

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1618-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1:PIC12/16(L)F161X FAMILY TYPES

Device	Data Sheet Index	Program Memory Flash (W)	Program Memory Flash (kB)	Data SRAM (bytes)	High Endurance Flash (bytes)	I/O Pins	8-bit Timer with HLT	16-bit Timer	Angular Timer	Windowed Watchdog Timer	24-bit SMT	Comparators	10-bit ADC (ch)	Zero-Cross Detect	CCP/10-bit PWM	CWG	CLC	CRC with Memory Scan	Math Accelerator with PID	High-Current I/O 100mA	Sdd	EUSART	I ² C/SPI
PIC12(L)F1612	(A)	2048	3.5	256	256	6	4	1	0	Y	1	1	4	1	2/0	1	0	Y	0	0	Ν	0	0
PIC16(L)F1613	(A)	2048	3.5	256	256	12	4	1	0	Y	2	2	8	1	2/0	1	0	Υ	0	0	Ν	0	0
PIC16(L)F1614	(B)	4096	7	512	512	12	4	3	1	Y	2	2	8	1	2/2	1	2	Υ	1	2	Υ	1	1
PIC16(L)F1615	(C)	8192	14	1024	128	12	4	3	1	Y	2	2	8	1	2/2	1	4	Υ	1	2	Υ	1	1
PIC16(L)F1618	(B)	4096	7	512	512	18	4	3	1	Y	2	2	12	1	2/2	1	2	Y	1	2	Y	1	1
PIC16(L)F1619	(C)	8192	14	1024	128	18	4	3	1	Y	2	2	12	1	2/2	1	4	Y	1	2	Y	1	1

Note 1: Debugging Methods: (I) – Integrated on Chip; (H) – via ICD Header; E – using Emulation Product

Data Sheet Index:

B. DS40001769 PIC16(L)F1614/8 Data Sheet, 14/20-Pin, 8-bit Flash Microcontrollers

C. DS40001770 PIC16(L)F1615/9 Data Sheet, 14/20-Pin, 8-bit Flash Microcontrollers

Note: For other small form-factor package availability and marking information, please visit http://www.microchip.com/packaging or contact your local sales office.

TABLE 3-14: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	31	_									
F8Ch — FE3h	_	Unimplemented	1							_	—
FE4h	STATUS_ SHAD	-	-	_	-	-	Z_SHAD	DC_SHAD	C_SHAD	xxx	uuu
FE5h	WREG_ SHAD	Working Regist	er Shadow							XXXX XXXX	uuuu uuuu
FE6h	BSR_ SHAD	—	-	_	Bank Select Re	gister Shadow				x xxxx	u uuuu
FE7h	PCLATH_ SHAD	-	Program Counter Latch High Register Shadow								uuuu uuuu
FE8h	FSR0L_ SHAD	Indirect Data M	emory Address () Low Pointer Sh	nadow					XXXX XXXX	uuuu uuuu
FE9h	FSR0H_ SHAD	Indirect Data M	emory Address () High Pointer S	hadow					XXXX XXXX	uuuu uuuu
FEAh	FSR1L_ SHAD	Indirect Data M	emory Address ?	I Low Pointer Sh	nadow					XXXX XXXX	uuuu uuuu
FEBh	FSR1H_ SHAD	Indirect Data M	emory Address ?	I High Pointer S	hadow					XXXX XXXX	uuuu uuuu
FECh	<u> </u>	Unimplemented	t								_
FEDh	STKPTR		_	—	Current Stack F	Pointer				1 1111	1 1111
FEEh	TOSL	Top-of-Stack Lo	ow byte							xxxx xxxx	uuuu uuuu
FEFh	TOSH	— Top-of-Stack High byte									-uuu uuuu

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: PIC16F1614/8 only.

2: Unimplemented, read as '1'.

3: PIC16(L)F1614 only.

4: PIC16(L)F1618 only.

