-bit user-controlled coefficient calculated from Kp + Ki + Kd

REGISTER 32-8: PIDxK2H: PID K2 HIGH REGISTER

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

K2<15:8>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition

bit 7-0 K2<15:8>: K2 upper eight bits. K2 is the 16-bit user-controlled coefficient calculated from -(Kp + 2Kd)

REGISTER 32-9: PIDxK2L: PID K2 LOW REGISTER

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

K2<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition

bit 7-0 K2<7:0>: K2 lower eight bits. K2 is the 16-bit user-controlled coefficient calculated from -(Kp + 2Kd)
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