Microchip Technology - PIC16F1618-E/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2000	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1618-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The HIGH operator will set bit<7> if a label points to a location in program memory.

EXAMPLE 3-2:	ACCESSING PROGRAM
	MEMORY VIA FSR

DW DATA0 ;First constant DW DATA1 ;Second constant DW DATA2 DW DATA3 my_function ; LOTS OF CODE MOVLW DATA_INDEX ADDLW LOW constants MOVWF FSR1L MOVLW HIGH constants;MSb sets automatically MOVWF FSR1H BTFSC STATUS,C ;carry from ADDLW? INCF FSR1h, f ;yes MOVIW 0[FSR1]	constants		
DW DATA2 DW DATA3 my_function ; LOTS OF CODE MOVLW DATA_INDEX ADDLW LOW constants MOVWF FSR1L MOVLW HIGH constants;MSb sets automatically MOVWF FSR1H BTFSC STATUS, C ;carry from ADDLW? INCF FSR1h, f ;yes MOVIW 0[FSR1]	DW DATA	.0	;First constant
DW DATA3 my_function ; LOTS OF CODE MOVLW DATA_INDEX ADDLW LOW constants MOVWF FSR1L MOVLW HIGH constants;MSb sets automatically MOVWF FSR1H BTFSC STATUS, C ;carry from ADDLW? INCF FSR1h, f ;yes MOVIW 0[FSR1]	DW DATA	1	;Second constant
<pre>my_function ;LOTS OF CODE MOVLW DATA_INDEX ADDLW LOW constants MOVWF FSR1L MOVLW HIGH constants;MSb sets</pre>	DW DATA	2	
<pre>; LOTS OF CODE MOVLW DATA_INDEX ADDLW LOW constants MOVWF FSR1L MOVLW HIGH constants;MSb sets automatically MOVWF FSR1H BTFSC STATUS, C ;carry from ADDLW? INCF FSR1h, f ;yes MOVIW 0[FSR1]</pre>	DW DATA	.3	
<pre>MOVLW DATA_INDEX ADDLW LOW constants MOVWF FSR1L MOVLW HIGH constants;MSb sets</pre>	my_function	on	
ADDLW LOW constants MOVWF FSR1L MOVLW HIGH constants;MSb sets automatically MOVWF FSR1H BTFSC STATUS, C ;carry from ADDLW? INCF FSR1h, f ;yes MOVIW 0[FSR1]	;… LOTS	OF CODE	
MOVWF FSR1L MOVLW HIGH constants;MSb sets automatically MOVWF FSR1H BTFSC STATUS, C ;carry from ADDLW? INCF FSR1h, f ;yes MOVIW 0[FSR1]	MOVLW	DATA_INDEX	
MOVLW HIGH constants;MSb sets automatically MOVWF FSR1H BTFSC STATUS, C ;carry from ADDLW? INCF FSR1h, f ;yes MOVIW 0[FSR1]	ADDLW	LOW constants	
automatically MOVWF FSR1H BTFSC STATUS, C ;carry from ADDLW? INCF FSR1h, f ;yes MOVIW 0[FSR1]	MOVWF	FSR1L	
MOVWF FSR1H BTFSC STATUS, C ;carry from ADDLW? INCF FSR1h, f ;yes MOVIW 0[FSR1]	MOVLW	HIGH constants	s;MSb sets
BTFSC STATUS, C ;carry from ADDLW? INCF FSR1h, f ;yes MOVIW 0[FSR1]			automatically
INCF FSR1h, f ;yes MOVIW 0[FSR1]	MOVWF	FSR1H	
MOVIW 0[FSR1]	BTFSC	STATUS, C	<pre>;carry from ADDLW?</pre>
	INCF	FSR1h, f	;yes
	MOVIW	0[FSR1]	
;THE PROGRAM MEMORY IS IN W	; THE PROG	RAM MEMORY IS	IN W

