E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1618-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN ALLOCATION TABLES

TABLE 3: 14/16-PIN ALLOCATION TABLE (PIC16(L)F1614)

1/0	14-Pin PDIP, SOIC, TSSOP	16-Pin UQFN	Q/Y	Reference	Comparator	Timers	CCP	CWG	ZCD	CLC	EUSART	SMT	Angular Timer	MSSP	MWA	High Current I/O	Interrupt	dn-IIn4	Basic
RA0	13	12	AN0	DAC1OUT1	C1IN+	_	_	_	-	_	-	_	_	_	_	_	IOC	Y	ICSPDAT
RA1	12	11	AN1	VREF+	C1IN0- C2IN0-	—	_	_	_	—	_	—	—	_	_	_	IOC	Y	ICSPCLK
RA2	11	10	AN2	-	-	T0CKI ⁽¹⁾	_	CWG1IN ⁽¹⁾	ZCD1IN	_	_	—	_	_	—	—	INT IOC	Y	—
RA3	4	3		_	_	T6IN ⁽¹⁾	_	_	-	_		SMTWIN2 ⁽¹⁾	_	_	—	_	IOC	Y	MCLR/VPP
RA4	3	2	AN3	_	_	T1G ⁽¹⁾	_	_	_	_	_	SMTSIG1 ⁽¹⁾	_	_	_	_	IOC	Y	CLKOUT
RA5	2	1	_	-	—	T1CKI ⁽¹⁾ T2IN ⁽¹⁾	_	_	_	_	_	SMTWIN1 ⁽¹⁾	_	_	_	_	IOC	Y	CLKIN
RC0	10	9	AN4	_	C2IN+	T5CKI ⁽¹⁾	_	_	_	_	_	_	_	SCK ^(1,3)	_	—	IOC	Y	_
RC1	9	8	AN5	-	C1IN1- C2IN1-	T4IN ⁽¹⁾	_	—	-	_	-	SMTSIG2 ⁽¹⁾	_	SDI(1)	-	_	IOC	Y	-
RC2	8	7	AN6	_	C1IN2- C2IN2-	Ι	-				-	—			—	-	IOC	Y	—
RC3	7	6	AN7	_	C1IN3- C2IN3-	T5G ⁽¹⁾	CCP2 ⁽¹⁾	_	_	CLCIN0 ⁽¹⁾		_	ATCC1 ⁽¹⁾	<u>SS</u> (1)	-	-	IOC	Y	-
RC4	6	5		—	_	T3G ⁽¹⁾	_	_		CLCIN1 ⁽¹⁾	CK ⁽¹⁾	_	ATCC2 ⁽¹⁾	—	—	HIC4	IOC	Y	—
RC5	5	4		—	_	T3CKI ⁽¹⁾	CCP1 ⁽¹⁾	_		_	RX ^(1,3)	—	ATIN ⁽¹⁾ ATCC3 ⁽¹⁾	_	_	HIC5	IOC	Y	—
Vdd	1	16		_	_	_	_	_		_		_	_	—	—	_		-	Vdd
Vss	14	13	_	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	Vss
	—	_	—	_	C10UT	_	CCP1	CWG1A	ZCD10UT	CLC1OUT	DT ⁽³⁾	_	_	SDO	PWM3OUT	—	—	_	—
OUT(2)	—	_	—	_	C2OUT	—	CCP2	CWG1B	_	CLC2OUT	СК	_	_	SCK ⁽³⁾	PWM4OUT	—	—	_	_
001	_	_	—	_	_	_	_	CWG1C	_	_	ТΧ	_	_	_	_	—	_	_	—
	_	_	_	_	_	_	_	CWG1D	_	_	_	_	_	_	_	_	_	_	_

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

TABLE 4: 20-PIN ALLOCATION TABLE (PIC16(L)F1618)