REGISTER 4-3: CONFIG3: CONFIGURATION WORD 3

		R/P-0	R/P-0	R/P-1	R/P-1	R/P-1	R/P-1
			WDTCCS<2:0>	>	N	NDTCWS<2:0	>
		bit 13					bit 8
U-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
_	WDTI	E<1:0>			WDTCPS<4:0>	>	
bit 7							bit 0

l ogond	
Leuena	-
	-

bit 6-5

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '1'
'0' = Bit is cleared	'1' = Bit is set	-n = Value when blank or after Bulk Erase

WDTCCS<2:0>: WDT Configuration Clock Select bits bit 13-11

- 111 =Software Control; WDT clock selected by CS<2:0> 110 =Reserved
- 010 =Reserved
- 001 =WDT reference clock is MFINTOSC, 31.25 kHz (default value)
- 000 =WDT reference clock is LFINTOSC, 31.00 kHz output

WDTCWS<2:0>: WDT Configuration Window Select bits. bit 10-8

WDTCWS <2:0>		WINDOW at P	OR	Software	Keyed	
	Value	Window delay Percent of time	Window opening Percent of time	control of WINDOW?	access required?	
111	111	n/a	100	Yes	No	Default fuse = 111
110	111	n/a	100			
101	101	25	75			
100	100	37.5	62.5			
011	011	50	50	No	Yes	
010	010	62.5	37.5			
001	001	75	25			
000	000	87.5	12.5 ⁽¹⁾			

bit 7 Unimplemented: Read as '1'

WDTE<1:0>: Watchdog Timer Enable bits

11 =WDT enabled in all modes, the SEN bit in the WDTCON0 register is ignored

10 =WDT enabled while running and disabled in Sleep

01 =WDT controlled by the SEN bit in the WDTCON0 register

00 = WDT disabled

REGISTER 4-3: CONFIG3: CONFIGURATION WORD 3 (CONTINUED)

bit 4-0 WDTCPS<4:0>: WDT Configuration Period Select bits

		WDTPS at	Cottourne]			
WDTCPS <4:0>	Value	Divider Ra	atio	Typical time out (FIN = 31 kHz)	control of WDTPS		
11111	01011	1:65536	1:65536 2 ¹⁶		Yes	Default fuse = 1111	
10011 11110	10011 11110	1:32	2 ⁵	1 ms	No		
10010	10010	1:8388608	2 ²³	256 s			
10001	10001	1:4194304	2 ²²	128 s			
10000	10000	1:2097152	2 ²¹	64 s			
01111	01111	1:1048576	2 ²⁰	32 s			
01110	01110	1:524299	2 ¹⁹	16 s			
01101	01101	1:262144	2 ¹⁸	8 s			
01100	01100	1:131072	2 ¹⁷	4 s			
01011	01011	1:65536	2 ¹⁶	2 s			
01010	01010	1:32768	2 ¹⁵	1 s			
01001	01001	1:16384	2 ¹⁴	512 ms	No		
01000	01000	1:8192	2 ¹³	256 ms			
00111	00111	1:4096	2 ¹²	128 ms			
00110	00110	1:2048	2 ¹¹	64 ms			
00101	00101	1:1024	2 ¹⁰	32 ms			
00100	00100	1:512	2 ⁹	16 ms			
00011	00011	1:256	2 ⁸	8 ms			
00010	00010	1:128	2 ⁷	4 ms			
00001	00001	1:64	2 ⁶	2 ms			
00000	00000	1:32	2 ⁵	1 ms		J	

Note 1: A window delay of 12.5% is only available in Software Control mode via the WDTCON1 register.

5.0 OSCILLATOR MODULE

5.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 5-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external oscillators. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include:

• Selectable system clock source between external or internal sources via software.

The oscillator module can be configured in one of the following clock modes.

- 1. ECL External Clock Low-Power mode (0 MHz to 0.5 MHz)
- 2. ECM External Clock Medium-Power mode (0.5 MHz to 4 MHz)
- 3. ECH External Clock High-Power mode (4 MHz to 32 MHz)
- 4. INTOSC Internal oscillator (31 kHz to 32 MHz).

Clock Source modes are selected by the FOSC<1:0> bits in the Configuration Words. The FOSC bits determine the type of oscillator that will be used when the device is first powered.

The ECH, ECM, and ECL Clock modes rely on an external logic level signal as the device clock source.