TABLE 3-14: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Banks	29										
E8Ch to E8Fh	_	Unimplemented	I							—	—
E90h	RA0PPS	—	—	_			RA0PPS<4:0>			0 0000	0 0000
E91h	RA1PPS	—	—	_			RA1PPS<4:0>			0 0000	0 0000
E92h	RA2PPS	—	—				RA2PPS<4:0>			0 0000	0 0000
E93h	_	Unimplemented	I							—	_
E94h	RA4PPS	—	_				RA4PPS<4:0>			0 0000	0 0000
E95h	RA5PPS	—	—				RA5PPS<4:0>			0 0000	0 0000
E96h to E9Bh	_	Unimplemented	I							—	—
E9Ch	RB4PPS ⁽⁴⁾	—	—	_			RB4PPS<4:0>			0 0000	0 0000
E9Dh	RB5PPS ⁽⁴⁾	—	—	_			RB5PPS<4:0>			0 0000	0 0000
E9Eh	RB6PPS ⁽⁴⁾	—	_				RB6PPS<4:0>			0 0000	0 0000
E9Fh	RB7PPS ⁽⁴⁾	—	_				RB7PPS<4:0>			0 0000	0 0000
EA0h	RC0PPS	—	_				RC0PPS<4:0>			0 0000	0 0000
EA1h	RC1PPS	—	_				RC1PPS<4:0>			0 0000	0 0000
EA2h	RC2PPS	—	_				RC2PPS<4:0>			0 0000	0 0000
EA3h	RC3PPS	—	_				RC3PPS<4:0>			0 0000	0 0000
EA4h	RC4PPS	—	_				RC4PPS<4:0>			0 0000	0 0000
EA5h	RC5PPS	—	—	_			RC5PPS<4:0>			0 0000	0 0000
EA6h	RC6PPS ⁽⁴⁾	—	—	_			RC6PPS<4:0>			0 0000	0 0000
EA7h	RC7PPS ⁽⁴⁾	—	_				RC7PPS<4:0>			0 0000	0 0000
EA8h to EEFh	—	Unimplemented								—	—

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: PIC16F1614/8 only.

3:

2: Unimplemented, read as '1'. PIC16(L)F1614 only.

4: PIC16(L)F1618 only.

TABLE 3-14: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	31										
F8Ch — FE3h	_	Unimplemented	I							-	—
FE4h	STATUS_ SHAD	-	—	-	-	_	Z_SHAD	DC_SHAD	C_SHAD	xxx	uuu
FE5h	WREG_ SHAD	Working Regist	er Shadow							XXXX XXXX	uuuu uuuu
FE6h	BSR_ SHAD	—	— — Bank Select Register Shadow					x xxxx	u uuuu		
FE7h	PCLATH_ SHAD	—	Program Counter Latch High Register Shadow					-xxx xxxx	uuuu uuuu		
FE8h	FSR0L_ SHAD	Indirect Data M	emory Address 0	Low Pointer Sh	adow					XXXX XXXX	uuuu uuuu
FE9h	FSR0H_ SHAD	Indirect Data M	Indirect Data Memory Address 0 High Pointer Shadow						XXXX XXXX	uuuu uuuu	
FEAh	FSR1L_ SHAD	Indirect Data M	Indirect Data Memory Address 1 Low Pointer Shadow						XXXX XXXX	uuuu uuuu	
FEBh	FSR1H_ SHAD	Indirect Data Memory Address 1 High Pointer Shadow					XXXX XXXX	uuuu uuuu			
FECh	—	Unimplemented					_	—			
FEDh	STKPTR	—	—	_	Current Stack F	Pointer				1 1111	1 1111
FEEh	TOSL	Top-of-Stack Lo	w byte							xxxx xxxx	uuuu uuuu
FEFh	TOSH	—	Top-of-Stack Hig	h byte						-xxx xxxx	-uuu uuuu

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: PIC16F1614/8 only.

