

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1614t-i-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Value on Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 POR, BOR

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-14:

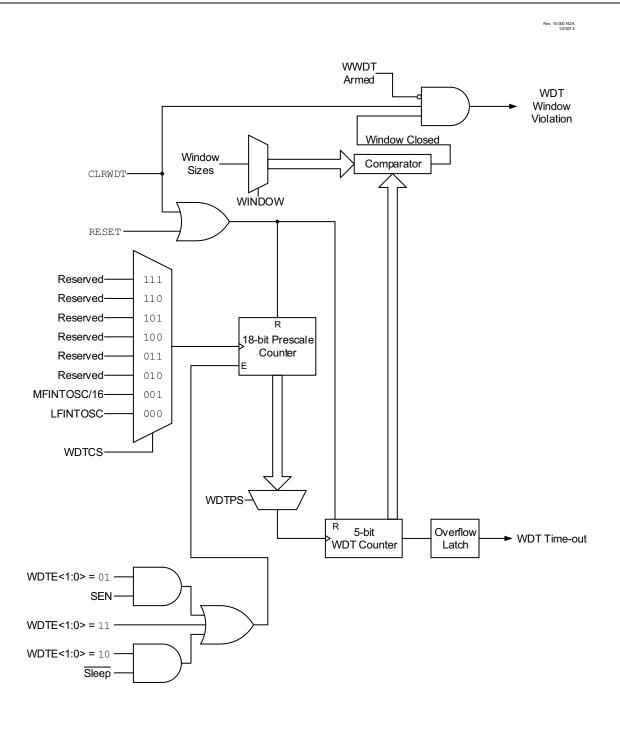
Banks	<u>s 27</u>									_	
D80h to D8Bh	_	Unimplemented	Unimplemented								_
D8Ch	SMT1TMRL				SMT1TN	/IR<7:0>				0000 0000	0000 0000
D8Dh	SMT1TMRH				SMT1TM	IR<15:8>				0000 0000	0000 0000
D8Eh	SMT1TMRU				SMT1TMI	R<23:16>				0000 0000	0000 0000
D8Fh	SMT1CPRL				SMT1CF	PR<7:0>				XXXX XXXX	XXXX XXXX
D90h	SMT1CPRH				SMT1CP	R<15:8>				xxxx xxxx	XXXX XXXX
D91h	SMT1CPRU				SMT1CP	R<23:16>				XXXX XXXX	XXXX XXXX
D92h	SMT1CPWL				SMT1CF	PW<7:0>				XXXX XXXX	XXXX XXXX
D93h	SMT1CPWH				SMT1CP	W<15:8>				XXXX XXXX	XXXX XXXX
D94h	SMT1CPWU		SMT1CPW<23:16>							xxxx xxxx	xxxx xxxx
D95h	SMT1PRL		SMT1PR<7:0>							xxxx xxxx	XXXX XXXX
D96h	SMT1PRH		SMT1PR<15:8>							XXXX XXXX	xxxx xxxx
D97h	SMT1PRU				SMT1PR	<23:16>				XXXX XXXX	xxxx xxxx
D98h	SMT1CON0	EN	_	STP	WPOL	SPOL	CPOL	SMT1P	S<1:0>	0-00 0000	0-00 0000
D99h	SMT1CON1	SMT1GO	REPEAT	—	—		MODE	<3:0>		00 0000	00 0000
D9Ah	SMT1STAT	CPRUP	CPWUP	RST	—		TS	WS	AS	000000	000000
D9Bh	SMT1CLK	—	_	_	—	_		CSEL<2:0>		000	000
D9Ch	SMT1SIG	—	_	—			SSEL<4:0>			0 0000	0 0000
D9Dh	SMT1WIN	_		_			WSEL<4:0>			0 0000	0 0000
D9Eh	SMT2TMRL				SMT2TM	/IR<7:0>				0000 0000	0000 0000
D9Fh	SMT2TMRH		SMT2TMR<15:8>							0000 0000	0000 0000
DA0h	SMT2TMRU	SMT2TMR<23:16>								0000 0000	0000 0000
DA1h	SMT2CPRL	SMT2CPR<7:0>								xxxx xxxx	xxxx xxxx
DA2h	SMT2CPRH	SMT2CPR<15:8>							XXXX XXXX	xxxx xxxx	
DA3h	SMT2CPRU				SMT2CPI	R<23:16>				xxxx xxxx	XXXX XXXX
DA4h	SMT2CPWL		SMT2CPW<7:0> xxxx xxxx xxxx xxxx xxxx								XXXX XXXX

