E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1618-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-2: PIC16(L)F1614 MEMORY MAP, BANK 0-7

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h	Core Registers (Table 3-1)	080h	Core Registers (Table 3-1)	100h	Core Registers (Table 3-1)	180h	Core Registers (Table 3-1)	200h	Core Registers (Table 3-1)	280h	Core Registers (Table 3-1)	300h	Core Registers (Table 3-1)	380h	Core Registers (Table 3-1)
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	ODCONA	30Ch	SLRCONA	38Ch	INLVLA
00Dh		08Dh		10Dh		18Dh		20Dh		28Dh		30Dh		38Dh	
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	WPUC	28Eh	ODCONC	30Eh	SLRCONC	38Eh	INLVLC
00Fh		08Fh		10Fh	_	18Fh	_	20Fh	_	28Fh	_	30Fh	—	38Fh	—
010h	PIR1	090h	PIE1	110h		190h		210h	—	290h		310h	_	390h	_
011h	PIR2	091h	PIE2	111h	CM1CON0	191h	PMADRL	211h	SSP1BUF	291h	CCP1RL	311h	—	391h	IOCAP
012h	PIR3	092h	PIE3	112h	CM1CON1	192h	PMADRH	212h	SSP1ADD	292h	CCP1RH	312h	—	392h	IOCAN
013h	PIR4	093h	PIE4	113h	CM2CON0	193h	PMDATL	213h	SSP1MSK	293h	CCP1CON	313h	—	393h	IOCAF
014h	PIR5	094h	PIE5	114h	CM2CON1	194h	PMDATH	214h	SSP1STAT	294h	CCP1CAP	314h	—	394h	_
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	PMCON1	215h	SSP1CON	295h	_	315h	—	395h	
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	SSP1CON2	296h	—	316h	_	396h	—
017h	TMR1H	097h	—	117h	FVRCON	197h	VREGCON	217h	SSP1CON3	297h	_	317h	—	397h	IOCCP
018h	T1CON	098h	OSCTUNE	118h	DAC1CON0	198h	—	218h	—	298h	CCP2RL	318h	—	398h	IOCCN
019h	T1GCON	099h	OSCCON	119h	DAC1CON1	199h	RC1REG	219h	—	299h	CCP2RH	319h	—	399h	IOCCF
01Ah	TMR2	09Ah	OSCSTAT	11Ah	—	19Ah	TX1REG	21Ah	—	29Ah	CCP2CON	31Ah	—	39Ah	—
01Bh	PR2	09Bh	ADRESL	11Bh	—	19Bh	SP1BRGL	21Bh	—	29Bh	CCP2CAP	31Bh	_	39Bh	
01Ch	T2CON	09Ch	ADRESH	11Ch	ZCD1CON	19Ch	SP1BRGH	21Ch	—	29Ch	—	31Ch	_	39Ch	
01Dh	T2HLT	09Dh	ADCON0	11Dh	_	19Dh	RC1STA	21Dh	—	29Dh	_	31Dh	_	39Dh	_
01Eh	T2CLKCON	09Eh	ADCON1	11Eh	_	19Eh	TX1STA	21Eh		29Eh	CCPTMRS	31Eh	_	39Eh	
01Fh	T2RST	09Fh	ADCON2	11Fh		19Fh	BAUD1CON	21Fh	_	29Fh	_	31Fh	_	39Fh	
020h		0A0h		120h		1A0h		220h		2A0h		320h	General Purpose Register	3A0h	
			General	32Fh	16 Bytes										
			Purpose	330h			Unimplemented								
	General		Register 80 Bytes	00011	Unimplemented		Read as '0'								
	Purpose		oo bytes		Read as '0'										
	Register 96 Bytes	0EFh						005		0		36Fh		3EFh	
	00 Dy(00	0EFn 0F0h		16Fh 170h		1EFh 1F0h		26Fh 270h		2EFh 2F0h				3F0h	
		01.011	Common RAM	17011	Common RAM	11.011	Common RAM	21011	Common RAM	21.011	Common RAM	370h	A	51 011	Common RAM
			(Accesses		Accesses 70h – 7Fh		(Accesses								
0755		OFER	70h – 7Fh)	175h	70h – 7Fh)	1556	70h – 7Fh)	27Eh	70h – 7Fh)	2FFh	70h – 7Fh)	27Eb	/ /	255h	70h – 7Fh)
07Fh		0FFh		17Fh		1FFh		27Fh		∠⊢⊢n		37Fh		3FFh	

Legend: = Unimplemented data memory locations, read as '0'.