2: Unimplemented, read as '1'.

3: PIC16(L)F1614 only.

4: PIC16(L)F1618 only.

REGISTER 4-3: CONFIG3: CONFIGURATION WORD 3

		R/P-0	R/P-0	R/P-1	R/P-1	R/P-1	R/P-1
			WDTCCS<2:0>			WDTCWS<2:0	>
		bit 13					bit 8
U-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
_		E<1:0>			WDTCPS<4:0		
bit 7	-		·				bit 0

Leaend:	
Leyenu.	

bit 6-5

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '1'
'0' = Bit is cleared	'1' = Bit is set	-n = Value when blank or after Bulk Erase

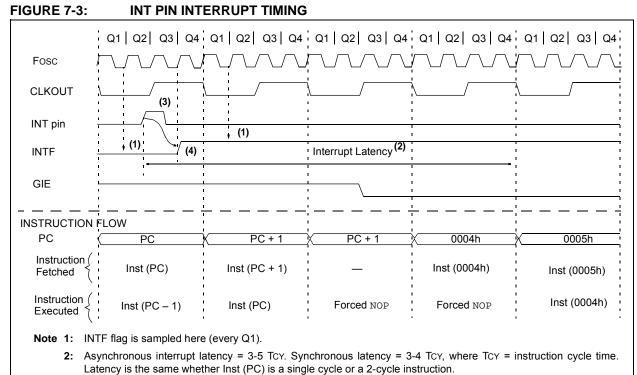
WDTCCS<2:0>: WDT Configuration Clock Select bits bit 13-11

- 111 =Software Control; WDT clock selected by CS<2:0> 110 =Reserved
- 010 =Reserved
- 001 =WDT reference clock is MFINTOSC, 31.25 kHz (default value)
- 000 =WDT reference clock is LFINTOSC, 31.00 kHz output

WDTCWS<2:0>: WDT Configuration Window Select bits. bit 10-8

WDTCWS		WINDOW at P	OR	Software	Keyed	
<2:0>	Value	Window delay Percent of time	Window opening Percent of time	control of WINDOW?	access required?	
111	111	n/a	100	Yes	No	Default fuse = 111
110	111	n/a	100			
101	101	25	75			
100	100	37.5	62.5			
011	011	50	50	No	Yes	
010	010	62.5	37.5			
001	001	75	25			
000	000	87.5	12.5 ⁽¹⁾			

bit 7 Unimplemented: Read as '1'


WDTE<1:0>: Watchdog Timer Enable bits

11 =WDT enabled in all modes, the SEN bit in the WDTCON0 register is ignored

10 =WDT enabled while running and disabled in Sleep

01 =WDT controlled by the SEN bit in the WDTCON0 register

00 = WDT disabled

For minimum width of INT pulse, refer to AC specifications in Section35.0 "Electrical Specifications".

4: INTF is enabled to be set any time during the Q4-Q1 cycles.

10.0 FLASH PROGRAM MEMORY CONTROL

The Flash program memory is readable and writable during normal operation over the full VDD range. Program memory is indirectly addressed using Special Function Registers (SFRs). The SFRs used to access program memory are:

- PMCON1
- PMCON2
- PMDATL
- PMDATH
- PMADRL
- PMADRH

When accessing the program memory, the PMDATH:PMDATL register pair forms a 2-byte word that holds the 14-bit data for read/write, and the PMADRH:PMADRL register pair forms a 2-byte word that holds the 15-bit address of the program memory location being read.

The write time is controlled by an on-chip timer. The write/ erase voltages are generated by an on-chip charge pump rated to operate over the operating voltage range of the device.

The Flash program memory can be protected in two ways; by code protection (CP bit in Configuration Words) and write protection (WRT<1:0> bits in Configuration Words).

Code protection ($\overline{CP} = 0$)⁽¹⁾, disables access, reading and writing, to the Flash program memory via external device programmers. Code protection does not affect the self-write and erase functionality. Code protection can only be reset by a device programmer performing a Bulk Erase to the device, clearing all Flash program memory, Configuration bits and User IDs.