	6						((,,											
QĮ	20-Pin PDIP, SOIC, SSC	20-Pin UQFN	A/D	Reference	Comparator	Timers	ССР	CWG	ZCD	CLC	EUSART	SMT	Angular Timer	dSSM	MW	High Current I/O	Interrupt	Pull-up	Basic
	—	—	-		C1OUT	_	CCP1	CWG1A	ZCD10UT	CLC1OUT	DT ⁽³⁾	_	_	SDO	PWM3OUT	—	_	-	—
o 	—	_	Ι	_	C2OUT	_	CCP2	CWG1B	_	CLC2OUT	СК	_	_	SCK ⁽³⁾	PWM4OUT	_	_	—	_
0010-	_		_	_	—	_	_	CWG1C	—	CLC3OUT	ΤХ	_	_	—	_	_	_	_	_
	_	—	—		—	—	_	CWG1D	—	CLC4OUT	_	_	_	_	_	—	—	—	

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

1

TABLE 3-2: PIC16(L)F1614 MEMORY MAP, BANK 0-7

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h		080h		100h		180h		200h		280h		300h		380h	
	Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers
	(Table 3-1)		(Table 3-1)		(Table 3-1)		(Table 3-1)		(Table 3-1)		(Table 3-1)		(Table 3-1)		(Table 3-1)
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	ODCONA	30Ch	SLRCONA	38Ch	INLVLA
00Dh	_	08Dh	—	10Dh	_	18Dh	_	20Dh	—	28Dh	_	30Dh	—	38Dh	—
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	WPUC	28Eh	ODCONC	30Eh	SLRCONC	38Eh	INLVLC
00Fh	-	08Fh		10Fh	_	18Fh	_	20Fh		28Fh	_	30Fh	_	38Fh	_
010h	PIR1	090n	PIE1	110n	-	190n	-	210h	-	290n	-	310n	_	390n	-
011h	PIR2	091h	PIE2	111h	CM1CON0	191h	PMADRL	211h	SSP1BUF	291h	CCP1RL	311h	_	391h	IOCAP
012h	PIR3	092h	PIE3	112h	CM1CON1	192h	PMADRH	212h	SSP1ADD	292h	CCP1RH	312h	_	392h	IOCAN
013h	PIR4	093h	PIE4	113h	CM2CON0	193h	PMDATL	213h	SSP1MSK	293h	CCP1CON	313h	_	393h	IUCAF
014h	PIR5	094h	PIE5	114h	CM2CON1	194h	PMDATH	214h	SSPISIAI	294h	CCP1CAP	314h	_	394h	_
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	PMCON1	215h	SSP1CON	295h	_	315h	—	395h	_
016h	IMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	SSP1CON2	296h		316h	—	396h	_
017h	TMR1H	097h		117h	FVRCON	197h	VREGCON	217h	SSP1CON3	297h		317h	—	397h	IOCCP
018h	T1CON	098h	OSCTUNE	118h	DAC1CON0	198h	—	218h	_	298h	CCP2RL	318h	_	398h	IOCCN
019h	T1GCON	099h	OSCCON	119h	DAC1CON1	199h	RC1REG	219h	—	299h	CCP2RH	319h	—	399h	IOCCF
01Ah	TMR2	09Ah	OSCSTAT	11Ah	—	19Ah	TX1REG	21Ah	—	29Ah	CCP2CON	31Ah	—	39Ah	—
01Bh	PR2	09Bh	ADRESL	11Bh	—	19Bh	SP1BRGL	21Bh	_	29Bh	CCP2CAP	31Bh	—	39Bh	—
01Ch	T2CON	09Ch	ADRESH	11Ch	ZCD1CON	19Ch	SP1BRGH	21Ch	—	29Ch	—	31Ch	_	39Ch	—
01Dh	T2HLT	09Dh	ADCON0	11Dh	—	19Dh	RC1STA	21Dh	—	29Dh	—	31Dh	_	39Dh	—
01Eh	T2CLKCON	09Eh	ADCON1	11Eh	—	19Eh	TX1STA	21Eh	—	29Eh	CCPTMRS	31Eh	_	39Eh	—
01Fh	T2RST	09Fh	ADCON2	11Fh	—	19Fh	BAUD1CON	21Fh	—	29Fh	—	31Fh	_	39Fh	—
020h		0A0h		120h		1A0h		220h		2A0h		320h	General Purpose	3A0h	
													Register		
			General		General		General		General		General	32Fh	16 Bytes		
			Purpose		Purpose		Purpose		Purpose		Purpose	330h			Unimplemented
	General		80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes		Unimplemented		Redu ds 0
	Purpose		00 29,000		00 29,000		00 29,000		00 29,000		00 29:00		Read as '0'		
	96 Bytes	0EEb		16Eb		155h		26Eb		255h		36Fh		3EEh	
		0F0h		170h		1EFN		20⊢∩ 270h		2EFN 2F0h		370h		3F0h	
		51 011	Common RAM	17 011	Common RAM		Common RAM	27011	Common RAM		Common RAM	37011	Accesses	51 011	Common RAM
			(Accesses		(Accesses		(Accesses		(Accesses		(Accesses		70h – 7Fh		(Accesses
07Fh		0FFh	70h – 7Fh)	17Fh	70h – 7Fh)	1FFh	70h – 7Fh)	27Fh	70h – 7Fh)	2FFh	70h – 7Fh)	37Fb		3FFb	70h – 7Fh)

