

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I²C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 8x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1614t-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The HIGH operator will set bit<7> if a label points to a location in program memory.

EXAMPLE 3-2:	ACCESSING PROGRAM
	MEMORY VIA FSR

constants	
DW DATA0	;First constant
DW DATA1	;Second constant
DW DATA2	
DW DATA3	
my_function	
; LOTS OF CODE	
MOVLW DATA_INDEX	
ADDLW LOW constants	
MOVWF FSR1L	
MOVLW HIGH constants	;MSb sets
	automatically
MOVWF FSR1H	
BTFSC STATUS, C	;carry from ADDLW?
INCF FSR1h, f	;yes
MOVIW 0[FSR1]	
; THE PROGRAM MEMORY IS	IN W

TABLE 3-4: PIC16(L)F1614/8 MEMORY MAP, BANK 8-15

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h	Core Registers (Table 3-1)	480h	Core Registers (Table 3-1)	500h	Core Registers (Table 3-1)	580h	Core Registers (Table 3-1)	600h	Core Registers (Table 3-1)	680h	Core Registers (Table 3-1)	700h	Core Registers (Table 3-1)	780h	Core Registers (Table 3-1)
40Bh		48Bh		50Bh		58Bh		60Bh		68Bh		70Bh		78Bh	
40Ch	_	48Ch	_	50Ch	_	58Ch	PID1SETL	60Ch	PID1Z2L	68Ch	_	70Ch	—	78Ch	_
40Dh	—	48Dh	_	50Dh	_	58Dh	PID1SETH	60Dh	PID1Z2H	68Dh	_	70Dh	_	78Dh	
40Eh	HDRVENC	48Eh	_	50Eh	_	58Eh	PID1INL	60Eh	PID1Z2U	68Eh	_	70Eh	_	78Eh	_
40Fh	—	48Fh	—	50Fh	_	58Fh	PID1INH	60Fh	PID1ACCLL	68Fh	—	70Fh	—	78Fh	—
410h	—	490h	—	510h	—	590h	PID1K1L	610h	PID1ACCLH	690h	—	710h	—	790h	—
411h		491h	—	511h	—	591h	PID1K1H	611h	PID1ACCHL	691h	CWG1DBR	711h	WDTCON0	791h	CRCDATL
412h		492h	—	512h	—	592h	PID1K2L	612h	PID1ACCHH	692h	CWG1DBF	712h	WDTCON1	792h	CRCDATH
413h	TMR4	493h	TMR3L	513h	—	593h	PID1K2H	613h	PID1ACCUL	693h	CWG1AS0	713h	WDTPSL	793h	CRCACCL
414h	PR4	494h	TMR3H	514h	_	594h	PID1K3L	614h	PID1CON	694h	CWG1AS1	714h	WDTPSH	794h	CRCACCH
415h	T4CON	495h	T3CON	515h	—	595h	PID1K3H	615h	—	695h	CWG10CON0	715h	WDTTMR	795h	CRCSHIFTL
416h	T4HLT	496h	T3GCON	516h	_	596h	PID10UTLL	616h	—	696h	CWG1CON0	716h	_	796h	CRCSHIFTH
417h	T4CLKCON	497h	—	517h	—	597h	PID10UTLH	617h	PWM3DCL	697h	CWG1CON1	717h	—	797h	CRCXORL
418h	T4RST	498h	—	518h	_	598h	PID10UTHL	618h	PWM3DCH	698h	—	718h	SCANLADRL	798h	CRCXORH
419h	_	499h	_	519h	_	599h	PID10UTHH	619h	PWM3CON	699h	CWG1CLKCON	719h	SCANLADRH	799h	CRCCON0
41Ah	TMR6	49Ah	TMR5L	51Ah	_	59Ah	PID10UTUL	61Ah	PWM4DCL	69Ah	CWG1ISM	71Ah	SCANHADRL	79Ah	CRCCON1
41Bh	PR6	49Bh	TMR5H	51Bh	—	59Bh	PID1Z1L	61Bh	PWM4DCH	69Bh	—	71Bh	SCANHADRH	79Bh	_
41Ch	T6CON	49Ch	T5CON	51Ch	_	59Ch	PID1Z1H	61Ch	PWM4CON	69Ch	_	71Ch	SCANCON0	79Ch	_
41Dh	T6HLT	49Dh	T5GCON	51Dh	—	59Dh	PID1Z1U	61Dh	—	69Dh	—	71Dh	SCANTRIG	79Dh	—
41Eh	T6CLKCON	49Eh	—	51Eh	—	59Eh	—	61Eh	—	69Eh	—	71Eh	—	79Eh	_
41Fh	T6RST	49Fh	—	51Fh	—	59Fh	—	61Fh	—	69Fh	—	71Fh	—	79Fh	—
420n		4A0n		520n		5AUN		620h		6AUN		720n		7A0n	
	Unimplemented Read as '0'														
46Fh		4EFh		56Fh		5EFh		66Fh		6EFh		76Fh		7EFh	
470h		4F0h		570h		5F0h		670h		6F0h		770h		7F0h	
	Accesses	••••	Accesses												
	70h – 7Fh														
47Fh		4FFh		57Fh		5FFh		67Fh		6FFh		77Fh		7FFh	