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: PIC16F1614/8 only.

2: Unimplemented, read as '1'.

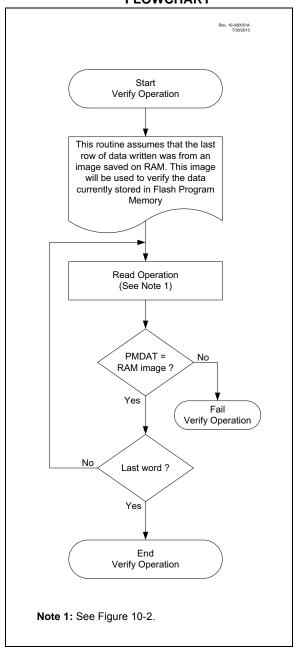
3: PIC16(L)F1614 only.


4: PIC16(L)F1618 only.

Value on all

other Resets

PIC16(L)F1614/8



10.5 Write Verify

It is considered good programming practice to verify that program memory writes agree with the intended value. Since program memory is stored as a full page then the stored program memory contents are compared with the intended data stored in RAM after the last write is complete.

FIGURE 10-8: FLASH PROGRAM MEMORY VERIFY FLOWCHART

12.1.7 PORTA FUNCTIONS AND OUTPUT PRIORITIES

Each pin defaults to the PORT latch data after Reset. Other functions are selected with the peripheral pin select logic. See **Section13.0** "**Peripheral Pin Select (PPS) Module**" for more information. Analog input functions, such as ADC inputs, are not shown in the peripheral pin select lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELA register. Digital output functions may continue to control the pin when in Analog mode.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0				
	Т	[RIGSEL<4:0>(1	1)		—	—	—				
bit 7							bit (
Legend:	alo hit	W = Writable	bit	II – Unimplor	nented bit, read	d ac 'O'					
R = Readable bit u = Bit is unchanged				ther Decete							
		x = Bit is unki			at POR and BC	R/Value at all o	Juner Resels				
'1' = Bit is s	et	'0' = Bit is cle	ared								
			· · ·	0.1	`						
bit 7-3		I:0>: Auto-Conv	ersion Trigger	Selection bits	,						
	11111 = Re	eserved									
	•										
	•										
	10101 = Re	10101 = Reserved									
		10100 = AT1_cmp3									
		10011 = AT1_cmp2									
		10010 = AT1_cmp1 10001 = CLC4OUT									
	10001 = CL 10000 = CL										
	01111 = CL										
	01110 = CL										
		IR5_overflow									
		1R3_overflow									
	01011 = SM										
		=SMT1_match									
	$01001 = TMR6_postscaled$										
	01000 = TMR4_postscaled 00111 = C2_OUT_sync										
	$00111 = C2_001_sync$ $00110 = C1_0UT_sync$										
		00101 = TMR2_postscaled									
	00100 = T1	$D100 = T1_overflow^{(2)}$									
	00011 = TO										
	00010 = CC										
	00001 = CC		n trigger ecles	atad							
		auto-conversio		lea							
bit 2-0	Unimpleme	nted: Read as '	0.								
Note 1: 7	This is a rising e	dge sensitive inp	out for all sour	ces.							
2.	Signal also sets i	its correspondin	a interrunt flag	r							

REGISTER 17-3: ADCON2: ADC CONTROL REGISTER 2

2: Signal also sets its corresponding interrupt flag.