7.6 Register Definitions: Interrupt Control

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0
GIE ⁽¹⁾	PEIE ⁽²⁾	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF ⁽³⁾
oit 7	·						bit (
Legend:							
R = Readal	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is ur	0	x = Bit is unkı		-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
1' = Bit is s	et	'0' = Bit is cle	ared				
oit 7	GIE: Global	Interrupt Enable	e bit ⁽¹⁾				
	0 = Disables	all active interru all interrupts					
oit 6	1 = Enables	neral Interrupt E all active periph all peripheral ir	neral interrupts	6			
oit 5	1 = Enables	ner0 Overflow Ir the Timer0 inter the Timer0 inter	rrupt	e bit			
oit 4	1 = Enables	xternal Interrupt the INT externa the INT externa	l interrupt				
oit 3	1 = Enables	upt-on-Change the interrupt-on the interrupt-or	-change				
oit 2	1 = TMR0 re	ner0 Overflow Ir gister has overf gister did not ov	lowed	it			
oit 1	1 = The INT	kternal Interrupt external interru external interru	pt occurred	ır			
oit O	1 = When at	upt-on-Change least one of the the interrupt-on	e interrupt-on-o	change pins ch			
Note 1:	Interrupt flag bits enable bit or the appropriate inter	Global Interrupt	Enable bit, G	IE of the INTCO	ON register. Use		
2:	Bit PEIE of the I	NTCON register	must be set t	o enable any p	eripheral interru	upt.	
3:	The IOCIF Flag	-					

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

10.2.4 WRITING TO FLASH PROGRAM MEMORY

Program memory is programmed using the following steps:

- 1. Load the address in PMADRH:PMADRL of the row to be programmed.
- 2. Load each write latch with data.
- 3. Initiate a programming operation.
- 4. Repeat steps 1 through 3 until all data is written.

Before writing to program memory, the word(s) to be written must be erased or previously unwritten. Program memory can only be erased one row at a time. No automatic erase occurs upon the initiation of the write.

Program memory can be written one or more words at a time. The maximum number of words written at one time is equal to the number of write latches. See Figure 10-5 (row writes to program memory with 32 write latches) for more details.

The write latches are aligned to the Flash row address boundary defined by the upper 11 bits of PMADRH:PMADRL, (PMADRH<6:0>:PMADRL<7:4>) with the lower four bits of PMADRL, (PMADRL<7:0) determining the write latch being loaded. Write operations do not cross these boundaries. At the completion of a program memory write operation, the data in the write latches is reset to contain 0x3FFF. The following steps should be completed to load the write latches and program a row of program memory. These steps are divided into two parts. First, each write latch is loaded with data from the PMDATH:PMDATL using the unlock sequence with LWLO = 1. When the last word to be loaded into the write latch is ready, the LWLO bit is cleared and the unlock sequence executed. This initiates the programming operation, writing all the latches into Flash program memory.

Note:	The special unlock sequence is required to load a write latch with data or initiate a
	Flash programming operation. If the
	unlock sequence is interrupted, writing to
	the latches or program memory will not be
	initiated.

- 1. Set the WREN bit of the PMCON1 register.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Set the LWLO bit of the PMCON1 register. When the LWLO bit of the PMCON1 register is '1', the write sequence will only load the write latches and will not initiate the write to Flash program memory.
- 4. Load the PMADRH:PMADRL register pair with the address of the location to be written.
- 5. Load the PMDATH:PMDATL register pair with the program memory data to be written.
- Execute the unlock sequence (Section 10.2.2 "Flash Memory Unlock Sequence"). The write latch is now loaded.
- 7. Increment the PMADRH:PMADRL register pair to point to the next location.
- 8. Repeat steps 5 through 7 until all but the last write latch has been loaded.
- Clear the LWLO bit of the PMCON1 register. When the LWLO bit of the PMCON1 register is '0', the write sequence will initiate the write to Flash program memory.
- 10. Load the PMDATH:PMDATL register pair with the program memory data to be written.
- Execute the unlock sequence (Section 10.2.2 "Flash Memory Unlock Sequence"). The entire program memory latch content is now written to Flash program memory.
- Note: The program memory write latches are reset to the Blank state (0x3FFF) at the completion of every write or erase operation. As a result, it is not necessary to load all the program memory write latches. Unloaded latches will remain in the blank state.