The INTOSC internal oscillator block produces low, medium, and high-frequency clock sources, designated LFINTOSC, MFINTOSC and HFINTOSC. (see Internal Oscillator Block, Figure 5-1). A wide selection of device clock frequencies may be derived from these three clock sources.

U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
—	—	CWGIE	ZCDIE	—	—	CLC2IE	CLC1IE
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5	CWGIE: Com	plementary Wa	aveform Gene	rator (CWG) Ir	nterrupt Enable b	oit	
	1 = Enables	the CWG interr	upt				
	0 = Disables	the CWG inter	rupt				
bit 4	ZCDIE: Zero-	Cross Detectio	n (ZCD) Inter	rupt Enable bit			
	1 = Enables 1	the ZCD interru	ipt				
h: 1 0 0		the ZCD Intern	upt				
Dit 3-2	Unimplemen	ted: Read as).				
bit 1	CLC2IE: Con	figurable Logic	Block 2 Inter	rupt Enable bit			
	1 = Enables 1	the CLC 2 inter	rupt				
h it 0		the CLC 2 inte		wet Englishie bit			
DIEU	CLCTIE: Con	figurable Logic	BIOCK I Interi	rupt Enable bit			
	1 = Enables	the CLC 1 Intel	rupt				
			Παρι				
Nata Diti			maxing the set				

REGISTER 7-4: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/HS-0/0	R/W/HS-0/0	R/W/HS-0/0					
TMR3GIE	TMR3IE	TMR5GIE	TMR5IE	-	AT1IE	PID1EIE	PID1DIE					
bit 7							bit 0					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'								
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value at POR and BOR/Value at all other Resets								
'1' = Bit is set		'0' = Bit is clea	ared									
bit 7	TMR3GIE: T	Timer3 Gate Inte	errupt Enable I	oit								
	1 = Enables	s the Timer3 Ga	te interrupt									
	0 = Disable	s the Timer3 Ga	ate interrupt									
bit 6	TMR3IE: Tin	ner3 Overflow I	nterrupt Enabl	e bit								
	\perp = Enables	s the Timer3 ov	erflow interrup	t st								
bit 5		imer5 Gate Inte	errupt Enable I	nit								
Sit O	1 = Enables	the Timer5 Ga	ite interrupt									
	0 = Disable	s the Timer5 Ga	ate interrupt									
bit 4	TMR5IE: Tin	ner5 Overflow I	nterrupt Enabl	e bit								
	1 = Enables	s the Timer5 ov	erflow interrup	t								
hit 2		sted: Dood oo	'eniow interrup	n (
bit 2		illeu. Redu as	∪ vrrunt Enable k	.it								
	1 = Enables	the Δngular Ti	mer 1 interrun	h.								
	0 = Disable	s the Angular T	imer 1 interrup	ot								
bit 1	PID1EIE: PI	D Error Interrup	ot Enable bit									
	1 = Enables	s the PID error i	nterrupt									
		s the PID error	Interrupt									
bit 0	PID1DIE: PI	D Interrupt Ena	ble bit									
	$\perp = \Box \text{ nables}$ 0 = Disable	s the PID interru	upt									
			apr									
Note: Bit	PEIE of the IN	NICON registe	r must be									
501	to chable ally	periprieral inte	nupi.									

REGISTER 7-6: PIE5: PERIPHERAL INTERRUPT ENABLE REGISTER 5

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	97
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		222
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	98
PIE2	—	C2IE	C1IE	—	BCLIE	TMR6IE	TMR4IE	CCP2IE	99
PIE3	—	—	CWGIE	ZCDIE	—	—	CLC2IE	CLC1IE	100
PIE4	SCANIE	CRCIE	SMT2PWAIE	SMT2PRAIE	SMT2IE	SMT1PWAIE	SMT1PRAIE	SMT1IF	101
PIE5	TMR3GIE	TMR3IE	TMR5GIE	TMR5IE	—	AT1IE	PID1EIE	PID1DIE	102
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	103
PIR2	_	C2IF	C1IF	—	BCLIF	TMR6IF	TMR4IF	CCP2IF	104
PIR3	_	_	CWGIF	ZCDIF	_	—	CLC2IF	CLC1IF	105
PIR4	SCANIF	CRCIF	SMT2PWAIF	SMT2PRAIF	SMT2IF	SMT1PWAIF	SMT1PRAIF	SMT1IF	106
PIR5	TMR3GIF	TMR3IF	TMR5GIF	TMR5IF	_	AT1IF	PID1EIF	PID1DIF	107

TABLE 7-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupts.