20.2 ZCD Logic Output

The ZCD module includes a Status bit, which can be read to determine whether the current source or sink is active. The ZCDxOUT bit of the ZCDxCON register is set when the current sink is active, and cleared when the current source is active. The ZCDxOUT bit is affected by the polarity bit.

20.3 ZCD Logic Polarity

The ZCDxPOL bit of the ZCDxCON register inverts the ZCDxOUT bit relative to the current source and sink output. When the ZCDxPOL bit is set, a ZCDxOUT high indicates that the current source is active, and a low output indicates that the current sink is active.

The ZCDxPOL bit affects the ZCD interrupts. See **Section20.4 "ZCD Interrupts"**.

20.4 ZCD Interrupts

An interrupt will be generated upon a change in the ZCD logic output when the appropriate interrupt enables are set. A rising edge detector and a falling edge detector are present in the ZCD for this purpose.

The ZCDIF bit of the PIR3 register will be set when either edge detector is triggered and its associated enable bit is set. The ZCDxINTP enables rising edge interrupts and the ZCDxINTN bit enables falling edge interrupts. Both are located in the ZCDxCON register.

To fully enable the interrupt, the following bits must be set:

- ZCDIE bit of the PIE3 register
- ZCDxINTP bit of the ZCDxCON register (for a rising edge detection)
- ZCDxINTN bit of the ZCDxCON register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

Changing the ZCDxPOL bit will cause an interrupt, regardless of the level of the ZCDxEN bit.

The ZCDIF bit of the PIR3 register must be cleared in software as part of the interrupt service. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

20.5 Correcting for VCPINV offset

The actual voltage at which the ZCD switches is the reference voltage at the non-inverting input of the ZCD op amp. For external voltage source waveforms other than square waves, this voltage offset from zero causes the zero-cross event to occur either too early or too late. When the waveform is varying relative to Vss, then the zero cross is detected too early as the waveform falls and too late as the waveform rises. When the waveform is varying relative to VDD, then the zero cross is detected too late as the waveform rises and too early as the waveform falls. The actual offset time can be determined for sinusoidal waveforms with the corresponding equations shown in Equation 20-2.

EQUATION 20-2: ZCD EVENT OFFSET

When External Voltage Source is relative to Vss:

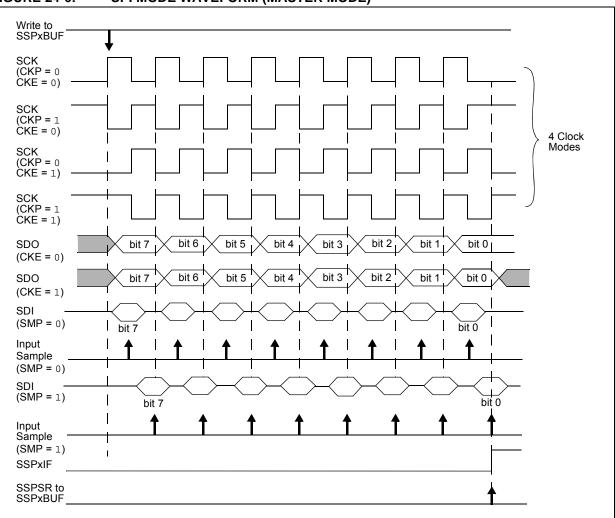
$$TOFFSET = \frac{\operatorname{asin}\left(\frac{Vcpinv}{VPEAK}\right)}{2\pi \bullet Freq}$$

When External Voltage Source is relative to VDD:

 $TOFFSET = \frac{\operatorname{asin}\left(\frac{VDD - Vcpinv}{VPEAK}\right)}{2\pi \bullet Freq}$

This offset time can be compensated for by adding a pull-up or pull-down biasing resistor to the ZCD pin. A pull-up resistor is used when the external voltage source is varying relative to Vss. A pull-down resistor is used when the voltage is varying relative to VDD. The resistor adds a bias to the ZCD pin so that the target external voltage source must go to zero to pull the pin voltage to the VCPINV switching voltage. The pull-up or pull-down value can be determined with the equations shown in Equation 20-3 or Equation 20-4.