Legend: = Unimplemented data memory locations, read as '0'.

Value on Value on all Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 POR. BOR other Resets Bank 14 70Ch Unimplemented to 710h 711h WDTCON0 WDTPS<4:0> SEN ____ _ --dd dddd --dd dddd 712h WDTCON1 WDTCS<2:0> WINDOW<2:0> ____ -ddd -ddd _ -ddd -ddd 713h WDTPSL PSCNT<7:0> 0000 0000 0000 0000 714h WDTPSH PSCNT<15:8> 0000 0000 0000 0000 715h WDTTMR WDTTMR<4:0> STATE PSCNT<17:16> 0000 0000 0000 0000 716h Unimplemented _ _ 717h Unimplemented ____ ____ 718h SCANLADRL LADR<7:0> 0000 0000 0000 0000 719h SCANLADRH LADR<15:8> 0000 0000 0000 0000 71Ah SCANHADRL HADR<7:0> 1111 1111 1111 1111 71Bh SCANHADRH HADR<15:8> 1111 1111 1111 1111 71Ch SCANCON0 ΕN SCANGO BUSY INVALID INTM MODE<1:0> ____ 0000 0-00 0000 0-00 71Dh SCANTRIG TSEL<3:0> ---- 0000 ---- 0000 Unimplemented 71Eh _ _

TABLE 3-14: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: PIC16F1614/8 only.

71Fh

2: Unimplemented, read as '1'.

Unimplemented

3: PIC16(L)F1614 only.

4: PIC16(L)F1618 only.

U-0	R-0/q	U-0	R-0/q	R-0/q	R-q/q	R-0/q	R-0/q
_	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS
bit 7							bit 0
Legend:	L 11		1.11			1	
R = Readable		vv = vvritable	DIT		nented bit, read		
u = Bit is unch	angeo	x = Bit is unkr	10WN	-n/n = value a		R/Value at all (other Resets
I = Bit is set		0 = Bit is clear	areo		a		
bit 7	Unimplemen	ted: Read as '	0'				
bit 6	PLLR: 4x PLL 1 = 4x PLL is 0 = 4x PLL is	L Ready bit s ready s not ready					
bit 5	OSTS: Oscilla 1 = Running f 0 = Running f	ator Start-Up T from the clock of from an interna	imer Status bit defined by the I oscillator (FC	FOSC<2:0> bi SC<2:0> = 10	ts of the Config 0)	juration Words	
bit 4	HFIOFR: High 1 = HFINTOS 0 = HFINTOS	h-Frequency Ir SC is ready SC is not ready	iternal Oscillato	or Ready bit			
bit 3	HFIOFL: High 1 = HFINTOS 0 = HFINTOS	n-Frequency In SC is at least 2 SC is not 2% a	ternal Oscillato % accurate ccurate	or Locked bit			
bit 2	MFIOFR: Med 1 = MFINTOS 0 = MFINTOS	dium-Frequenc SC is ready SC is not ready	cy Internal Osc	illator Ready bi	it		
bit 1	LFIOFR: Low 1 = LFINTOS 0 = LFINTOS	r-Frequency Inf SC is ready SC is not ready	ernal Oscillato	r Ready bit			
bit 0	HFIOFS: High 1 = HFINTOS 0 = HFINTOS	h-Frequency In SC is stable SC is not stable	ternal Oscillato	or Stable bit			