8.2 Low-Power Sleep Mode

This device contains an internal Low Dropout (LDO) voltage regulator, which allows the device I/O pins to operate at voltages up to 5.5V while the internal device logic operates at a lower voltage. The LDO and its associated reference circuitry must remain active when the device is in Sleep mode.

Low-Power Sleep mode allows the user to optimize the operating current in Sleep. Low-Power Sleep mode can be selected by setting the VREGPM bit of the VREGCON register, putting the LDO and reference circuitry in a low-power state whenever the device is in Sleep.

8.2.1 SLEEP CURRENT VS. WAKE-UP TIME

In the Default Operating mode, the LDO and reference circuitry remain in the normal configuration while in Sleep. The device is able to exit Sleep mode quickly since all circuits remain active. In Low-Power Sleep mode, when waking up from Sleep, an extra delay time is required for these circuits to return to the normal configuration and stabilize.

The Low-Power Sleep mode is beneficial for applications that stay in Sleep mode for long periods of time. The Normal mode is beneficial for applications that need to wake from Sleep quickly and frequently.

8.2.2 PERIPHERAL USAGE IN SLEEP

Some peripherals that can operate in Sleep mode will not operate properly with the Low-Power Sleep mode selected. The LDO will remain in the Normal-Power mode when those peripherals are enabled. The Low-Power Sleep mode is intended for use with these peripherals:

- Brown-Out Reset (BOR)
- Watchdog Timer (WDT)
- External interrupt pin/Interrupt-on-change pins
- Timer1 (with external clock source)

The Complementary Waveform Generator (CWG) can utilize the HFINTOSC oscillator as either a clock source or as an input source. Under certain conditions, when the HFINTOSC is selected for use with the CWG modules, the HFINTOSC will remain active during Sleep. This will have a direct effect on the Sleep mode current.

Please refer to sections **Section 28.11 "Operation During Sleep"** for more information.

The PIC16LF1614/8 does not have a con-Note: figurable Low-Power Sleep mode. PIC16LF1614/8 is an unregulated device and is always in the lowest power state when in Sleep, with no wake-up time penalty. This device has a lower maximum voltage VDD and I/O than the PIC16F1614/8. See Section 35.0 "Electrical Specifications" for more information.

19.8 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in **Section35.0** "**Electrical Specifications**" for more details.

19.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 19-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

FIGURE 19-3: ANALOG INPUT MODEL

A maximum source impedance of 10 k Ω is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

23.1 Timer2 Operation

Timer2 operates in three major modes:

- Free Running Period
- One-shot
- Monostable

Within each mode there are several options for starting, stopping, and reset. Table 23-1 lists the options.

In all modes, the TMR2 count register is incremented on the rising edge of the clock signal from the programmable prescaler. When TMR2 equals T2PR, a high level is output to the postscaler counter. TMR2 is cleared on the next clock input.

An external signal from hardware can also be configured to gate the timer operation or force a TMR2 count Reset. In Gate modes the counter stops when the gate is disabled and resumes when the gate is enabled. In Reset modes the TMR2 count is reset on either the level or edge from the external source.

The TMR2 and T2PR registers are both directly readable and writable. The TMR2 register is cleared and the T2PR register initializes to FFh on any device Reset. Both the prescaler and postscaler counters are cleared on the following events:

- · a write to the TMR2 register
- · a write to the T2CON register
- any device Reset
- External Reset Source event that resets the timer.

Note:	TMR2	is	not	cleared	when	T2CON	is
	written.						

23.1.1 FREE RUNNING PERIOD MODE

The value of TMR2 is compared to that of the Period register, T2PR, on each clock cycle. When the two values match, the comparator resets the value of TMR2 to 00h on the next cycle and increments the output postscaler counter. When the postscaler count equals

the value in the OUTPS<4:0> bits of the TMRxCON1 register then a one clock period wide pulse occurs on the TMR2_postscaled output, and the postscaler count is cleared.