Legend: = Unimplemented data memory locations, read as '0'.

3.3.6 CORE FUNCTION REGISTERS SUMMARY

The Core Function registers listed in Table 3-13 can be addressed from any Bank.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets	
Bank	Bank 0-31											
x00h or x80h	INDF0	Addressing (not a phys	this locatior		xxxx xxxx	uuuu uuuu						
x01h or x81h	INDF1	Addressing (not a phys	this locatior		xxxx xxxx	uuuu uuuu						
x02h or x82h	PCL	Program C	ounter (PC)	Least Signifi	cant Byte					0000 0000	0000 0000	
x03h or x83h	STATUS	—	—	_	TO	PD	Z	DC	С	1 1000	q quuu	
x04h or x84h	FSR0L	Indirect Data Memory Address 0 Low Pointer									uuuu uuuu	
x05h or x85h	FSR0H	Indirect Da	Indirect Data Memory Address 0 High Pointer								0000 0000	
x06h or x86h	FSR1L	Indirect Da	ta Memory A	ddress 1 Lo	w Pointer					0000 0000	uuuu uuuu	
x07h or x87h	FSR1H	Indirect Da	ta Memory A	ddress 1 Hig	gh Pointer					0000 0000	0000 0000	
x08h or x88h	BSR	—	—	_			BSR<4:0>			0 0000	0 0000	
x09h or x89h	WREG	Working Register									uuuu uuuu	
x0Ahor x8Ah	PCLATH	_	Write Buffer		-000 0000	-000 0000						
x0Bhor x8Bh	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000	

TABLE 3-13: CORE FUNCTION REGISTERS SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

					(0000000	/	1			1	
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	1										
08Ch	TRISA	—	—	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	11 1111	11 1111
08Dh	TRISB ⁽⁴⁾	TRISB7	TRISB6	TRISB5	TRISB4			—	—	1111	1111
08Eh	TRISC	TRISC7 ⁽⁴⁾	TRISC6 ⁽⁴⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
08Fh	—	Unimplemented	l							—	—
090h	—	Unimplemented								_	—
090h	PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
091h	PIE2	—	C2IE	C1IE	—	BCLIE	TMR6IE	TMR4IE	CCP2IE	-00- 0000	-00- 0000
092h	PIE3	—	—	CWGIE	ZCDIE	—	—	CLC2IE	CLC1IE	0000	0000
093h	PIE4	SCANIE	CRCIE	SMT2PWAIE	SMT2PRAIE	SMT2IE	SMT1PWAIE	SMT1PRAIE	SMT1IE	0000 0000	0000 0000
094h	PIE5	TMR3GIE	TMR3IE	TMR5GIE	TMR5IE	—	AT1IE	PID1EIE	PID1DIE	0000 -000	0000 -000
095h	OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		1111 1111	1111 1111
096h	PCON	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	00-1 11qq	qq-q qquu
097h	—	Unimplemented	l							_	—
098h	OSCTUNE	—	_			TUN	<5:0>			00 0000	00 0000
099h	OSCCON	SPLLEN		IRCF	<3:0>			SCS	<1:0>	0011 1-00	0011 1-00
09Ah	OSCSTAT	—	PLLR	—	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	-0-0 0000	-ব-ব বববব
09Bh	ADRESL	ADC Result Re	gister Low							xxxx xxxx	uuuu uuuu
09Ch	ADRESH	ADC Result Re	gister High							xxxx xxxx	uuuu uuuu
09Dh	ADCON0				CHS<4:0>			GO/DONE	ADON	-000 0000	-000 0000
09Eh	ADCON1	ADFM		ADCS<2:0>				ADPRE	F<1:0>	000000	000000
09Fh	ADCON2			TRIGSEL<4:0>			_	_	_	0000 0	0000 0

TABLE 3-14: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: PIC16F1614/8 only.