REGISTER 5-2: OSCSTAT: OSCILLATOR STATUS REGISTER

6.3 Register Definitions: BOR Control

REGISTER 6-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u	R/W-0/u	U-0	U-0	U-0	U-0	U-0	R-q/u
SBOREN	BORFS	—	—	—	—	—	BORRDY
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	<pre>SBOREN: Software Brown-Out Reset Enable bit If BOREN <1:0> in Configuration Words = 01: 1 = BOR Enabled 0 = BOR Disabled If BOREN <1:0> in Configuration Words ≠ 01: POREN <1:0> in Configuration Words ≠ 01:</pre>
	SBOREN is read/write, but has no effect on the BOR
bit 6	BORFS: Brown-Out Reset Fast Start bit ⁽¹⁾
	If BOREN <1:0> = 10 (Disabled in Sleep) or BOREN<1:0> = 01 (Under software control):
	1 = Band gap is forced on always (covers sleep/wake-up/operating cases)
	0 = Band gap operates normally, and may turn off
	<u>If BOREN<1:0> = 11 (Always on) or BOREN<1:0> = 00 (Always off)</u>
	BORFS is Read/Write, but has no effect.
bit 5-1	Unimplemented: Read as '0'
bit 0	BORRDY: Brown-Out Reset Circuit Ready Status bit
	1 = The Brown-out Reset circuit is active
	0 = The Brown-out Reset circuit is inactive

Note 1: BOREN<1:0> bits are located in Configuration Words.

6.13 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-On Reset (POR)
- Brown-Out Reset (BOR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)

The PCON register bits are shown in Register 6-2.

6.14 Register Definitions: Power Control

REGISTER 6-2: PCON: POWER CONTROL REGISTER

R/W/HS-0/q	R/W/HS-0/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR
bit 7		•				•	bit 0

Legend:		
HC = Bit is cleared by hard	ware	HS = Bit is set by hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	STKOVF: Stack Overflow Flag bit 1 = A Stack Overflow occurred
	0 = A Stack Overflow has not occurred or cleared by firmware
bit 6	STKUNF: Stack Underflow Flag bit
	1 = A Stack Underflow occurred
	0 = A Stack Underflow has not occurred or cleared by firmware
bit 5	WDTWV: WDT Window Violation Flag bit
	1 = A WDT Window Violation Reset has not occurred or set by firmware
	0 = A WDT Window Violation Reset has occurred (a CLRWDT instruction was executed either without arming the window or outside the window (cleared by hardware)
bit 4	RWDT: Watchdog Timer Reset Flag bit
	1 = A Watchdog Timer Reset has not occurred or set by firmware
	0 = A Watchdog Timer Reset has occurred (cleared by hardware)
bit 3	RMCLR: MCLR Reset Flag bit
	1 = A MCLR Reset has not occurred or set by firmware
	0 = A MCLR Reset has occurred (cleared by hardware)
bit 2	RI: RESET Instruction Flag bit
	1 = A RESET instruction has not been executed or set by firmware
	0 = A RESET instruction has been executed (cleared by hardware)
bit 1	POR: Power-On Reset Status bit
	1 = No Power-on Reset occurred
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-Out Reset Status bit
	1 = No Brown-out Reset occurred
	0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset occurs)

7.3 Interrupts During Sleep

Some interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to **Section8.0 "Power-Down Mode (Sleep)"** for more details.