An example of the complete write sequence is shown in Example 10-3. The initial address is loaded into the PMADRH:PMADRL register pair; the data is loaded using indirect addressing.

R/W-0/0		R-0	R-0	R/W-0/0	U-0	R/W-0/0	R/W-0/0
EN ⁽¹⁾	SCANGO ^(2, 3)	BUSY ⁽⁴⁾	INVALID	INTM		MODE	<1:0> (5)
bit 7							bit 0
Legend:							
R = Readal	hle hit	W = Writable	hit	U = Unimpler	mented bit, read	1 as '0'	
u = Bit is ur		x = Bit is unk		•	at POR and BO		other Resets
'1' = Bit is s	0	'0' = Bit is cle			eared by hardw		
bit 7	EN: Scanner	Enable bit ⁽¹⁾					
	1 = Scanner is						
1.1.0			ernal states are	e reset			
bit 6	SCANGO: Sc						
		ent peripheral.	i ready signal,	NVIVI WIII De ac	ccessed accord	ing to MDx an	d data passed
	0 = Scanner o		not occur				
bit 5	BUSY: Scann	er Busy Indica	ator bit ⁽⁴⁾				
	1 = Scanner o	ycle is in proc	ess				
	0 = Scanner o	cycle is comple	ete (or never st	arted)			
bit 4	INVALID: Sca	-			<i>(</i> -)		
			remented or co o a valid addre	ontains an inva ess	lid address ⁽⁶⁾		
bit 3			ipt Manageme	nt Mode Select	t bit		
	If MODE = 10:						
	This bit is igno						
		•	<u>d until all data is</u>				
		is overridden	(to zero) during	g interrupt oper	ration; scanner	resumes after	returning from
	interrupt 0 = SCANGO	is not affected	d bv interrupts.	the interrupt re	esponse will be	affected	
	If MODE = 00		· · , · · · · · · · · · · · · · · · · · · ·				
	1 = SCANGO from inter		(to zero) during	interrupt opera	ation; scan oper	ations resume	after returning
			t NVM access				
bit 2	Unimplement	ted: Read as	0'				
bit 1-0	MODE<1:0>:	Memory Acce	ess Mode bits ⁽⁵)			
	11 = Triggere	d mode					
	10 = Peek mo						
	01 = Burst mo 00 = Concurre						
Note 1:	Setting EN = 0 (SC	CANCON0 red	ister) does not	affect any othe	er register conte	ent.	
	This bit is cleared	-		-	-		
	If INTM = 1, this bi		-	-		response.	
	BUSY = 1 when th		•		•	•	
5: 3	See Table 11-1 for	more detailed	information.				
I	An invalid address memory is 0x4000						

REGISTER 11-11: SCANCONO: SCANNER ACCESS CONTROL REGISTER 0

address is invalid.

U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
—	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	
						bit 0	
oit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets				
	'0' = Bit is clea	ared					
	Dit	LATA5 Dit W = Writable anged x = Bit is unkr	LATA5 LATA4 Dit W = Writable bit	LATA5 LATA4 LATA3 Dit W = Writable bit U = Unimpler anged x = Bit is unknown -n/n = Value a	LATA5 LATA4 LATA3 LATA2 Dit W = Writable bit U = Unimplemented bit, read anged x = Bit is unknown -n/n = Value at POR and BOI	—LATA5LATA4LATA3LATA2LATA1DitW = Writable bitU = Unimplemented bit, read as '0' -n/n = Value at POR and BOR/Value at all c	

REGISTER 12-3: LATA: PORTA DATA LATCH REGISTER

bit 7-6 Unimplemented: Read as '0'

bit 5-0 LATA<5:0>: RA<5:0> Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 12-4: ANSELA: PORTA ANALOG SELECT REGISTER