2: Unimplemented, read as '1'.

3: PIC16(L)F1614 only.

4: PIC16(L)F1618 only.

3.5 Stack

All devices have a 16-level x 15-bit wide hardware stack (refer to Figures 3-4 through 3-7). The stack space is not part of either program or data space. The PC is PUSHed onto the stack when CALL or CALLW instructions are executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer if the STVREN bit is programmed to '0' (Configuration Words). This means that after the stack has been PUSHed sixteen times, the seventeenth PUSH overwrites the value that was stored from the first PUSH. The eighteenth PUSH overwrites the second PUSH (and so on). The STKOVF and STKUNF flag bits will be set on an Overflow/Underflow, regardless of whether the Reset is enabled.

Note 1: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, CALLW, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

3.5.1 ACCESSING THE STACK

The stack is available through the TOSH, TOSL and STKPTR registers. STKPTR is the current value of the Stack Pointer. TOSH:TOSL register pair points to the TOP of the stack. Both registers are read/writable. TOS is split into TOSH and TOSL due to the 15-bit size of the PC. To access the stack, adjust the value of STKPTR, which will position TOSH:TOSL, then read/write to TOSH:TOSL. STKPTR is five bits to allow detection of overflow and underflow.

Note:	Care should be taken when modifying the
	STKPTR while interrupts are enabled.

During normal program operation, CALL, CALLW and Interrupts will increment STKPTR while RETLW, RETURN, and RETFIE will decrement STKPTR. At any time STKPTR can be inspected to see how much stack is left. The STKPTR always points at the currently used place on the stack. Therefore, a CALL or CALLW will increment the STKPTR and then write the PC, and a return will unload the PC and then decrement the STKPTR.

Reference Figure 3-4 through Figure 3-7 for examples of accessing the stack.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_			TUN	<5:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5-0	TUN<5:0>: F	requency Tunir	ng bits				
	100000 = Mi	nimum frequen	су				
	•						
	•						
	111111 =						
	000000 = Os	cillator module	is running at	the factory-calib	prated frequend	cy.	
	000001 =						
	•						
	•						
	011110 =						
	011111 = Ma	aximum frequer	псу				

REGISTER 5-3: OSCTUNE: OSCILLATOR TUNING REGISTER

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
OSCCON	SPLLEN		IRCF	<3:0>		_	SCS<1:0>		81	
OSCSTAT	—	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	82	
OSCTUNE	—			TUN<5:0>						

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

TABLE 5-3: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG1	13:8		_	_	_	CLKOUTEN	BORE	N<1:0>		67
	7:0	CP	MCLRE	PWRTE		_	_	FOSC	<1:0>	07