Write protection prohibits self-write and erase to a portion or all of the Flash program memory, as defined by the bits WRT<1:0>. Write protection does not affect a device programmers ability to read, write or erase the device.

Note 1: Code protection of the entire Flash program memory array is enabled by clearing the CP bit of Configuration Words.

10.1 PMADRL and PMADRH Registers

The PMADRH:PMADRL register pair can address up to a maximum of 16K words of program memory. When selecting a program address value, the MSB of the address is written to the PMADRH register and the LSB is written to the PMADRL register.

10.1.1 PMCON1 AND PMCON2 REGISTERS

PMCON1 is the control register for Flash program memory accesses.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared by hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation to occur. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and execute the appropriate error handling routine.

The PMCON2 register is a write-only register. Attempting to read the PMCON2 register will return all '0's.

To enable writes to the program memory, a specific pattern (the unlock sequence), must be written to the PMCON2 register. The required unlock sequence prevents inadvertent writes to the program memory write latches and Flash program memory.

10.2 Flash Program Memory Overview

It is important to understand the Flash program memory structure for erase and programming operations. Flash program memory is arranged in rows. A row consists of a fixed number of 14-bit program memory words. A row is the minimum size that can be erased by user software.

After a row has been erased, the user can reprogram all or a portion of this row. Data to be written into the program memory row is written to 14-bit wide data write latches. These write latches are not directly accessible to the user, but may be loaded via sequential writes to the PMDATH:PMDATL register pair.

Note:

See Table 10-1 for Erase Row size and the number of write latches for Flash program memory.

TABLE 10-1:	FLASH MEMORY
	ORGANIZATION BY DEVICE

Device	Row Erase (words)	Write Latches (words)
PIC16(L)F1614	32	32
PIC16(L)F1618	52	52

U-0	U-0	R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1
_	—	SLRA5	SLRA4	—	SLRA2	SLRA1	SLRA0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimpler	mented bit, read	as '0'		
u = Bit is un	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is se	et	'0' = Bit is clea	ared				
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5-4	SLRA<5:4>:	PORTA Slew F	Rate Enable b	its			
		pins, respectiv	•				
	•	lew rate is limit lews at maxim					
h :# 0	•						
bit 3	3 Unimplemented: Read as '0'						
bit 2-0	SLRA<2:0>: PORTA Slew Rate Enable bits						
		For RA<2:0> pins, respectively					
	•	lew rate is limit					
	0 = Port pin s	lews at maxim	um rate				

REGISTER 12-7: SLRCONA: PORTA SLEW RATE CONTROL REGISTER

REGISTER 12-8: INLVLA: PORTA INPUT LEVEL CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 INLVLA<5:0>: PORTA Input Level Select bits

For RA<5:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
WPUB7	WPUB6	WPUB5	WPUB4	—	—	—	—
bit 7							bit 0
Legend:							

U = Unimplemented bit, read as '0'

-n/n = Value at POR and BOR/Value at all other Resets

REGISTER 12-13: WPUB: WEAK PULL-UP PORTB REGISTER^{(1),(2)}

W = Writable bit

x = Bit is unknown

'0' = Bit is cleared

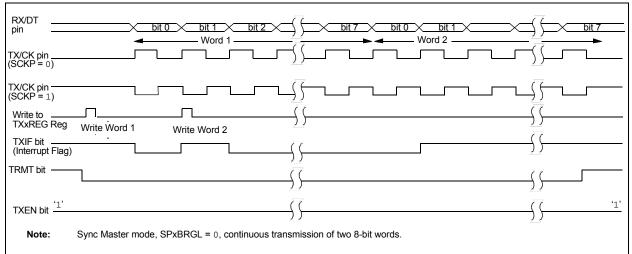
bit 7-4	WPUB<7:4>: Weak Pull-up Register bits
	1 = Pull-up enabled
	0 = Pull-up disabled

bit 3-0 Unimplemented: Read as '0'