U-0	U-0	U-0	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	—	_	ANSA4	_	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5	Unimplemented: Read as '0'
bit 4	 ANSA4: Analog Select between Analog or Digital Function on Pins RA4, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.
bit 3	Unimplemented: Read as '0'
bit 2-0	ANSA<2:0> : Analog Select between Analog or Digital Function on Pins RA<2:0>, respectively 1 = Analog input. Pin is assigned as analog input ⁽¹⁾ . Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.
Note 1:	When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0				
	Т	[RIGSEL<4:0>(1	1)		—	—	—				
bit 7							bit (
Legend: R = Readab	alo hit	W = Writable	bit	II – Unimplor	nonted hit read	d ac 'O'					
				-	nented bit, read		ther Decete				
u = Bit is un	•	x = Bit is unki			at POR and BC	R/Value at all o	Juner Resels				
'1' = Bit is s	et	'0' = Bit is cle	ared								
			· · ·	0.1	`						
bit 7-3		I:0>: Auto-Conv	ersion Trigger	Selection bits	,						
	11111 = Re	eserved									
	•										
	•										
	10101 = Re	served									
	10100 = AT										
	10011 = AT										
	10010 = AT										
	10001 = CL 10000 = CL										
	01111 = CL										
	01110 = CL										
		IR5_overflow									
		1R3_overflow									
	01011 = SM										
		01010 =SMT1_match									
	$01001 = TMR6_postscaled$										
	01000 = TMR4_postscaled 00111 = C2_OUT_sync										
	$00110 = C1_OUT_sync$										
		IR2_postscaled									
	00100 = T1	_overflow ⁽²⁾									
	00011 = TO										
	00010 = CC										
	00001 = CC		n trigger ecles	atad							
		auto-conversio		lea							
bit 2-0	Unimpleme	nted: Read as '	0.								
Note 1: 7	This is a rising e	dge sensitive inp	out for all sour	ces.							
2.	Signal also sets i	its correspondin	a interrunt flag	r							

REGISTER 17-3: ADCON2: ADC CONTROL REGISTER 2

2: Signal also sets its corresponding interrupt flag.

17.4 ADC Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 17-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 17-4. The maximum recommended impedance for analog sources is 10 k Ω . As the

source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an ADC acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 17-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 17-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature = 50°C and external impedance of 10k
$$\Omega$$
 5.0V VDD

$$TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient
= TAMP + TC + TCOFF
= 2µs + TC + [(Temperature - 25°C)(0.05µs/°C)]
The value for TC can be approximated with the following equations:
$$VAPPLIED\left(1 - \frac{1}{(2^{n+1}) - 1}\right) = VCHOLD \qquad ;[1] VCHOLD charged to within 1/2 lsb$$

$$VAPPLIED\left(1 - e^{\frac{-TC}{RC}}\right) = VCHOLD \qquad ;[2] VCHOLD charge response to VAPPLIED$$

$$VAPPLIED\left(1 - e^{\frac{-TC}{RC}}\right) = V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) \qquad ;combining [1] and [2]$$
Note: Where n = number of bits of the ADC.
Solving for TC:

$$TC = -CHOLD(RIC + RSS + RS) \ln(1/2047)$$$$

$$= -12.5pF(1k\Omega + 7k\Omega + 10k\Omega) \ln(0.0004885)$$

= 1.12µs

Therefore:

$$TACQ = 2\mu s + 1.12\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 4.37\mu s

Note 1: The reference voltage (VRPOS) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.

23.5.7 EDGE-TRIGGERED HARDWARE LIMIT ONE-SHOT MODE

In Edge-Triggered Hardware Limit One-Shot modes the timer starts on the first external signal edge after the ON bit is set and resets on all subsequent edges. Only the first edge after the ON bit is set is needed to start the timer. The counter will resume counting automatically two clocks after all subsequent external Reset edges. Edge triggers are as follows:

- Rising edge start and Reset (MODE<4:0> = 01100)
- Falling edge start and Reset (MODE<4:0> = 01101)

The timer resets and clears the ON bit when the timer value matches the PRx period value. External signal edges will have no effect until after software sets the ON bit. Figure 23-10 illustrates the rising edge hardware limit one-shot operation.