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

7.6 Register Definitions: Interrupt Control

R/W-0/0	0 R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0
GIE ⁽¹⁾	PEIE ⁽²⁾	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF ⁽³⁾
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is :	set	'0' = Bit is cle	ared				
bit 7	GIE: Global II 1 = Enables a 0 = Disables a	nterrupt Enable all active interru all interrupts	e bit ⁽¹⁾ ipts				
bit 6	PEIE: Periphe 1 = Enables a 0 = Disables a	eral Interrupt E all active periph all peripheral ir	nable bit ⁽²⁾ leral interrupts lterrupts	5			
bit 5	TMR0IE: Tim 1 = Enables t 0 = Disables	er0 Overflow Ir he Timer0 inter the Timer0 inte	nterrupt Enabl rrupt rrupt	e bit			
bit 4	INTE: INT Ex 1 = Enables t 0 = Disables	ternal Interrupt he INT externa the INT externa	Enable bit I interrupt al interrupt				
bit 3	IOCIE: Interru 1 = Enables t 0 = Disables t	upt-on-Change he interrupt-on the interrupt-or	Enable bit -change -change				
bit 2	TMR0IF: Time 1 = TMR0 reg 0 = TMR0 reg	er0 Overflow Ir gister has overf gister did not ov	iterrupt Flag b lowed /erflow	bit			
bit 1	INTF: INT Ex 1 = The INT e 0 = The INT e	ternal Interrupt external interru external interru	Flag bit ot occurred ot did not occu	ur			
bit 0	IOCIF: Interru 1 = When at I 0 = None of t	upt-on-Change east one of the he interrupt-on-	Interrupt Flag interrupt-on- change pins	l bit ⁽³⁾ change pins ch have changed	nanged state state		
Note 1:	Interrupt flag bits enable bit or the C appropriate interr	are set when a Global Interrupt upt flag bits are	an interrupt co Enable bit, G e clear prior to	ondition occurs IE of the INTC enabling an ir	, regardless of t ON register. Use iterrupt.	he state of its or software sho	corresponding uld ensure the
2:	Bit PEIE of the IN	TCON register	must be set t	o enable any p	eripheral interru	upt.	
3:	The IOCIF Flag b have been cleared	it is read-only a d by software.	and cleared w	hen all the inte	rrupt-on-change	e flags in the IC	CxF registers

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0/0) R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
SCANIF	CRCIF	SMT2PWAIF	SMT2PRAIF	SMT2IF	SMT1PWAIF	SMT1PRAIF	SMT1IF			
bit 7	L						bit 0			
Legend:										
R = Reada	ıble bit	W = Writable I	bit	U = Unimple	mented bit, read	l as '0'				
u = Bit is u	nchanged	x = Bit is unkn	own	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is	set	'0' = Bit is clea	ared							
bit 7	SCANIF: So	anner Interrupt	Flag bit							
	1 = Interrupt	t is pending								
1.1.0		t is not pending								
DIT 6	1 = Interrupt	t is ponding	DIT							
	0 = Interrupt	t is not pending								
bit 5	SMT2PWAI	F: SMT2 Pulse	Width Acquisiti	ion Interrupt F	lag bit					
	1 = Interrupt	t is pending	·		Ū					
	0 = Interrupt	t is not pending								
bit 4	SMT2PRAI	F: SMT2 Period	Acquisition Int	errupt Flag bi	t					
	1 = Interrupt	t is pending								
hit 3	SMT2IE: SM	T2 Match Inter	runt Elag hit							
DIL D	1 = Interrupt	t is pending	lupt l'iag bit							
	0 = Interrupt	t is not pending								
bit 2	SMT1PWAI	F: SMT1 Pulse	Width Acquisiti	ion Interrupt F	lag bit					
	1 = Interrupt	t is pending								
	0 = Interrupt	t is not pending								
bit 1	SMT1PRAI	F: SMI1 Period	Acquisition Int	errupt Flag bi	t					
	0 = Interrupt	t is not pending								
bit 0	SMT1IF: SM	IT1 Match Inter	rupt Flag bit							
	1 = Interrupt	t is pending								
	0 = Interrupt	t is not pending								
Note:	Interrupt flag bits	are set when ar	n interrupt							
	condition occurs,	regardless of th	e state of							
	its corresponding	enable bit or the	ne Global							
	User software	should ens	ure the							
	appropriate interr	upt flag bits are o	clear prior							
	to enabling an int	errupt.	-							

REGISTER 7-10: PIR4: PERIPHERAL INTERRUPT REQUEST REGISTER 4

9.1 Independent Clock Source

The WDT can derive its time base from either the 31 kHz LFINTOSC or 31.25 kHz MFINTOSC internal oscillators, depending on the value of either the WDTCCS<2:0> configuration bits or the WDTCS<2:0> bits of WDTCON1. Time intervals in this chapter are based on a minimum nominal interval of 1 ms. See **Section35.0 "Electrical Specifications**" for LFINTOSC and MFINTOSC tolerances.

9.2 WDT Operating Modes

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Words. See Table 9-1.

9.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Words are set to '11', the WDT is always on.

WDT protection is active during Sleep.

9.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Words are set to '10', the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

9.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Words are set to '01', the WDT is controlled by the SEN bit of the WDTCON0 register.