EQUATION 20-3: ZCD PULL-UP/DOWN


When External Signal is relative to Vss:

$$R_{PULLUP} = \frac{R_{SERIES}(V_{PULLUP} - V_{Cpinv})}{V_{Cpinv}}$$

When External Signal is relative to VDD:

$$R_{PULLDOWN} = \frac{R_{SERIES}(Vcpinv)}{(VDD - Vcpinv)}$$

24.2.4 SPI SLAVE MODE

In Slave mode, the data is transmitted and received as external clock pulses appear on SCK. When the last bit is latched, the SSPxIF interrupt flag bit is set.

Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCK pin. The Idle state is determined by the CKP bit of the SSPxCON1 register.

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. The shift register is clocked from the SCK pin input and when a byte is received, the device will generate an interrupt. If enabled, the device will wake-up from Sleep.

24.2.4.1 Daisy-Chain Configuration

The SPI bus can sometimes be connected in a daisychain configuration. The first slave output is connected to the second slave input, the second slave output is connected to the third slave input, and so on. The final slave output is connected to the master input. Each slave sends out, during a second group of clock pulses, an exact copy of what was received during the first group of clock pulses. The whole chain acts as one large communication shift register. The daisychain feature only requires a single Slave Select line from the master device.

Figure 24-7 shows the block diagram of a typical daisy-chain connection when operating in SPI mode.

In a daisy-chain configuration, only the most recent byte on the bus is required by the slave. Setting the BOEN bit of the SSPxCON3 register will enable writes to the SSPxBUF register, even if the previous byte has not been read. This allows the software to ignore data that may not apply to it.

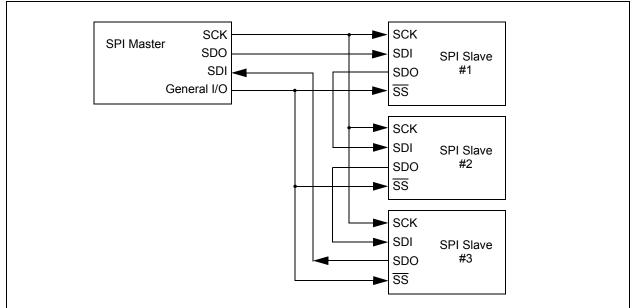
24.2.5 SLAVE SELECT SYNCHRONIZATION

The Slave Select can also be used to synchronize communication. The Slave Select line is held high until the master device is ready to communicate. When the Slave Select line is pulled low, the slave knows that a new transmission is starting.

