E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1614-i-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-14: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	Bank 31										
F8Ch — FE3h	_	Unimplemented	1							_	—
FE4h	STATUS_ SHAD	-	-	_	-	-	Z_SHAD	DC_SHAD	C_SHAD	xxx	uuu
FE5h	WREG_ SHAD	Working Regist	er Shadow							XXXX XXXX	uuuu uuuu
FE6h	BSR_ SHAD	—	-	_	Bank Select Re	gister Shadow				x xxxx	u uuuu
FE7h	PCLATH_ SHAD	-	- Program Counter Latch High Register Shadow							-xxx xxxx	uuuu uuuu
FE8h	FSR0L_ SHAD	Indirect Data M	emory Address () Low Pointer Sh	nadow					XXXX XXXX	uuuu uuuu
FE9h	FSR0H_ SHAD	Indirect Data M	Indirect Data Memory Address 0 High Pointer Shadow							XXXX XXXX	uuuu uuuu
FEAh	FSR1L_ SHAD	Indirect Data M	Indirect Data Memory Address 1 Low Pointer Shadow							XXXX XXXX	uuuu uuuu
FEBh	FSR1H_ SHAD	Indirect Data Memory Address 1 High Pointer Shadow							XXXX XXXX	uuuu uuuu	
FECh	<u> </u>	Unimplemented	Unimplemented								_
FEDh	STKPTR		_	—	Current Stack F	Pointer				1 1111	1 1111
FEEh	TOSL	Top-of-Stack Lo	ow byte							xxxx xxxx	uuuu uuuu
FEFh	TOSH	— Top-of-Stack High byte						-xxx xxxx	-uuu uuuu		

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: PIC16F1614/8 only.

2: Unimplemented, read as '1'.

3: PIC16(L)F1614 only.

4: PIC16(L)F1618 only.

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
—	—	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0
bit 7							bit 0
Legend:							

REGISTER 12-5: WPUA: WEAK PULL-UP PORTA REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5-0	WPUA<5:0>: Weak Pull-up Register bits ⁽³⁾
	1 = Pull-up enabled 0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

- 2: The weak pull-up device is automatically disabled if the pin is configured as an output.
- **3:** For the WPUA3 bit, when MCLRE = 1, weak pull-up is internally enabled, but not reported here.

REGISTER 12-6: ODCONA: PORTA OPEN-DRAIN CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	ODA5	ODA4	—	ODA2	ODA1	ODA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5-4	ODA<5:4>: PORTA Open-Drain Enable bits For RA<5:4> pins, respectively 1 = Port pin operates as open-drain drive (sink current only) 0 = Port pin operates as standard push-pull drive (source and sink current)
bit 3	Unimplemented: Read as '0'
bit 2-0	ODA<2:0>: PORTA Open-Drain Enable bits For RA<2:0> pins, respectively 1 = Port pin operates as open-drain drive (sink current only) 0 = Port pin operates as standard push-pull drive (source and sink current)

17.2 ADC Operation

17.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note:	The GO/DONE bit should not be set in the						
	same instruction that turns on the ADC.						
	Refer to Section17.2.6 "ADC Conver-						
	sion Procedure".						

17.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF Interrupt Flag bit
- Update the ADRESH and ADRESL registers with new conversion result

17.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH and ADRESL registers will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.

Note:	A device Reset forces all registers to their						
	Reset state. Thus, the ADC module is						
	turned off and any pending conversion is						
	terminated.						

17.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. Performing the ADC conversion during Sleep can reduce system noise. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

17.2.5 AUTO-CONVERSION TRIGGER

The auto-conversion trigger allows periodic ADC measurements without software intervention. When a rising edge of the selected source occurs, the GO/DONE bit is set by hardware.

The auto-conversion trigger source is selected with the TRIGSEL<4:0> bits of the ADCON2 register.

Using the auto-conversion trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

See Table 17-2 for auto-conversion sources.