7.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the INTCON register. The INTEDG bit of the OPTION_REG register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the INTCON register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

7.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the shadow registers:

- W register
- STATUS register (except for TO and PD)
- BSR register
- FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding shadow register should be modified and the value will be restored when exiting the ISR. The shadow registers are available in Bank 31 and are readable and writable. Depending on the user's application, other registers may also need to be saved.

U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
—	—	CWGIE	ZCDIE	—	—	CLC2IE	CLC1IE
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5	CWGIE: Com	plementary Wa	aveform Gene	rator (CWG) Ir	nterrupt Enable b	oit	
	1 = Enables	the CWG interr	rupt				
	0 = Disables	the CWG inter	rupt				
bit 4	ZCDIE: Zero-	Cross Detectio	n (ZCD) Inter	rupt Enable bit			
	1 = Enables 1	the ZCD interru	ipt				
h: 1 0 0		the ZCD Intern	upt				
Dit 3-2	Unimplemen	ted: Read as).				
bit 1	CLC2IE: Con	figurable Logic	Block 2 Inter	rupt Enable bit			
	1 = Enables 1	the CLC 2 inter	rupt				
h it 0		the CLC 2 inte					
DIEU	CLCTIE: Con	figurable Logic	BIOCK I Interi	rupt Enable bit			
	1 = Enables	the CLC 1 Intel	rupt				
			Παρι				
Nata Diti			maxing the set				

REGISTER 7-4: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

PIC16(L)F1614/8

10.2.2 FLASH MEMORY UNLOCK SEQUENCE

The unlock sequence is a mechanism that protects the Flash program memory from unintended self-write programming or erasing. The sequence must be executed and completed without interruption to successfully complete any of the following operations:

- Row Erase
- · Load program memory write latches
- Write of program memory write latches to program memory
- Write of program memory write latches to User IDs

The unlock sequence consists of the following steps:

- 1. Write 55h to PMCON2
- 2. Write AAh to PMCON2
- 3. Set the WR bit in PMCON1
- 4. NOP instruction
- 5. NOP instruction

Once the WR bit is set, the processor will always force two NOP instructions. When an Erase Row or Program Row operation is being performed, the processor will stall internal operations (typical 2 ms), until the operation is complete and then resume with the next instruction. When the operation is loading the program memory write latches, the processor will always force the two NOP instructions and continue uninterrupted with the next instruction.

Since the unlock sequence must not be interrupted, global interrupts should be disabled prior to the unlock sequence and re-enabled after the unlock sequence is completed.

FIGURE 10-3:

FLASH PROGRAM MEMORY UNLOCK SEQUENCE FLOWCHART

17.2.6 ADC CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRIS register)
 - Configure pin as analog (Refer to the ANSEL register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Configure voltage reference
 - Select ADC input channel
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - · Enable ADC interrupt
 - · Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

2: Refer to Section17.4 "ADC Acquisition Requirements".

EXAMPLE 17-1: ADC CONVERSION

L								
	<pre>;This code block configures the ADC ;for polling, Vdd and Vss references, FRC ;oscillator and ANO input. ; ;Conversion start & polling for completion </pre>							
	i are me	iudea.						
	BANKSEL	ADCON1	;					
	MOVLW	B'11110000'	;Right justify, FRC ;oscillator					
	MOVWF	ADCON1	;Vdd and Vss Vref+					
	BANKSEL	TRISA	;					
	BSF	TRISA,0	;Set RA0 to input					
	BANKSEL	ANSEL	;					
	BSF	ANSEL,0	;Set RA0 to analog					
	BANKSEL	ADCON0	;					
	MOVLW	B'0000001'	;Select channel AN0					
	MOVWF	ADCON0	;Turn ADC On					
	CALL	SampleTime	;Acquisiton delay					
	BSF	ADCON0, ADGO	;Start conversion					
	BTFSC	ADCON0, ADGO	;Is conversion done?					
	GOTO	\$-1	;No, test again					
	BANKSEL	ADRESH	;					
	MOVF	ADRESH,W	;Read upper 2 bits					
	MOVWF	RESULTHI	;store in GPR space					
I	BANKSEL	ADRESL	;					
	MOVF	ADRESL,W	;Read lower 8 bits					
I	MOVWF	RESULTLO	;Store in GPR space					