23.1.2 ONE-SHOT MODE

The One-Shot mode is identical to the Free Running Period mode except that the ON bit is cleared and the timer is stopped when TMR2 matches T2PR and will not restart until the T2ON bit is cycled off and on. Postscaler OUTPS<4:0> values other than 0 are meaningless in this mode because the timer is stopped at the first period event and the postscaler is reset when the timer is restarted.

23.1.3 MONOSTABLE MODE

Monostable modes are similar to One-Shot modes except that the ON bit is not cleared and the timer can be restarted by an external Reset event.

23.2 Timer2 Output

The Timer2 module's primary output is TMR2_postscaled, which pulses for a single TMR2_clk period when the postscaler counter matches the value in the OUTPS bits of the TMR2xCON register. The T2PR postscaler is incremented each time the TMR2 value matches the T2PR value. This signal can be selected as an input to several other input modules:

- · The ADC module, as an Auto-conversion Trigger
- COG, as an auto-shutdown source

In addition, the Timer2 is also used by the CCP module for pulse generation in PWM mode. Both the actual TMR2 value as well as other internal signals are sent to the CCP module to properly clock both the period and pulse width of the PWM signal. See **Section 26.4** "**CCP/PWM Clock Selection**" for more details on setting up Timer2 for use with the CCP, as well as the timing diagrams in **Section 23.5** "**Operation Examples**" for examples of how the varying Timer2 modes affect CCP PWM output.

23.3 External Reset Sources

In addition to the clock source, the Timer2 also takes in an external Reset source. This external Reset source is selected for Timer2, Timer4, and Timer6 with the T2RST, T4RST, and T6RST registers, respectively. This source can control starting and stopping of the timer, as well as resetting the timer, depending on which mode the timer is in. The mode of the timer is controlled by the MODE<4:0> bits of the TMRxHLT register. Edge-Triggered modes require six Timer clock periods between external triggers. Level-Triggered modes require the triggering level to be at least three Timer clock periods long. External triggers are ignored while in Debug Freeze mode.

DS40001769B-page 279

24.5.3.3 7-bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSPxCON3 register enables additional clock stretching and interrupt generation after the eighth falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSPxIF interrupt is set.

Figure 24-19 displays a standard waveform of a 7-bit address slave transmission with AHEN enabled.

- 1. Bus starts Idle.
- Master sends Start condition; the S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Master sends matching address with R/W bit set. After the eighth falling edge of the SCL line the CKP bit is cleared and SSPxIF interrupt is generated.
- 4. Slave software clears SSPxIF.
- Slave software reads ACKTIM bit of SSPxCON3 register, and R/W and D/A of the SSPxSTAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSPxBUF register clearing the BF bit.
- Slave software decides from this information if it wishes to ACK or not ACK and sets the ACKDT bit of the SSPxCON2 register accordingly.
- 8. Slave sets the CKP bit releasing SCL.
- 9. Master clocks in the \overline{ACK} value from the slave.
- Slave hardware automatically clears the CKP bit and sets SSPxIF after the ACK if the R/W bit is set.
- 11. Slave software clears SSPxIF.
- 12. Slave loads value to transmit to the master into SSPxBUF setting the BF bit.

Note: SSPxBUF cannot be loaded until after the ACK.

- 13. Slave sets the CKP bit releasing the clock.
- 14. Master clocks out the data from the slave and sends an ACK value on the 9th SCL pulse.
- 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSPxCON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If the master sends a not ACK the slave releases the bus allowing the master to send a Stop and end the communication.

Note: Master must send a not ACK on the last byte to ensure that the slave releases the SCL line to receive a Stop.

BRG Value	XXXXh	0000h		001Ch
RX pin		Start	Edge #1 Edge #2 Edge #3 Edge #4 Edg bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7 Stop	e #5 bit
BRG Clock		hunnun		
	Set by User —	ı ı 		Auto Cleared
ABDEN bit		J		
RCIDL		, , ,		
RCIF bit		, <u>L</u>]
(Interrupt)		1 1		
Read		i i		
RCxREG		i i		
SPxBRGL		1 1	XXh	1Ch
SPxBRGH		1	XXh (00h

1160KL 25-12.	STACHKOROUS RECEPTION (MASTER MODE, SREA)	
RX/DT pin TX/CK pin (SCKP = 0)	bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7	
TX/CK pin (SCKP = 1) Write to bit SREN		
SREN bit		
CREN bit		'0'
RCIF bit (Interrupt) ————		
Read RCxREG		
Note: Timing dia	agram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0 .	