TABLE 17-2: AUTO-CONVERSION SOURCES

Source Peripheral	Signal Name
Timer0	T0_overflow
Timer1	T1_overflow
Timer2	TMR2_postscaled
Timer4	TMR4_postscaled
Timer6	TMR6_postscaled
Comparator C1	C1_OUT_sync
Comparator C2	C2_OUT_sync
SMT1	SMT1_CPW
SMT1	SMT1_CPR
SMT1	SMT1_PR
SMT2	SMT2_CPW
SMT2	SMT2_CPR
SMT2	SMT2_PR
CCP1	CCP1_out
CCP2	CCP2_out

PIC16(L)F1614/8

REGISTER	17-2: ADC	ON1: ADC CO	NTROL RE	GISTER 1				
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	
ADFM		ADCS<2:0>		— — ADPREF<			F<1:0>	
bit 7							bit 0	
Logondu								
Legena:	- 1-14		L :1			-l (O)		
R = Readable		vv = vvritable	DIT		mented bit, read			
u = Bit is unc	hanged	x = Bit is unkr	iown	-n/n = Value	at POR and BC	R/Value at all	other Resets	
'1' = Bit is se	t	'0' = Bit is clea	ared					
bit 7 bit 6-4	ADFM: ADC 1 = Right ju loaded. 0 = Left just loaded. ADCS<2:0> 111 = FRC 110 = Fosc 101 = Fosc 100 = Fosc 011 = FRC 010 = Fosc	Result Format stified. Six Most tified. Six Least ADC Conversi (clock supplied 2/64 2/16 2/4 (clock supplied 2/32	Select bit Significant bit Significant bit on Clock Sele from an intern	its of ADRESH ts of ADRESL ect bits al RC oscillator	are set to '0' v are set to '0' w r)	vhen the conve	ersion result is	
	001 = Fosc	001 = Fosc/8						
h it 0 0	000 = FOSC	%Z	~'					
bit 3-2	Unimpleme	nted: Read as ').					
bit 1-0	ADPREF<1: 11 = VRPOS 10 = VRPOS 01 = Reserv 00 = VRPOS	:0>: ADC Positiv is connected to is connected to ved is connected to	ve Voltage Re internal Fixed external VRE	ference Configu I Voltage Refer -+ pin ⁽¹⁾	uration bits ence (FVR)			
Note 1: W	/hen selecting t	he VREF+ pin as	the source of	the positive re	ference, be awa	are that a minir	num voltage	

When selecting the VREF+ pin as the source of the positive reference, be aware that a marked specification exists. See SectionTABLE 35-13: "Analog-to-Digital Converter (ADC) Characteristics(1,2,3)" for details.

18.4 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the DAC1CON0 register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

18.5 Effects of a Reset

A device Reset affects the following:

- DAC is disabled.
- DAC output voltage is removed from the DACxOUT1 pin.
- The DAC1R<7:0> range select bits are cleared.

23.6 Timer2 Operation During Sleep

When PSYNC = 1, Timer2 cannot be operated while the processor is in Sleep mode. The contents of the TMR2 and T2PR registers will remain unchanged while processor is in Sleep mode.

When PSYNC = 0, Timer2 will operate in Sleep as long as the clock source selected is also still running. Selecting the LFINTOSC, MFINTOSC, or HFINTOSC oscillator as the timer clock source will keep the selected oscillator running during Sleep.

25.4.2 AUTO-BAUD OVERFLOW

During the course of automatic baud detection, the ABDOVF bit of the BAUDxCON register will be set if the baud rate counter overflows before the fifth rising edge is detected on the RX pin. The ABDOVF bit indicates that the counter has exceeded the maximum count that can fit in the 16 bits of the SPxBRGH:SPxBRGL register pair. The overflow condition will set the RCIF flag. The counter continues to count until the fifth rising edge is detected on the RX pin. The RCIDL bit will remain false ('0') until the fifth rising edge at which time the RCIDL bit will be set. If the RCREG is read after the overflow occurs but before the fifth rising edge then the fifth rising edge will set the RCIF again.

Terminating the auto-baud process early to clear an overflow condition will prevent proper detection of the sync character fifth rising edge. If any falling edges of the sync character have not yet occurred when the ABDEN bit is cleared then those will be falsely detected as Start bits. The following steps are recommended to clear the overflow condition:

- 1. Read RCREG to clear RCIF.
- 2. If RCIDL is zero then wait for RCIF and repeat step 1.
- 3. Clear the ABDOVF bit.

25.4.3 AUTO-WAKE-UP ON BREAK

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper character reception cannot be performed. The Auto-Wake-up feature allows the controller to wake-up due to activity on the RX/DT line. This feature is available only in Asynchronous mode.

The Auto-Wake-up feature is enabled by setting the WUE bit of the BAUDxCON register. Once set, the normal receive sequence on RX/DT is disabled, and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX/DT line. (This coincides with the start of a Sync Break or a wake-up signal character for the LIN protocol.)