WDT protection is unchanged by Sleep. See Table 9-1 for more details.

WDTE<1:0>	SEN	Device Mode	WDT Mode
11	Х	Х	Active
10	Awake		Active
10	X	Sleep	Disabled
0.1	1	х	Active
UI	0	х	Disabled
00	х	х	Disabled

	WOT OPERATING MODES
IABLE 9-1.	WUT OPERATING MODES

9.3 Time-Out Period

The WDTPS bits of the WDTCON0 register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is two seconds.

9.4 Watchdog Window

The Watchdog Timer has an optional Windowed mode that is controlled by the WDTCWS<2:0> Configuration bits and WINDOW<2:0> bits of the WDTCON1 register. In the Windowed mode, the CLRWDT instruction must occur within the allowed window of the WDT period. Any CLRWDT instruction that occurs outside of this window will trigger a window violation and will cause a WDT Reset, similar to a WDT time out. See Figure 9-2 for an example.

The window size is controlled by the WDTCWS<2:0> Configuration bits, or the WINDOW<2:0> bits of WDTCON1, if WDTCWS<2:0> = 111.

In the event of a <u>window</u> violation, a Reset will be generated and the WDTWV bit of the PCON register will be cleared. This bit is set by a POR or can be set in firmware.

9.5 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- Any Reset
- Valid CLRWDT instruction is executed
- · Device enters Sleep
- Device wakes up from Sleep
- · WDT is disabled
- · Oscillator Start-up Timer (OST) is running
- Any write to the WDTCON0 or WDTCON1 registers

9.5.1 CLRWDT CONSIDERATIONS (WINDOWED MODE)

When in Windowed mode, the WDT must be armed before a CLRWDT instruction will clear the timer. This is performed by reading the WDTCON0 register. Executing a CLRWDT instruction without performing such an arming action will trigger a window violation.

See Table 9-2 for more information.

9.6 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting. When the device exits Sleep, the WDT is cleared again.

The WDT remains clear until the OST, if enabled, completes. See **Section5.0** "**Oscillator Module**" for more information on the OST.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The \overline{TO} and \overline{PD} bits in the STATUS register are changed to indicate the event. The \overline{RWDT} bit in the PCON register can also be used. See **Section3.0** "Memory Organization" for more information.

W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0					
	Program Memory Control Register 2											
bit 7							bit 0					
Legend:												
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, read	l as '0'						
S = Bit can onl	ly be set	x = Bit is unkn	own	-n/n = Value	at POR and BO	R/Value at all c	ther Resets					
'1' = Bit is set		'0' = Bit is clea	ared									

REGISTER 10-6: PMCON2: PROGRAM MEMORY CONTROL 2 REGISTER

bit 7-0 Flash Memory Unlock Pattern bits

To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the PMCON1 register. The value written to this register is used to unlock the writes. There are specific timing requirements on these writes.

TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH FLASH PROGRAM MEMORY

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	97
PMCON1	(1)	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	134
PMCON2	Program Memory Control Register 2								
PMADRL	PMADRL<7:0>								
PMADRH	(1)			F	MADRH<6:0	>			133
PMDATL				PMDA	۲L<7:0>				133
PMDATH	_	_			PMDAT	H<5:0>			133

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Flash program memory.

Note 1: Unimplemented, read as '1'.

TABLE 10-4: SUMMARY OF CONFIGURATION WORD WITH FLASH PROGRAM MEMORY

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page	
	13:8				_	CLKOUTEN	BOREI	N<1:0>	_	07	
CONFIG1	7:0	CP	MCLRE	PWRTE	_	—	_	FOSC	<1:0>	67	
CONFIG2	13:8		_	LVP	DEBUG	LPBOR	BORV	STVREN	PLLEN	69	
	7:0	ZCD	_	-	—	—	PPS1WAY	WRT	<1:0>	00	
	13:8	_	_	V	WDTCCS<2:0>		WDTCWS<2:0>			<u> </u>	
CONFIG3	7:0	_	WDT	=<1:0>			WDTCPS<4:0>				

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Flash program memory.