R = Readable bit

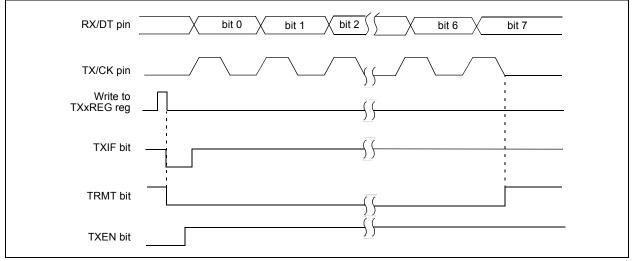
'1' = Bit is set

u = Bit is unchanged


Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.
2: The weak pull-up device is automatically disabled if the pin is configured as an output.

REGISTER 12-14: ODCONB: PORTB OPEN-DRAIN CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
ODB7	ODB6	ODB5	ODB4	—	—	—	—
bit 7							bit 0


Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	ODB<7:4>: PORTB Open-Drain Enable bits
	For RB<7:4> pins, respectively
	1 = Port pin operates as open-drain drive (sink current only)
	0 = Port pin operates as standard push-pull drive (source and sink current)
bit 3-0	Unimplemented: Read as '0'

FIGURE 25-10: SYNCHRONOUS TRANSMISSION

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
P4TS	SEL<1:0>	P3TSE	L<1:0>	C2TSEL<1:0>		C1TSE	EL<1:0>	
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'		
u = Bit is und	changed	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all	other Resets	
'1' = Bit is se	et	'0' = Bit is clea	ared					
bit 7-6	P4TSEL<1:0	>: PWM4 Time	r Selection bit	S				
		1 = Reserved						
		.0 = PWM4 is based off Timer6 in PWM mode						
		PWM4 is based off Timer4 in PWM mode PWM4 is based off Timer2 in PWM mode						
hit E 4		>: PWM3 Time						
bit 5-4			Selection bit	5				
		. = Reserved) = PWM3 is based off Timer6 in PWM mode						
		WM3 is based off Timer6 in PWM mode						
		I3 is based off Timer2 in PWM mode						
bit 3-2	C2TSEL<1:0	>: CCP2 (PWN	12) Timer Sele	ection bits				
	11 = Reserv	ved						
	10 = CCP2	is based off Tim	ner6 in PWM r	node				
	01 = CCP2	 CCP2 is based off Timer4 in PWM mode 						
	00 = CCP2	is based off Tim	ner2 in PWM r	node				
bit 1-0	C1TSEL<1:0	>: CCP1 (PWN	11) Timer Sele	ection bits				
	11 = Reserv							
		is based off Tim						
		is based off Tim						
	00 = CCP1	is based off Tim	ierz in PWM r	noae				

REGISTER 26-2: CCPTMRS: PWM TIMER SELECTION CONTROL REGISTER 0

U-0	U-0	R-x	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	IN	—	POLD	POLC	POLB	POLA
bit 7							bit 0

Legend:						
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'			
u = Bit is unch	anged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is set		'0' = Bit is cleared	q = Value depends on condition			
bit 7-6	Unimplemer	nted: Read as '0'				
bit 5	IN: CWG Inp	ut Value				
bit 4 Unimplemented: Read as '0'						
bit 3	POLD: CWG	xD Output Polarity bit				
1 = Signal output is inverted polarity						
	0 = Signal o	utput is normal polarity				
bit 2	POLC: CWG	xC Output Polarity bit				
	•	utput is inverted polarity				
	0 = Signal o	utput is normal polarity				
bit 1	POLB: CWGxB Output Polarity bit					
1 = Signal output is inverted polarity						
	0 = Signal o	utput is normal polarity				
bit 0	POLA: CWG	ExA Output Polarity bit				
	•	utput is inverted polarity				
	0 = Signal o	utput is normal polarity				