The EUSART module generates an RCIF interrupt coincident with the wake-up event. The interrupt is generated synchronously to the Q clocks in normal CPU operating modes (Figure 25-7), and asynchronously if the device is in Sleep mode (Figure 25-8). The interrupt condition is cleared by reading the RCxREG register.

The WUE bit is automatically cleared by the low-to-high transition on the RX line at the end of the Break. This signals to the user that the Break event is over. At this point, the EUSART module is in Idle mode waiting to receive the next character.

25.4.3.1 Special Considerations

Break Character

To avoid character errors or character fragments during a wake-up event, the wake-up character must be all zeros.

When the wake-up is enabled the function works independent of the low time on the data stream. If the WUE bit is set and a valid non-zero character is received, the low time from the Start bit to the first rising edge will be interpreted as the wake-up event. The remaining bits in the character will be received as a fragmented character and subsequent characters can result in framing or overrun errors.

Therefore, the initial character in the transmission must be all '0's. This must be ten or more bit times, 13-bit times recommended for LIN bus, or any number of bit times for standard RS-232 devices.

Oscillator Start-up Time

Oscillator start-up time must be considered, especially in applications using oscillators with longer start-up intervals (i.e., HS/PLL mode). The Sync Break (or wake-up signal) character must be of sufficient length, and be followed by a sufficient interval, to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

WUE Bit

The wake-up event causes a receive interrupt by setting the RCIF bit. The WUE bit is cleared in hardware by a rising edge on RX/DT. The interrupt condition is then cleared in software by reading the RCxREG register and discarding its contents.

To ensure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process before setting the WUE bit. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

REGISTER 28-2: CWGxCON1: CWGx CONTROL REGISTER 1	
--	--

U-0	U-0	R-x	U-0	R/W-0/0 R/W-0/0		R/W-0/0	R/W-0/0
—	—	IN	—	POLD	POLC	POLB	POLA
bit 7							bit 0

Legend:						
R = Readable	bit	W = Writable bit	U = Unimplemented bit, read as '0'			
u = Bit is uncha	anged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is set		'0' = Bit is cleared	q = Value depends on condition			
bit 7-6	Unimplemen	ted: Read as '0'				
bit 5	IN: CWG Inpu	ut Value				
bit 4	Unimplemented: Read as '0'					
bit 3	pit 3 POLD: CWGxD Output Polarity bit					
	1 = Signal ou	utput is inverted polarity				
	0 = Signal ou	utput is normal polarity				
bit 2	POLC: CWG	xC Output Polarity bit				
	1 = Signal ou	utput is inverted polarity				
	0 = Signal ou	utput is normal polarity				
bit 1	POLB: CWG	xB Output Polarity bit				
	1 = Signal οι	utput is inverted polarity				
0 = Signal output is normal polarity						
bit 0	POLA: CWG	xA Output Polarity bit				
	1 = Signal ou	utput is inverted polarity				
0 = Signal output is normal polarity						

TABLE 28-2:	SUMMARY OF REGISTERS ASSOCIATED WITH CW
IADLE ZOZ.	JUNINIARI OF REGISTERS ASSOCIATED WITH CW

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CWG1AS0	SHUTDOWN	REN	LSBD	<1:0>	LSAC<1:0>		—	_	383
CWG1AS1	_	TMR6AS	TMR4AS	TMR2AS	TMR2AS — C2AS		C1AS	INAS	384
CWG1CLKCON	_	_	_	_	_	_	_	CS	386
CWG1CON0	EN	LD	_	_	_			385	
CWG1CON1	_	_	IN	_	POLD	POLC	POLB	POLA	381
CWG1DBF	_				DBF	<5:0>			382
CWG1DBR	_	_		DBR<5:0>					382
CWG1ISM	_	_	— — IS<3:0>					386	
CWG10CON0	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	385

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by CWG.

© 2014-2016 Microchip Technology Inc.