23.1 Timer2 Operation

Timer2 operates in three major modes:

- Free Running Period
- One-shot
- Monostable

Within each mode there are several options for starting, stopping, and reset. Table 23-1 lists the options.

In all modes, the TMR2 count register is incremented on the rising edge of the clock signal from the programmable prescaler. When TMR2 equals T2PR, a high level is output to the postscaler counter. TMR2 is cleared on the next clock input.

An external signal from hardware can also be configured to gate the timer operation or force a TMR2 count Reset. In Gate modes the counter stops when the gate is disabled and resumes when the gate is enabled. In Reset modes the TMR2 count is reset on either the level or edge from the external source.

The TMR2 and T2PR registers are both directly readable and writable. The TMR2 register is cleared and the T2PR register initializes to FFh on any device Reset. Both the prescaler and postscaler counters are cleared on the following events:

- · a write to the TMR2 register
- · a write to the T2CON register
- any device Reset
- External Reset Source event that resets the timer.

Note:	TMR2	is	not	cleared	when	T2CON	is
written.							

23.1.1 FREE RUNNING PERIOD MODE

The value of TMR2 is compared to that of the Period register, T2PR, on each clock cycle. When the two values match, the comparator resets the value of TMR2 to 00h on the next cycle and increments the output postscaler counter. When the postscaler count equals

the value in the OUTPS<4:0> bits of the TMRxCON1 register then a one clock period wide pulse occurs on the TMR2_postscaled output, and the postscaler count is cleared.

23.1.2 ONE-SHOT MODE

The One-Shot mode is identical to the Free Running Period mode except that the ON bit is cleared and the timer is stopped when TMR2 matches T2PR and will not restart until the T2ON bit is cycled off and on. Postscaler OUTPS<4:0> values other than 0 are meaningless in this mode because the timer is stopped at the first period event and the postscaler is reset when the timer is restarted.

23.1.3 MONOSTABLE MODE

Monostable modes are similar to One-Shot modes except that the ON bit is not cleared and the timer can be restarted by an external Reset event.

23.2 Timer2 Output

The Timer2 module's primary output is TMR2_postscaled, which pulses for a single TMR2_clk period when the postscaler counter matches the value in the OUTPS bits of the TMR2xCON register. The T2PR postscaler is incremented each time the TMR2 value matches the T2PR value. This signal can be selected as an input to several other input modules:

- · The ADC module, as an Auto-conversion Trigger
- COG, as an auto-shutdown source

In addition, the Timer2 is also used by the CCP module for pulse generation in PWM mode. Both the actual TMR2 value as well as other internal signals are sent to the CCP module to properly clock both the period and pulse width of the PWM signal. See **Section 26.4** "**CCP/PWM Clock Selection**" for more details on setting up Timer2 for use with the CCP, as well as the timing diagrams in **Section 23.5** "**Operation Examples**" for examples of how the varying Timer2 modes affect CCP PWM output.

23.3 External Reset Sources

In addition to the clock source, the Timer2 also takes in an external Reset source. This external Reset source is selected for Timer2, Timer4, and Timer6 with the T2RST, T4RST, and T6RST registers, respectively. This source can control starting and stopping of the timer, as well as resetting the timer, depending on which mode the timer is in. The mode of the timer is controlled by the MODE<4:0> bits of the TMRxHLT register. Edge-Triggered modes require six Timer clock periods between external triggers. Level-Triggered modes require the triggering level to be at least three Timer clock periods long. External triggers are ignored while in Debug Freeze mode.