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
OVRD	OVRC	OVRB	OVRA	STRD ⁽²⁾	STRC ⁽²⁾	STRB ⁽²⁾	STRA ⁽²⁾	
bit 7		-	•				bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'		
u = Bit is un	changed	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets	
'1' = Bit is se	et	'0' = Bit is cle	ared	q = Value dep	pends on condit	ion		
bit 7	OVRD: Steer	ing Data D bit						
bit 6	OVRC: Steer	ing Data C bit						
bit 5	OVRB: Steer	ing Data B bit						
bit 4	OVRA: Steer	ing Data A bit						
bit 3	STRD: Steer	ing Enable D b	it(2)					
		output has the output is assig			polarity control	from POLD bit		
bit 2	STRC: Steer	ing Enable C b	it(2)					
					polarity control	from POLC bit		
		output is assig		of OVRC bit				
bit 1	STRB: Steering Enable B bit ⁽²⁾							
	 1 = CWGxB output has the CWGx_data waveform with polarity control from POLB bit 0 = CWGxB output is assigned the value of OVRB bit 							
				of OVRB bit				
bit 0		ing Enable A bi		,				
			CWGx_data v ned the value		polarity control	from POLA bit		

REGISTER 28-7: CWGxOCON0: CWGx STEERING CONTROL REGISTER⁽¹⁾

Note 1: The bits in this register apply only when MODE<2:0> = 00x.
2: This bit is effectively double-buffered when MODE<2:0> = 001.

31.2.5 VALID BIT

Several values used by the AT module must be calculated from external signals. As such, these values may be inaccurate for a period of time after the angular timer starts up. Because of this, the module will not output signals or trigger interrupts for a period of time after the module is enabled, or under certain other conditions that might jeopardize accurate output values. This output inhibition is indicated by the read-only VALID bit of the ATxCON1 being clear.

The following cases will clear the VALID bit in hardware:

- · Any write to ATxRES register pair
- Phase counter overflow (ATxPHS register pair) clocked beyond 0x3FF)
- · In-Circuit Debugger halt
- EN = 0
- ATxPER register pair = 0
- Device Reset

As long as the VALID bit is cleared, the following occurs:

- Period clock is not output and associated interrupts do not trigger.
- Missed pulse is not output and associated interrupts do not trigger.
- Phase clock is not output and associated interrupts do not trigger.
- Phase counter does not increment.
- Capture logic does not function and associated interrupts do not trigger.
- Compare logic does not function and associated interrupts do not trigger.
- Every ATxsig edge latches the period counter into the ATxPER register pair, regardless of mode.

In single-pulse modes, the VALID bit becomes set upon the 3rd active input edge of the signal that latches the ATxPER register pair. In multi-pulse modes, a missing pulse trigger is also required, ensuring that at least one full revolution of the input has occurred.

An example of the VALID bit in Single-Pulse mode is shown in Figure 31-6.

31.2.6 DETERMINING ACCURACY

The ATxRES register pair determines the resolution of the period measurement and, by extension, the maximum value that the phase counter reaches at the end of each input signal period. The interim value, ATxPER, used to derive the phase counter is, by nature of the circuitry, an integer. The ratio of the integer value obtained by the circuit and the calculated floating point value is the inherent error of the measurement. When ATxRES is small then integer rounding results in large errors. Factors that contribute to large errors include:

- Large values for ATxRES
- Relatively low ATxclk frequency
- Relatively high ATxsig input frequency

The actual error can be determined with Equation 31-7.