DS40001769B-page 411

PIC16(L)F1614/8

FIGURE 30-11:

FIGURE 30-12: GATED WINDOWED MEASURE MODE REPEAT ACQUISITION TIMING DIAGRAM

PIC16(L)F1614/8

30.6.7 TIME OF FLIGHT MEASURE MODE

This mode measures the time interval between a rising edge on the SMTWINx input and a rising edge on the SMTx_signal input, beginning to increment the timer upon observing a rising edge on the SMTWINx input, while updating the SMTxCPR register and resetting the timer upon observing a rising edge on the SMTx_signal input. In the event of two SMTWINx rising edges without an SMTx_signal rising edge, it will update the SMTxCPW register with the current value of the timer and reset the timer value. See Figure 30-14 and Figure 30-15.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
SMTxTMR<7:0>								
bit 7							bit 0	
Legend:								
R = Readable	ble bit W = Writable bit U = Unimplemented bit, read as '0'			d as '0'				
u = Bit is unch	anged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at a			other Resets	
'1' = Bit is set		'0' = Bit is clea	ared					

REGISTER 30-9: SMTxTMRL: SMT TIMER REGISTER – LOW BYTE

bit 7-0 SMTxTMR<7:0>: Significant bits of the SMT Counter – Low Byte

REGISTER 30-10: SMTxTMRH: SMT TIMER REGISTER - HIGH BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
SMTxTMR<15:8>									
bit 7 bit 0									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxTMR<15:8>: Significant bits of the SMT Counter – High Byte

REGISTER 30-11: SMTxTMRU: SMT TIMER REGISTER - UPPER BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			SMTxTM	R<23:16>			
bit 7							bit 0
Legend:							
R = Readable h	bit	W = Writable bi	t	U = Unimpler	mented bit, read	d as '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxTMR<23:16>: Significant bits of the SMT Counter – Upper Byte

Mnemonic,		Description	Cycles		14-Bit	Opcode	÷	Status	Notos
Oper	ands	Description	Cycles	MSb			LSb	Affected	NOLES
		CONTROL OPERA	TIONS						
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk		
BRW	-	Relative Branch with W	2	00	0000	0000	1011		
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CALLW	-	Call Subroutine with W	2	00	0000	0000	1010		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
RETFIE	k	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
		INHERENT OPERA	ATIONS						
CLRWDT	_	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
NOP	-	No Operation	1	00	0000	0000	0000		
OPTION	_	Load OPTION_REG register with W	1	00	0000	0110	0010		
RESET	-	Software device Reset	1	00	0000	0000	0001		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf		
		C-COMPILER OPT	IMIZED					•	
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk		
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3
		modifier, mm					kkkk		
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	0nkk	1nmm	Z	2
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	kkkk		2, 3
		modifier, mm							
	k[n]	Move W to INDFn, Indexed Indirect.	1	11	1111	1nkk			2

TABLE 34-3: ENHANCED MID-RANGE INSTRUCTION SET (CONTINUED)

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Table in the MOVIW and MOVWI instruction descriptions.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

RETFIE	Return from Interrupt						
Syntax:	[label] RETFIE						
Operands:	None						
Operation:	$TOS \rightarrow PC, \\ 1 \rightarrow GIE$						
Status Affected:	None						
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a 2-cycle instruction.						
Words:	1						
Cycles:	2						
Example:	RETFIE						
	After Interrupt PC = TOS GIE = 1						
RETLW	Return with literal in W						
Syntax:	[<i>label</i>] RETLW k						
Operands:	$0 \le k \le 255$						
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC						
Status Affected:	None						
Description:	The W register is loaded with the 8-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.						
Words:	1						
Cycles:	2						
Example:	CALL TABLE;W contains table ;offset value						
TABLE	<pre>, w now has table value , ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ;</pre>						
	Refore Instruction						

OPTION	Load OPTION_REG Register with W				
Syntax:	[label] OPTION				
Operands:	None				
Operation:	$(W) \rightarrow OPTION_REG$				
Status Affected:	None				
Description:	Move data from W register to OPTION_REG register.				

Load OPTION_REG Register

RESET	Software Reset			
Syntax:	[label] RESET			
Operands:	None			
Operation:	Execute a device Reset. Resets the \overline{RI} flag of the PCON register.			
Status Affected:	None			
Description:	This instruction provides a way to execute a hardware Reset by soft- ware.			