FIGURE 25-12: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

TABLE 25-8: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	—	_	ANSA4		ANSA2	ANSA1	ANSA0	152
ANSELB ⁽¹⁾	_	—	ANSB5	ANSB4	_	_	_	_	159
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	_	_	ANSC3	ANSC2	ANSC1	ANSC0	166
BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	323
CKPPS		—				CKPPS<4:0>			174, 172
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	97
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	98
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	103
RC1REG			EUS	ART Receiv	e Data Regis	ter			316*
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	322
RXPPS	_	—	_			RXPPS<4:0>			174, 172
RxyPPS	_	—	—		F	RxyPPS<4:0	>		172
SP1BRGL				BRG<	7:0>				324*
SP1BRGH				BRG<	15:8>				324*
TRISA	_	_	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	151
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4		—	_	_	158
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	165
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	321

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master reception.

* Page provides register information.

Note 1: PIC16(L)F1618 only.

2: Unimplemented, read as '1'.

FIGURE 30-4: GATED TIMER MODE REPEAT ACQUISITION TIMING DIAGRAM

REGISTER 32-26: PIDxACCLH: PID ACCUMULATOR LOW HIGH REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ACC	<15:8>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		it	U = Unimpler	nented bit, read	1 as '0'		
u = Bit is unchanged x = Bit is unknown		own	-n/n = Value a	at POR and BO	R/Value at all c	other Resets	
'1' = Bit is set '0' = Bit is cleared		red	a = Value der	pends on condit	ion		

bit 7-0 **ACC<15:8>:** Bits <15:8> of ACC. ACC is the accumulator register in which all of the multiplier results for the PID are accumulated before being written to the output.

REGISTER 32-27: PIDxACCLL: PID ACCUMULATOR LOW LOW REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ACC<7:0>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-0 ACC<7:0>: Bits <7:0> of ACC. ACC is the accumulator register in which all of the multiplier results for the PID are accumulated before being written to the output.

CALLW	Subroutine Call With W
Syntax:	[label] CALLW
Operands:	None
Operation:	$\begin{array}{l} (PC) +1 \rightarrow TOS, \\ (W) \rightarrow PC < 7:0>, \\ (PCLATH < 6:0>) \rightarrow PC < 14:8> \end{array}$
Status Affected:	None
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a 2-cycle instruction.

COMF	Complement f
Syntax:	[<i>label</i>] COMF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are com- plemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

Clear W

Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$00h \rightarrow WDT$ $0 \rightarrow WDT$ prescaler,

	$1 \rightarrow TO$
	$1 \rightarrow \overline{PD}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in regis- ter 'f'.

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.

SUBLW	Subtract W from literal
Syntax:	[<i>label</i>] SUBLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k - (W) \rightarrow (W)$
Status Affected:	C, DC, Z
Description:	The W register is subtracted (2's com- plement method) from the 8-bit literal 'k'. The result is placed in the W regis- ter.
	C = 0 W > k
	$C = 1$ $W \le k$

DC = 0

DC = 1

	·
SUBWF	Subtract W from f
Syntax:	[label] SUBWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - (W) \rightarrow (destination)

Status Affected:	C, DC, Z
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f.

C = 0	W > f
C = 1	$W \leq f$
DC = 0	W<3:0> > f<3:0>
DC = 1	$W<3:0> \le f<3:0>$

W<3:0> > k<3:0>

 $W<3:0> \le k<3:0>$

SUBWFB	Subtract W from f with Borrow
Syntax:	SUBWFB f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f) - (W) - (\overline{B}) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Subtract W and the BORROW flag (CARRY) from register 'f' (2's comple- ment method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of regis- ter 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.

TRIS	Load TRIS Register with W
Syntax:	[label] TRIS f
Operands:	$5 \leq f \leq 7$
Operation:	(W) \rightarrow TRIS register 'f'
Status Affected:	None
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820