EQUATION 31-7:

$$period = \frac{F(ATxclk)}{F(ATxsig) \bullet (ATxRES + 1)}$$
$$error\% = 100 \bullet \left(\frac{period - int(period + 1)}{period}\right)$$

31.3 Input and Clock Selection

The input clock for the AT module can come from either the Fosc system clock or the 16 MHz HFINTOSC, and is chosen by the CS0 bit of the ATxCLK register. In addition, the clock is run through a prescaler that can be /1, /2, /4, or /8, which is configured by the PS<1:0> bits of the ATxCON0 register. This prescaled clock is then used for all clock operations of the Angular Timer, and as such, should be used for all of the equations demonstrated above determining the Angular Timer's behavior.

The input signal for the AT module can come from a variety of sources. The source is selected by the SSEL bits of the ATxSIG register (Register 31-4).

31.4 Module Outputs

31.4.1 ANGLE/PHASE CLOCK OUTPUT

The angle/phase clock signal (ATx_phsclk) can be used by the CLC as an input signal to combinational logic. The polarity of this signal is configured by the PHP bit of the ATxCON1 register.

31.4.2 PERIOD CLOCK OUTPUT

The period clock signal (ATx_perclk) can be used as an input clock for the Timer2/4/6 and Signal Measurement module, as well as an input signal to the CLC for combinational logic. The polarity of this signal is configured by the PRP bit of the ATxCON1 register (Register 31-2).

31.4.3 MISSED PULSE OUTPUT

The missed pulse signal (ATx_missedpulse) can be used by the CLC as an input signal to combinational logic. The polarity of this signal is configured by the MPP bit of the ATxCON1 register.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
MISS<15:8> ⁽¹⁾								
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'		
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets	
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	pends on condit	ion		

REGISTER 31-7: ATXMISSH: ANGULAR TIMER MISSING PULSE DELAY HIGH REGISTER

- bit 7-0 **MISS<15:8>⁽¹⁾:** Most Significant bits (2's complement) of ATxMISS. ATxMISS defines the period counter value at which the missing pulse output becomes valid, based on the difference between the current counter value and the latched-in value of ATxPER.
- **Note 1:** ATxMISSH is held until ATxMISSL is written. Proper writes of ATxMISS should write to ATxMISSH first, then ATxMISSL to ensure the value is properly written.

REGISTER 31-8: ATXMISSL: ANGULAR TIMER MISSING PULSE DELAY LOW REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			MISS	<7:0>			
bit 7							bit 0
Legend:							
P - Roadable b	.it	M = Mritable bit	ł		nonted hit read	as 'O'	

'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
R = Readable bit	vv = vvritable bit	O = Onimplemented bit, read as 'O'

bit 7-0 **MISS<7:0>:** Least Significant bits (2's complement) of ATxMISS. ATxMISS defines the period counter value at which the missing pulse output becomes valid, based on the difference between the current counter value and the latched-in value of ATxPER.

REGISTER 31-19: ATXERRH: ANGULAR TIMER SET POINT ERROR VALUE HIGH REGISTER

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x
			ERR	<15:8>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bit		U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncha	nged	x = Bit is unknow	'n	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cleared	d	q = Value dep	pends on condit	ion	

bit 7-0 **ERR<15:8>:** Most Significant bits of ATxERR. ATxERR is the error of the measured period value compared to the threshold setting, defined as ATxPER-ATxSTPTP.

REGISTER 31-20: ATxERRL: ANGULAR TIMER SET POINT ERROR VALUE LOW REGISTER

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x
ERR<7:0>							
bit 7 k							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-0 **ERR<7:0>:** Least Significant bits of ATxERR. ATxERR is the error of the measured period value compared to the threshold setting, defined as ATxPER-ATxSTPTP.

XORLW	Exclusive OR literal with W
Syntax:	[label] XORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .XOR. $k \rightarrow$ (W)
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.

XORWF	Exclusive OR W with f
Syntax:	[label] XORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .XOR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

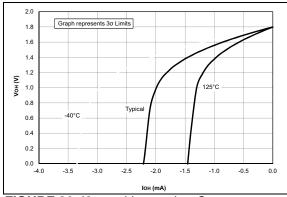


FIGURE 36-43: Voн vs. Ioн Over Temperature, VDD = 1.8V, PIC16LF1614/8 Only.