25.5.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the EUSART for synchronous slave operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXxSTA register configures the device for synchronous operation. Clearing the CSRC bit of the TXxSTA register configures the device as a slave. Clearing the SREN and CREN bits of the RCxSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCxSTA register enables the EUSART.

25.5.2.1 EUSART Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes are identical (see Section 25.5.1.3 "Synchronous Master Transmission"), except in the case of the Sleep mode.

If two words are written to the TXxREG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in the TXxREG register.
- 3. The TXIF bit will not be set.
- After the first character has been shifted out of TSR, the TXxREG register will transfer the second character to the TSR and the TXIF bit will now be set.
- 5. If the PEIE and TXIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.

- 25.5.2.2 Synchronous Slave Transmission Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for the CK pin (if applicable).
- 3. Clear the CREN and SREN bits.
- 4. If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. Enable transmission by setting the TXEN bit.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant eight bits to the TXxREG register.

REGISTER 31-16: ATXIR1: ANGULAR TIMER INTERRUPT FLAG 1 REGISTER

0 = Compare interrupt 2 has not occurred, or has been cleared

0 = Capture interrupt 1 has not occurred, or has been cleared

0 = Compare interrupt 1 has not occurred, or has been cleared

1 = Capture interrupt 1 has occurred; captured phase value is in ATxCC1

CC1IF: Capture/Compare Interrupt 1 Flag bit

If CC1MODE = 1 (Capture)

If CC1MODE = 0 (Compare)

1 = Compare interrupt 1 has occurred

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	_	_	CC3IF	CC2IF	CC1IF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	pends on conditi	ion	
bit 7-3	Unimplemen	ted: Read as '	כ'				
bit 2	CC3IF: Captu	ire/Compare In	terrupt 3 Flag	bit			
	If CC3MODE	<u>= 1 (Capture)</u>					
	1 = Capture i	interrupt 3 has	occurred; cap	tured phase va	alue is in ATxCC	3	
		Interrupt 3 has	not occurred,	or has been c	eared		
	1 = Compare	<u>interrunt 3 has</u>					
	0 = Compare	interrupt 3 has	s not occurred	, or has been	cleared		
bit 1	CC2IF: Captu	ire/Compare In	terrupt 2 Flag	bit			
	2						
	0 = Capture i	interrupt 2 has	not occurred,	or has been c	leared		
	It CC2MODE	= 0 (Compare)					
	⊥ = Compare	e interrupt 2 has	s occurrea				

bit 0

TABLE 35-9:	PLL CLOCK TIMING SPECIFICATIONS
-------------	---------------------------------

Standard Operating Conditions (unless otherwise stated)									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
F10	Fosc	Oscillator Frequency Range	4	_	8	MHz			
F11	Fsys	On-Chip VCO System Frequency	16	-	32	MHz			
F12	TRC	PLL Start-up Time (Lock Time)		-	2	ms			
F13*	ΔCLK	CLKOUT Stability (Jitter)	-0.25%	-	+0.25%	%			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	_	—	70	ns	$3.3V \le V\text{DD} \le 5.0V$	
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	—	—	72	ns	$3.3V \le V\text{DD} \le 5.0V$	
OS13	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	—	—	20	ns		
OS14	TioV2ckH	Port input valid before CLKOUT ⁽¹⁾	Tosc + 200 ns	_		ns		
OS15	TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	$3.3V \le V\text{DD} \le 5.0V$	
OS16	DS16 TosH2ioI Fosc↑ (Q2 cycle) to Port input invalid (I/O in setup time)		50	—		ns	$3.3V \leq V\text{DD} \leq 5.0V$	
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20	—	_	ns		
OS18*	TioR	Port output rise time	—	40	72	ns	VDD = 1.8V	
			—	15	32		$3.3V \leq V\text{DD} \leq 5.0V$	
OS19*	TioF	Port output fall time	—	28	55	ns	VDD = 1.8V	
			—	15	30		$3.3V \le V\text{DD} \le 5.0V$	
OS20*	Tinp	INT pin input high or low time	25		_	ns		
OS21*	Tioc	Interrupt-on-change new input level time	25		_	ns		

* These parameters are characterized but not tested.