-n/n = Value at POR and BOR/Value at all other Resets

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUC7 ⁽¹⁾	WPUC6 ⁽¹⁾	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimpler	mented bit, read	as '0'		

REGISTER 12-21: WPUC: WEAK PULL-UP PORTC REGISTER^{(2),(3)}

x = Bit is unknown

'0' = Bit is cleared

bit 7-0 WPUC<7:0>: Weak Pull-up Register bits⁽¹⁾

- 1 = Pull-up enabled
- 0 = Pull-up disabled

Note 1: WPUC<7:6> on PIC16(L)F1618 only.

u = Bit is unchanged

'1' = Bit is set

- 2: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.
- 3: The weak pull-up device is automatically disabled if the pin is configured as an output.

REGISTER 12-22: ODCONC: PORTC OPEN-DRAIN CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ODC7 ⁽¹⁾	ODC6 ⁽¹⁾	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ODC<7:0>:** PORTC Open-Drain Enable bits⁽¹⁾

For RC<7:0> pins, respectively

- 1 = Port pin operates as open-drain drive (sink current only)
- 0 = Port pin operates as standard push-pull drive (source and sink current)

Note 1: ODC<7:6> on PIC16(L)F1618 only.

The pull-up and pull-down resistor values are significantly affected by small variations of VCPINV. Measuring VCPINV can be difficult, especially when the waveform is relative to VDD. However, by combining Equations 20-2 and 20-3, the resistor value can be determined from the time difference between the ZCDx_output high and low periods. Note that the time difference, ΔT , is 4*TOFFSET. The equation for determining the pull-up and pull-down resistor values from the high and low ZCDx_output periods is shown in Equation 20-4. The ZCDx_output signal can be directly observed on the ZCDxOUT pin by setting the ZCDxOE bit.

EQUATION 20-4:

$$R = RSERIES\left(\frac{V_{BIAS}}{V_{PEAK}\left(\sin\left(\pi Freq\frac{(\Delta T)}{2}\right)\right)} - 1\right)$$

R is pull-up or pull-down resistor.

 $\mathsf{VBIAS}\xspace$ is $\mathsf{VPULLUP}\xspace$ when R is pull-up or $\mathsf{VDD}\xspace$ when R is pull-down.

 ΔT is the ZCDxOUT high and low period difference.

20.6 Handling VPEAK variations

If the peak amplitude of the external voltage is expected to vary, the series resistor must be selected to keep the ZCD current source and sink below the design maximum range of $\pm 600 \ \mu$ A and above a reasonable minimum range. A general rule of thumb is that the maximum peak voltage can be no more than six times the minimum peak voltage. To ensure that the maximum current does not exceed $\pm 600 \ \mu$ A and the minimum is at least $\pm 100 \ \mu$ A, compute the series resistance as shown in Equation 20-5. The compensating pull-up for this series resistance can be determined with Equation 20-3 because the pull-up value is independent from the peak voltage.

EQUATION 20-5: SERIES R FOR V RANGE

$$RSERIES = \frac{VMAXPEAK + VMINPEAK}{7 \times 10^{-4}}$$

20.7 Operation During Sleep

The ZCD current sources and interrupts are unaffected by Sleep.

20.8 Effects of a Reset

The ZCD circuit can be configured to default to the active or inactive state on Power-On-Reset (POR). When the ZCD Configuration bit is cleared, the ZCD circuit will be active at POR. When the ZCD Configuration bit is set, the ZCDxEN bit of the ZCDxCON register must be set to enable the ZCD module.

24.7 BAUD RATE GENERATOR

The MSSP module has a Baud Rate Generator available for clock generation in both I²C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPxADD register (Register 24-6). When a write occurs to SSPxBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" in Figure 24-40 triggers the value from SSPxADD to be loaded into the BRG counter. This occurs twice for each oscillation of the

module clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSP is being operated in.

Table 24-4 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPxADD.

EQUATION 24-1:

$$FCLOCK = \frac{FOSC}{(SSPxADD + 1)(4)}$$

FIGURE 24-40: BAUD RATE GENERATOR BLOCK DIAGRAM

Note: Values of 0x00, 0x01 and 0x02 are not valid for SSPxADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.