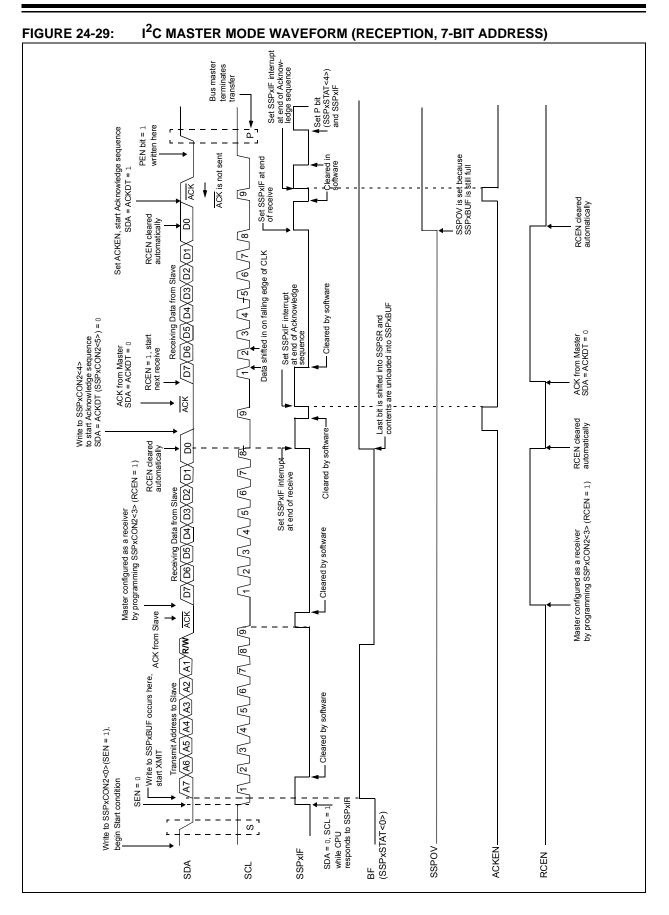
If the slave fails to receive the communication properly, it will be reset at the end of the transmission, when the Slave Select line returns to a high state. The slave is then ready to receive a new transmission when the Slave Select line is pulled low again. If the Slave Select line is not used, there is a risk that the slave will eventually become out of sync with the master. If the slave misses a bit, it will always be one bit off in future transmissions. Use of the Slave Select line allows the slave and master to align themselves at the beginning of each transmission.

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPxCON1<3:0> = 0100).

FIGURE 24-7: SPI DAISY-CHAIN CONNECTION


When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven.

When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.


Note 1:	When the SPI is in Slave mode with \overline{SS} pin					
	control enabled (SSPxCON1<3:0> =					
	0100), the SPI module will reset if the \overline{SS}					
	pin is set to VDD.					

- 2: When the SPI is used in Slave mode with CKE set; the user must enable SS pin control.
- While operated in SPI Slave mode the SMP bit of the SSPxSTAT register must remain clear.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the SS pin to a high level or clearing the SSPEN bit.

PIC16(L)F1614/8

24.8 Register Definitions: MSSP Control

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0				
SMP	CKE	D/A	Р	S	R/W	UA	BF				
bit 7		·	·	•	•		bit C				
Legend:											
R = Readable b	it	W = Writable bi	t	U = Unimpleme	nted bit, read as '0)'					
u = Bit is uncha	nged	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/Val	ue at all other Res	ets				
'1' = Bit is set	-	'0' = Bit is clear	0' = Bit is cleared								
bit 7	<u>SPI Master mo</u> 1 = Input data	a Input Sample bit <u>ode:</u> sampled at end of sampled at middle	•	1e							
	$\frac{\text{SPI Slave mod}}{\text{SMP must be of}}$ $\frac{\text{In I}^2 \text{C Master of}}{1} = \text{Slew rate}$	cleared when SPI i	s used in Slave n r Standard Speed	node I mode (100 kHz	and 1 MHz)						
bit 6	In SPI Master of 1 = Transmit of 0 = Transmit of In I ² C™ mode 1 = Enable inp	ck Edge Select bit (or Slave mode: ccurs on transition ccurs on transition <u>only:</u> ut logic so that thread IBus specific input	from active to Idl from Idle to activ esholds are comp	e clock state	specification						
bit 5	1 = Indicates th	ress bit (I ² C mode hat the last byte re- hat the last byte re-	ceived or transmi								
bit 4	 P: Stop bit (I²C mode only. This bit is cleared when the 1 = Indicates that a Stop bit has been detect 0 = Stop bit was not detected last 			o module is disabl	led, SSPEN is clea	ired.)					
bit 3	 Start bit (I²C mode only. This bit is cleared when the 1 = Indicates that a Start bit has been detect 0 = Start bit was not detected last 					ired.)					
bit 2	 Start bit was not detected last RW: Read/Write bit information (I²C mode only) This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to next Start bit, Stop bit, or not ACK bit. <u>In I²C Slave mode:</u> Read Write <u>In I²C Master mode:</u> Transmit is in progress Transmit is not in progress OR-ing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is in Idle mode. 						ess match to the				
bit 1	UA: Update Address bit (10-bit I ² C mode only) 1 = Indicates that the user needs to update the address in the S 0 = Address does not need to be updated				1ADD register						
bit 0	BF: Buffer Full Status bit Receive (SPI and I ² C modes): 1 = Receive complete, SSP1BUF is full 0 = Receive not complete, SSP1BUF is empty Transmit (I ² C mode only): 1 = Data transmit in progress (does not include the ACK and Stop bits), SSP1BUF is full 0 = Data transmit complete (does not include the ACK and Stop bits), SSP1BUF is empty										