 \dagger Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in EXTRC mode where CLKOUT output is 4 x Tosc.

TABLE 35-16: DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS⁽¹⁾

Operating Conditions (unless otherwise stated)

VDD = 3.0V,	TA = 25°C
-------------	-----------

*

Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments	
DAC01*	CLSB	Step Size		VDD/256	—	V		
DAC02*	CACC	Absolute Accuracy	_	—	± 1.5	LSb		
DAC03*	CR	Unit Resistor Value (R)	_	—	—	Ω		
DAC04*	CST	Settling Time ⁽²⁾	_	—	10	μS		

These parameters are characterized but not tested.

Note 1: See Section 36.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

2: Settling time measured while DACR<4:0> transitions from '0000' to '1111'.

TABLE 35-17: ZERO CROSS PIN SPECIFICATIONS

Operating Conditions (unless otherwise stated)

VDD = 3.0V, TA = 25°C								
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments	
ZC01	ZCPINV	Voltage on Zero Cross Pin	_	0.75	_	V		
ZC02	ZCSRC	Source current		-300	-600	μA		
ZC03	ZCSNK	Sink current		300	600	μA		
ZC04	Zcisw	Response Time Rising Edge	_	1	_	μS		
		Response Time Falling Edge		1		μS		
ZC05	ZCOUT	Response Time Rising Edge		1		μS		
		Response Time Falling Edge		1		μS		

These parameters are characterized but not tested.

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 36-25: IPD, Fixed Voltage Reference (FVR), PIC16LF1614/8 Only.

FIGURE 36-26: IPD, Fixed Voltage Reference (FVR), PIC16F1614/8 Only.

FIGURE 36-27: IPD, Brown-Out Reset (BOR), BORV = 1, PIC16LF1614/8 Only.

FIGURE 36-28: IPD, Brown-Out Reset (BOR), BORV = 1, PIC16F1614/8 Only.

FIGURE 36-29: IPD, LP Brown-Out Reset (LPBOR = 0), PIC16LF1614/8 Only.

FIGURE 36-30: IPD, LP Brown-Out Reset (LPBOR = 0), PIC16F1614/8 Only.

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 36-49: Brown-Out Reset Voltage, Low Trip Point (BORV = 1), PIC16LF1614/8 Only.

FIGURE 36-50: Brown-Out Reset Hysteresis, Low Trip Point (BORV = 1), PIC16LF1614/8 Only.

FIGURE 36-51: Brown-Out Reset Voltage, Low Trip Point (BORV = 1), PIC16F1614/8 Only.

FIGURE 36-52: Brown-Out Reset Hysteresis, Low Trip Point (BORV = 1), PIC16F1614/8 Only.

FIGURE 36-53: Brown-Out Reset Voltage, High Trip Point (BORV = 0).

FIGURE 36-54: Brown-Out Reset Hysteresis, High Trip Point (BORV = 0).

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	ILLIMETER	S		
Dimension Lin	nits	MIN	NOM	MAX		
Number of Pins	N		14			
Pitch	е	1.27 BSC				
Overall Height	A	-	-	1.75		
Molded Package Thickness	A2	1.25	-	-		
Standoff §	A1	0.10	-	0.25		
Overall Width	E		6.00 BSC			
Molded Package Width	E1	3.90 BSC				
Overall Length	D		8.65 BSC			
Chamfer (Optional)	h	0.25	-	0.50		
Foot Length	L	0.40	-	1.27		
Footprint	L1		1.04 REF			
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	с	0.10	-	0.25		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- Reference Dimension, usually without tolerance, for information pu
 Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065C Sheet 2 of 2