When this mode is used in conjunction with the CCP then the first starting edge trigger, and all subsequent Reset edges, will activate the PWM drive. The PWM drive will deactivate when the timer matches the CCPRx pulse-width value and stay deactivated until the timer halts at the PRx period match unless an external signal edge resets the timer before the match occurs.

23.5.9 EDGE-TRIGGERED MONOSTABLE MODES

The Edge-Triggered Monostable modes start the timer on an edge from the external Reset signal input, after the ON bit is set, and stop incrementing the timer when the timer matches the PRx period value. The following edges will start the timer:

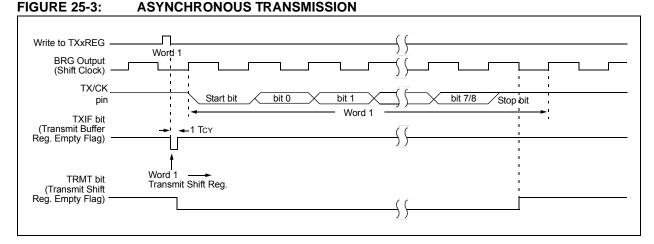
- Rising edge (MODE<4:0> = 10001)
- Falling edge (MODE<4:0> = 10010)
- Rising or Falling edge (MODE<4:0> = 10011)

When an Edge-Triggered Monostable mode is used in conjunction with the CCP PWM operation the PWM drive goes active with the external Reset signal edge that starts the timer, but will not go active when the timer matches the PRx value. While the timer is incrementing, additional edges on the external Reset signal will not affect the CCP PWM.

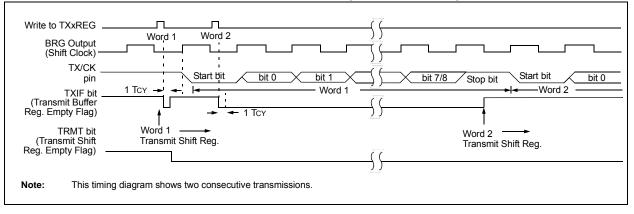
25.1.1.5 TSR Status

The TRMT bit of the TXxSTA register indicates the status of the TSR register. This is a read-only bit. The TRMT bit is set when the TSR register is empty and is cleared when a character is transferred to the TSR register from the TXxREG. The TRMT bit remains clear until all bits have been shifted out of the TSR register. No interrupt logic is tied to this bit, so the user has to poll this bit to determine the TSR status.

Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.


25.1.1.6 Transmitting 9-Bit Characters

The EUSART supports 9-bit character transmissions. When the TX9 bit of the TXxSTA register is set, the EUSART will shift nine bits out for each character transmitted. The TX9D bit of the TXxSTA register is the ninth, and Most Significant data bit. When transmitting 9-bit data, the TX9D data bit must be written before writing the eight Least Significant bits into the TXxREG. All nine bits of data will be transferred to the TSR shift register immediately after the TXxREG is written.


A special 9-bit Address mode is available for use with multiple receivers. See **Section 25.1.2.7** "Address **Detection**" for more information on the Address mode.

25.1.1.7 Asynchronous Transmission Set-up:

- Initialize the SPxBRGH, SPxBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 25.4 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If 9-bit transmission is desired, set the TX9 control bit. A set ninth data bit will indicate that the eight Least Significant data bits are an address when the receiver is set for address detection.
- 4. Set SCKP bit if inverted transmit is desired.
- 5. Enable the transmission by setting the TXEN control bit. This will cause the TXIF interrupt bit to be set.
- If interrupts are desired, set the TXIE interrupt enable bit of the PIE1 register. An interrupt will occur immediately provided that the GIE and PEIE bits of the INTCON register are also set.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded into the TX9D data bit.
- 8. Load 8-bit data into the TXxREG register. This will start the transmission.