25.2 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See **Section 5.2.2.3 "Internal Oscillator Frequency Adjustment"** for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see **Section 25.4.1 "Auto-Baud Detect**"). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

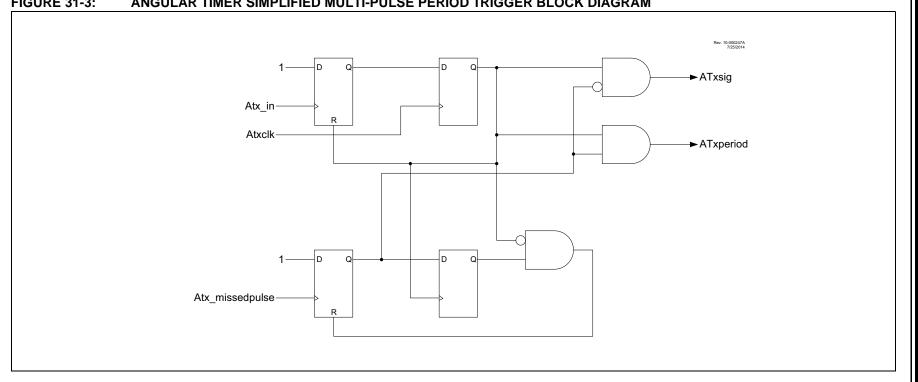
1100KL 25-12.	STACHAOUS RECEITION (MASTER MODE, SREN)	
RX/DT pin TX/CK pin (SCKP = 0)	bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7	
TX/CK pin		<u> </u>
SREN bit		'0'
RCIF bit (Interrupt)		Ľ
Read RCxREG	gram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0.	
1		

FIGURE 25-12: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

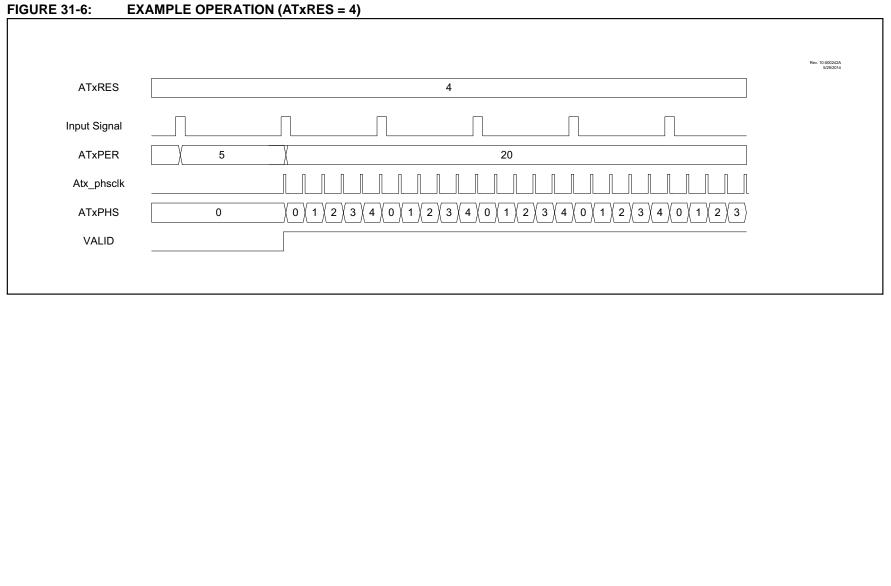
TABLE 25-8: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—		ANSA4		ANSA2	ANSA1	ANSA0	152
ANSELB ⁽¹⁾	_	—	ANSB5	ANSB4	_	—	_	—	159
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾		—	ANSC3	ANSC2	ANSC1	ANSC0	166
BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	323
CKPPS	—	—	-			CKPPS<4:0>			174, 172
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	97
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	98
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	103
RC1REG			EUS	SART Receiv	e Data Regis	ster			316*
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	322
RXPPS	—	—	_		RXPPS<4:0>				
RxyPPS	—	_	_		F	RxyPPS<4:0	>		172
SP1BRGL				BRG<	BRG<7:0>				
SP1BRGH				BRG<15:8>					324*
TRISA	—	—	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	151
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	—	—	—	—	158
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	165
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	321