TABLE 24-4: MSSP CLOCK RATE W/BRG

Fosc	Fcy	BRG Value	FcLock (2 Rollovers of BRG)
32 MHz	8 MHz	13h	400 kHz
32 MHz	8 MHz	19h	308 kHz
32 MHz	8 MHz	4Fh	100 kHz
16 MHz	4 MHz	09h	400 kHz
16 MHz	4 MHz	0Ch	308 kHz
16 MHz	4 MHz	27h	100 kHz
4 MHz	1 MHz	09h	100 kHz

Note: Refer to the I/O port electrical specifications in Table 35-4 to ensure the system is designed to support IOL requirements.

1160KL 25-12.	STACHKOROUS RECEPTION (MASTER MODE, SREA)	
RX/DT pin TX/CK pin (SCKP = 0)	bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7	
TX/CK pin (SCKP = 1) Write to bit SREN		
SREN bit		
CREN bit		'0'
RCIF bit (Interrupt) ————		
Read RCxREG		
Note: Timing dia	agram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0 .	

FIGURE 25-12: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

TABLE 25-8: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	—	_	ANSA4		ANSA2	ANSA1	ANSA0	152
ANSELB ⁽¹⁾	_	—	ANSB5	ANSB4	_	—	_	_	159
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	_	_	ANSC3	ANSC2	ANSC1	ANSC0	166
BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	323
CKPPS		—				CKPPS<4:0>			174, 172
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	97
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	98
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	103
RC1REG			EUS	ART Receiv	e Data Regis	ter			316*
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	322
RXPPS	_	—	_			RXPPS<4:0>			174, 172
RxyPPS	_	—	—		F	RxyPPS<4:0	>		172
SP1BRGL				BRG<	7:0>				324*
SP1BRGH				BRG<	15:8>				324*
TRISA	_	_	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	151
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4		—	_	_	158
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	165
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	321

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master reception.

* Page provides register information.

Note 1: PIC16(L)F1618 only.

2: Unimplemented, read as '1'.

28.8 Dead-Band Uncertainty

When the rising and falling edges of the input source are asynchronous to the CWG clock, it creates uncertainty in the dead-band time delay. The maximum uncertainty is equal to one CWG clock period. Refer to Equation 28-1 for more details.

EQUATION 28-1: DEAD-BAND UNCERTAINTY

FIGURE 28-8: EXAMPLE OF PWM DIRECTION CHANGE

Note 1:WGPOL{ABCD} = 0

- 2: The direction bit MODE<0> (Register 28-1) can be written any time during the PWM cycle, and takes effect at the next rising CWGx_data.
- 3: When changing directions, CWGxA and CWGxC switch at rising CWGx_data; modulated CWGxB and CWGxD are held inactive for the dead band duration shown; dead band affects only the first pulse after the direction change.

FIGURE 28-9: CWG HALF-BRIDGE MODE OPERATION

REGISTER 28-2: CWGxCON1: CWGx CONTROL REGISTER 1	
--	--

U-0	U-0	R-x	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	IN	—	POLD	POLC	POLB	POLA
bit 7							bit 0

Legend:				
R = Readable	bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is uncha	anged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets	
'1' = Bit is set		'0' = Bit is cleared	q = Value depends on condition	
bit 7-6	Unimplemen	ted: Read as '0'		
bit 5	IN: CWG Inpu	ut Value		
bit 4	Unimplemented: Read as '0'			
bit 3	POLD: CWG			
	1 = Signal ou	utput is inverted polarity		
	0 = Signal ou	utput is normal polarity		
bit 2	POLC: CWG	xC Output Polarity bit		
	1 = Signal ou	utput is inverted polarity		
	0 = Signal ou	utput is normal polarity		
bit 1	POLB: CWGxB Output Polarity bit			
1 = Signal		utput is inverted polarity		
	0 = Signal ou	utput is normal polarity		
bit 0	POLA: CWG	xA Output Polarity bit		
	1 = Signal ou	utput is inverted polarity		
	0 = Signal ou	utput is normal polarity		