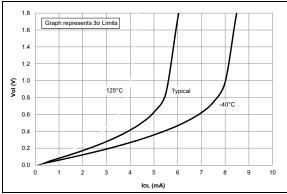


FIGURE 36-44: Vol. vs. Iol. Over Temperature, VDD = 1.8V, PIC16LF1614/8 Only.

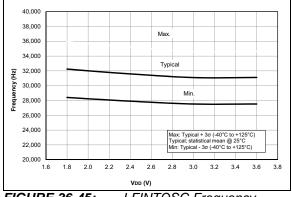


FIGURE 36-45: LFINTOSC Frequency, PIC16LF1614/8 Only.

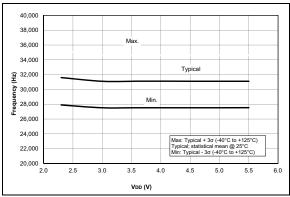


FIGURE 36-46: LFINTOSC Frequency, PIC16F1614/8 Only.

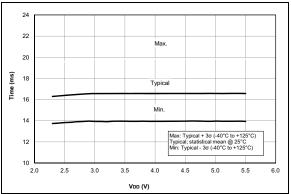


FIGURE 36-47: WDT Time-Out Period, PIC16F1614/8 Only.

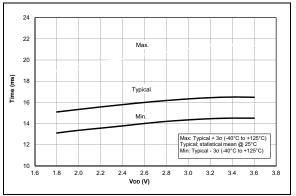
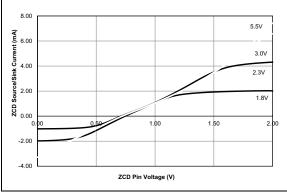
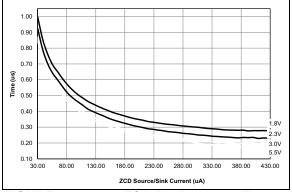




FIGURE 36-48: WDT Time-Out Period, PIC16LF1614/8 Only.

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

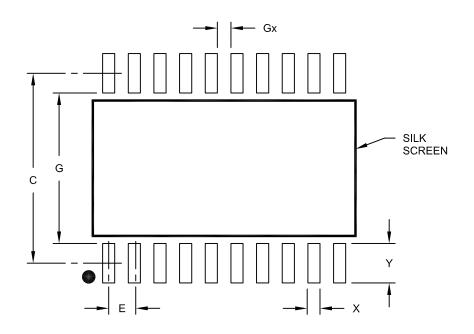

FIGURE 36-103: ZCD Pin Current over ZCD Pin Voltage, Typical Measured Values from -40°C to 125°C.

FIGURE 36-104: ZCD Pin Response Timer over Current, Typical Measured Values from -40°C to 125°C.

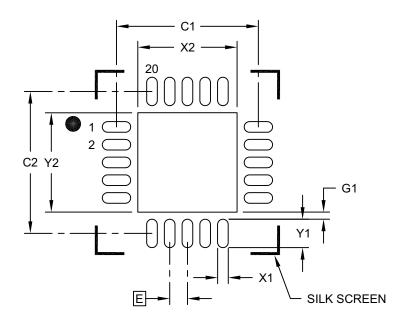
20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N		S	
Dimension	Dimension Limits			MAX
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	С		9.40	
Contact Pad Width (X20)	X			0.60
Contact Pad Length (X20)	Y			1.95
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.45		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2094A

20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (GZ) - 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N		S	
Dimension	Dimension Limits			
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	X2			2.80
Optional Center Pad Length	Y2			2.80
Contact Pad Spacing	C1		4.00	
Contact Pad Spacing	C2		4.00	
Contact Pad Width (X20)	X1			0.30
Contact Pad Length (X20)	Y1			0.80
Contact Pad to Center Pad (X20)	G1	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2255A