35.3 DC Characteristics

TABLE 35-1: SUPPLY VOLTAGE

PIC16F1614/8			Standard Operating Conditions (unless otherwise stated)							
PIC16F1										
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
D001	Vdd	Supply Voltage								
			VDDMIN 1.8 2.5		VDDMAX 3.6 3.6	V V	Fosc ≤ 16 MHz Fosc ≤ 32 MHz			
D001			2.3 2.5		5.5 5.5	V V	$Fosc \le 16 \text{ MHz}$ $Fosc \le 32 \text{ MHz}$			
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾								
			1.5			V	Device in Sleep mode			
D002*			1.7	_	—	V	Device in Sleep mode			
D002A*	VPOR	Power-on Reset Release Voltage	2)			-				
				1.6	_	V				
D002A*		(0)	—	1.6	—	V				
D002B* V	VPORR*	Power-on Reset Rearm Voltage ⁽²⁾								
			_	0.8	_	V				
D002B*			—	1.5	—	V				
D003	3 VEVR Fixed Voltage Reference Voltage									
			_	1.024	_	V	$-40^{\circ}C \le TA \le +85^{\circ}C$			
D003		$- 1.024 - V -40^{\circ}C \le TA \le +85^{\circ}C$								
DUUJA VADEVR FVR Gain Voltage Accuracy for ADC										
			-4	_	+4	%	1x VFVR, VDD \geq 2.5V 2x VFVR, VDD \geq 2.5V			
D003A			-5		+5	%	1x VFVR, VDD \geq 2.5V 2x VFVR, VDD \geq 2.5V 4x VFVR, VDD \geq 4.75V			
D003B	VCDAFVR	FVR Gain Voltage Accuracy for C	FVR Gain Voltage Accuracy for Comparator/ADC							
			-4		+4	%	1x VFVR, VDD $\geq 2.5V$ 2x VFVR, VDD $\geq 2.5V$			
D003B			-7	_	+7	%	$\begin{array}{l} 1x \; \text{VFVR, } \text{VDD} \geq 2.5 \text{V} \\ 2x \; \text{VFVR, } \text{VDD} \geq 2.5 \text{V} \\ 4x \; \text{VFVR, } \text{VDD} \geq 4.75 \text{V} \end{array}$			
D004*	SVDD	VDD Rise Rate ⁽²⁾								
			0.05	_	—	V/ms	Ensures that the Power-on Reset signal is released properly.			
D004*			0.05	—	_	V/ms	Ensures that the Power-on Reset signal is released properly.			

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: See Figure 35-3, POR and POR REARM with Slow Rising VDD.

PIC16LF	1614/8	Stand	Standard Operating Conditions (unless otherwise stated)							
PIC16F1614/8										
Param. Device		Min	Typt	Max	Unite	Conditions				
No.	Characteristics		'yp'	Max.	onits	Vdd	Note			
D019		—	1.6	5.0	mA	3.0	Fosc = 32 MHz, HFINTOSC			
			1.9	6.0	mA	3.6				
D019	019	—	1.6	5.0	mA	3.0	Fosc = 32 MHz, HFINTOSC			
		_	1.9	6.0	mA	5.0	7			
D020A		—	1.6	5.0	mA	3.0	Fosc = 32 MHz,			
		—	1.9	6.0	mA	3.6	External Clock (ECH), High-Power mode			
D020A			1.6	5.0	mA	3.0	Fosc = 32 MHz,			
		—	1.9	6.0	mA	5.0	External Clock (ECH), High-Power mode			
D020B		—	6	16	μA	1.8	Fosc = 32 kHz,			
		—	8	22	μA	3.0	External Clock (ECL), Low-Power mode			
D020B		—	13	43	μA	2.3	Fosc = 32 kHz,			
			15	55	μA	3.0	External Clock (ECL),			
		—	16	57	μA	5.0	Low-Power mode			
D020C		—	19	40	μA	1.8	Fosc = 500 kHz,			
		—	32	60	μA	3.0	External Clock (ECL), Low-Power mode			
D020C		_	31	60	μA	2.3	Fosc = 500 kHz,			
		_	38	90	μA	3.0	External Clock (ECL),			
		—	44	100	μA	5.0				

TABLE 35-2:	SUPPLY CURRENT	(IDD) ^(1,2) ((CONTINUED)	
-------------	----------------	--------------------------	-------------	--

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

For the most current package drawings, please see the Microchip Packaging Specification located at

20-Lead Plastic Quad Flat, No Lead Package (ML) – 4x4x0.9 mm Body [QFN]

Units MILLIMETERS Dimension Limits MIN NOM MAX Number of Pins Ν 20 Pitch 0.50 BSC е **Overall Height** А 0.80 0.90 1.00 Standoff A1 0.00 0.02 0.05 Contact Thickness A3 0.20 REF Overall Width 4.00 BSC Е Exposed Pad Width E2 2.60 2.70 2.80 **Overall Length** D 4.00 BSC Exposed Pad Length D2 2.60 2.70 2.80 Contact Width 0.18 0.25 0.30 b Contact Length L 0.30 0.40 0.50 Contact-to-Exposed Pad Κ 0.20 _ _

Notes:

Note:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-126B