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG2D4T	LCxG2D4N	LCxG2D3T	LCxG2D3N	LCxG2D2T	LCxG2D2N	LCxG2D1T	LCxG2D1N
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, reac	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	LCxG2D4T: 0	Gate 2 Data 4 1	True (non-invei	rted) bit			
	1 = 1 cxd41 is	gated into loxe	j2 Jeva2				
bit 6		Gate 2 Data 4	Negated (inve	rted) hit			
Sit 0	1 = lcxd4N is	aated into lcxo					
	0 = lcxd4N is	not gated into	lcxg2				
bit 5	LCxG2D3T: 0	Gate 2 Data 3 1	True (non-invei	rted) bit			
	1 = lcxd3T is	gated into lcxg	j2				
	0 = 1 cxd 31 is	not gated into	lcxg2				
bit 4	LCxG2D3N: (Gate 2 Data 3	Negated (invei	rted) bit			
	1 = 10000 J	not dated into icx	Jz Icxa2				
bit 3	LCxG2D2T:	Gate 2 Data 2 1	True (non-inve	rted) bit			
	1 = Icxd2T is	gated into lcxg	j2	,			
	0 = Icxd2T is	not gated into	lcxg2				
bit 2	LCxG2D2N:	Gate 2 Data 2	Negated (inver	rted) bit			
	1 = lcxd2N is	gated into lcx	j2 Jova2				
bit 1		Shot galed into Sata 2 Data 1 1	True (non-inve	rtad) hit			
DIT I	LCXC2DTT: Gated into Icva2						
	0 = lcxd1T is	not gated into	lcxg2				
bit 0	LCxG2D1N:	Gate 2 Data 1	Negated (inver	rted) bit			
	1 = Icxd1N is	gated into lcx	g2				
	0 = Icxd1N is	not gated into	lcxg2				

REGISTER 29-7: CLCxGLS1: GATE 2 LOGIC SELECT REGISTER

REGISTER 32-6: PIDxK1H: PID K1 HIGH REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			K1<	15:8>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	ented bit, read as	'0'	
u = Bit is unchange	ed	x = Bit is unknown	ו	-n/n = Value at	POR and BOR/V	alue at all other F	Resets
'1' = Bit is set		'0' = Bit is cleared		q = Value depe	ends on condition		

bit 7-0

K1<15:8>: K1 upper eight bits. K1 is the 16-bit user-controlled coefficient calculated from Kp + Ki + Kd

REGISTER 32-7: PIDxK1L: PID K1 LOW REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | K1< | 7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Legend: | | | | | | | |

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-0 K1<7:0>: K1 lower eight bits. K1 is the 16-bit user-controlled coefficient calculated from Kp + Ki + Kd

REGISTER 32-8: PIDxK2H: PID K2 HIGH REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
K2<15:8>							
bit 7 bit						bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-0 K2<15:8>: K2 upper eight bits. K2 is the 16-bit user-controlled coefficient calculated from -(Kp + 2Kd)

REGISTER 32-9: PIDxK2L: PID K2 LOW REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
K2<7:0>							
bit 7 bit						bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-0

K2<7:0>: K2 lower eight bits. K2 is the 16-bit user-controlled coefficient calculated from -(Kp + 2Kd)

BCF	Bit Clear f
Syntax:	[label]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2- cycle instruction.

BRA	Relative Branch
Syntax:	[<i>label</i>]BRA label [<i>label</i>]BRA \$+k
Operands:	-256 ≤ label - PC + 1 ≤ 255 -256 ≤ k ≤ 255
Operation:	$(PC) + 1 + k \rightarrow PC$
Status Affected:	None
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + $1 + k$. This instruction is a 2-cycle instruction. This branch has a limited range.

BRW	Relative Branch with W
Syntax:	[<i>label</i>] BRW
Operands:	None
Operation:	$(PC) + (W) \rightarrow PC$
Status Affected:	None
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incre- mented to fetch the next instruction, the new address will be PC + 1 + (W). This instruction is a 2-cycle instruc- tion.

BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \le k \le 2047$
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<6:3>) \rightarrow PC<14:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruc- tion.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 36-7: IDD Typical, EC Oscillator MP Mode, PIC16F1614/8 Only.

FIGURE 36-8: IDD Maximum, EC Oscillator MP Mode, PIC16F1614/8 Only.

FIGURE 36-9: IDD Typical, EC Oscillator HP Mode, PIC16LF1614/8 Only.

FIGURE 36-10: IDD Maximum, EC Oscillator HP Mode, PIC16LF1614/8 Only.

FIGURE 36-11: IDD Typical, EC Oscillator HP Mode, PIC16F1614/8 Only.

FIGURE 36-12: IDD Maximum, EC Oscillator HP Mode, PIC16F1614/8 Only.