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master reception.


* Page provides register information.

Note 1: PIC16(L)F1618 only.


2: Unimplemented, read as '1'.

30.6.7 TIME OF FLIGHT MEASURE MODE

This mode measures the time interval between a rising edge on the SMTWINx input and a rising edge on the SMTx_signal input, beginning to increment the timer upon observing a rising edge on the SMTWINx input, while updating the SMTxCPR register and resetting the timer upon observing a rising edge on the SMTx_signal input. In the event of two SMTWINx rising edges without an SMTx_signal rising edge, it will update the SMTxCPW register with the current value of the timer and reset the timer value. See Figure 30-14 and Figure 30-15.

FIGURE 31-3: ANGULAR TIMER SIMPLIFIED MULTI-PULSE PERIOD TRIGGER BLOCK DIAGRAM

BCF	Bit Clear f
Syntax:	[label]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label]BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2- cycle instruction.

BRA	Relative Branch
Syntax:	[<i>label</i>]BRA label [<i>label</i>]BRA \$+k
Operands:	-256 \leq label - PC + 1 \leq 255 -256 \leq k \leq 255
Operation:	$(PC) + 1 + k \rightarrow PC$
Status Affected:	None
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + k. This instruction is a 2-cycle instruction. This branch has a limited range.

BRW	Relative Branch with W
Syntax:	[<i>label</i>] BRW
Operands:	None
Operation:	$(PC) + (W) \to PC$
Status Affected:	None
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incre- mented to fetch the next instruction, the new address will be PC + 1 + (W). This instruction is a 2-cycle instruc- tion.

BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<6:3>) → PC<14:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruc- tion.

BSF	Bit Set f
Syntax:	[label]BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	1 → (f)
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

TABLE 35-3: POWER-DOWN CURRENTS (IPD)^(1,2) (CONTINUED)

PIC16LF16	614/8	Operating Conditions: (unless otherwise stated) Low-Power Sleep Mode						
PIC16F161	4/8	Low-Power Sleep Mode, VREGPM = 1						
Param.	Device Characteristics Min Typt Units	Conditions						
No.		Min.	Турт	+85°C	+125°C	Units	Vdd	Note
D027			7	22	25	μA	1.8	Comparator,
		_	8	23	27	μA	3.0	CxSP = 0
D027		—	17	35	37	μA	2.3	Comparator,
		_	18	37	38	μA	3.0	CxSP = 0
		_	19	38	40	μA	5.0	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Legend: TBD = To Be Determined

Note 1: The peripheral ∆ current can be determined by subtracting the base IPD current from this limit. Max. values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.

3: ADC clock source is FRC.

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

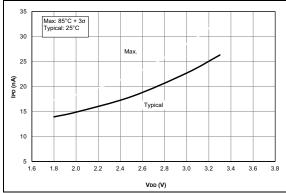


FIGURE 36-25: IPD, Fixed Voltage Reference (FVR), PIC16LF1614/8 Only.

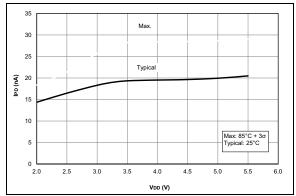


FIGURE 36-26: IPD, Fixed Voltage Reference (FVR), PIC16F1614/8 Only.

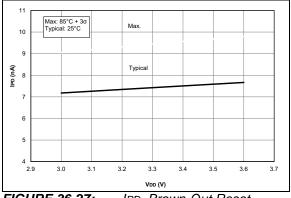


FIGURE 36-27: IPD, Brown-Out Reset (BOR), BORV = 1, PIC16LF1614/8 Only.

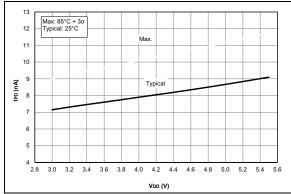
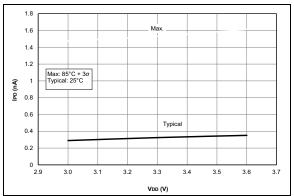
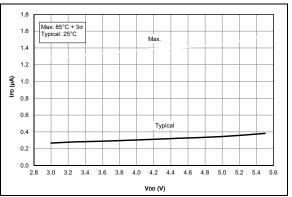




FIGURE 36-28: IPD, Brown-Out Reset (BOR), BORV = 1, PIC16F1614/8 Only.

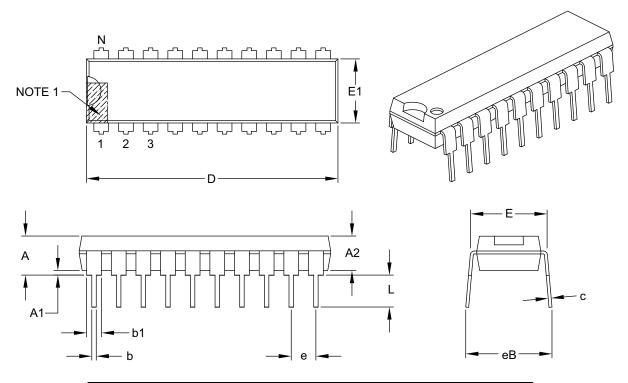

FIGURE 36-29: IPD, LP Brown-Out Reset (LPBOR = 0), PIC16LF1614/8 Only.

FIGURE 36-30: IPD, LP Brown-Out Reset (LPBOR = 0), PIC16F1614/8 Only.

20-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

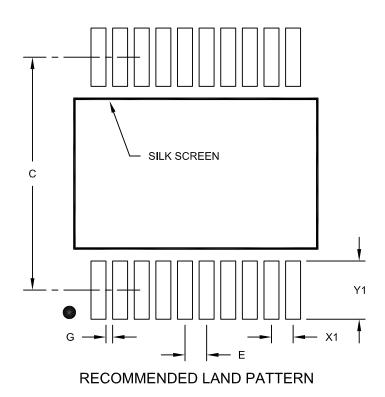
	Units	INCHES		
Dimensio	Dimension Limits		NOM	MAX
Number of Pins	Ν	20		
Pitch	е	.100 BSC		
Top to Seating Plane	А	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.300	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.980	1.030	1.060
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.


4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-019B

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimensior	Dimension Limits			MAX			
Contact Pitch	E	0.65 BSC					
Contact Pad Spacing	С		7.20				
Contact Pad Width (X20)	X1			0.45			
Contact Pad Length (X20)	Y1			1.75			
Distance Between Pads	G	0.20					

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A