FIGURE 25-4: ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)

TABLE 25-3: BAUD RATE FORMULAS

(Configuration Bi	ts		Baud Rate Formula
SYNC	BRG16	BRGH	BRG/EUSART Mode	Baud Kate Formula
0	0	0	8-bit/Asynchronous	Fosc/[64 (n+1)]
0	0	1	8-bit/Asynchronous	
0	1	0	16-bit/Asynchronous	Fosc/[16 (n+1)]
0	1	1	16-bit/Asynchronous	
1	0	х	8-bit/Synchronous	Fosc/[4 (n+1)]
1	1	х	16-bit/Synchronous	

Legend: x = Don't care, n = value of SPxBRGH, SPxBRGL register pair.

TABLE 25-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUD1CON	ABDOVF	RCIDL		SCKP	BRG16		WUE	ABDEN	323
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	322
SP1BRGL	BRG<7:0>							324	
SP1BRGH	BRG<15:8>						324		
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	321

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the Baud Rate Generator.

* Page provides register information.

25.5.2.3 EUSART Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section 25.5.1.5 "Synchronous Master Reception"), with the following exceptions:

- · Sleep
- CREN bit is always set, therefore the receiver is never idle
- SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCxREG register. If the RCIE enable bit is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

- 25.5.2.4 Synchronous Slave Reception Setup:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for both the CK and DT pins (if applicable).
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Set the CREN bit to enable reception.
- The RCIF bit will be set when reception is complete. An interrupt will be generated if the RCIE bit was set.
- 7. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCxSTA register.
- 8. Retrieve the eight Least Significant bits from the receive FIFO by reading the RCxREG register.
- 9. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCxSTA register or by clearing the SPEN bit which resets the EUSART.

TABLE 25-10: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA		_		ANSA4	_	ANSA2	ANSA1	ANSA0	152
ANSELB ⁽¹⁾	—	_	ANSB5	ANSB4	_	_	_	—	159
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	_		ANSC3	ANSC2	ANSC1	ANSC0	166
BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	323
CKPPS	—	_	—		CKPPS<4:0>				174, 172
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	97
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	98
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	103
RC1REG			EUS	SART Receive Data Register				316*	
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	322
RXPPS	—	_	—			RXPPS<4:0>			174, 172
TRISA	_	_	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	151
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	_		_	_	158
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	165
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	321

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous slave reception.

* Page provides register information.

Note 1: PIC16(L)F1618 only.

2: Unimplemented, read as '1'.

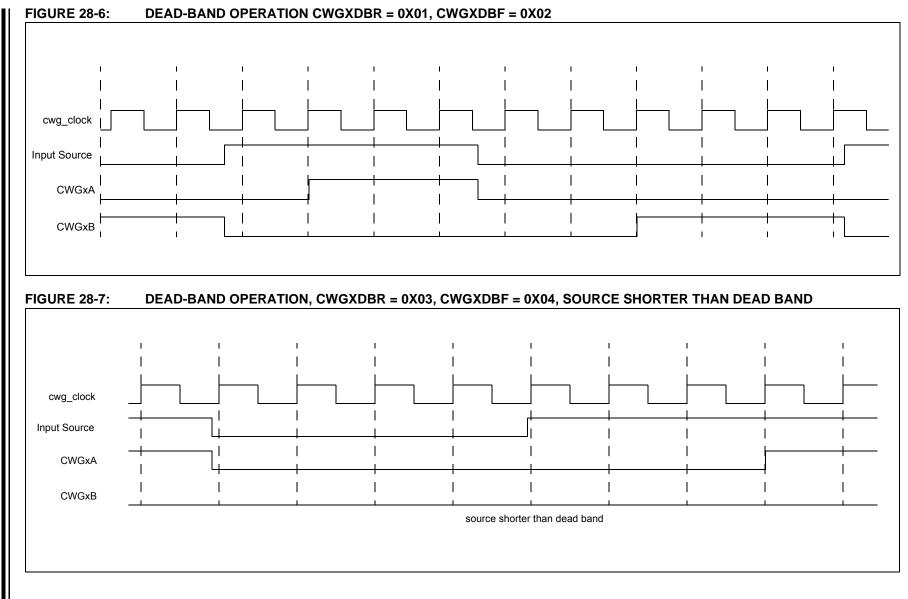
26.2.2 TIMER1 MODE RESOURCE

In Compare mode, Timer1 must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode.

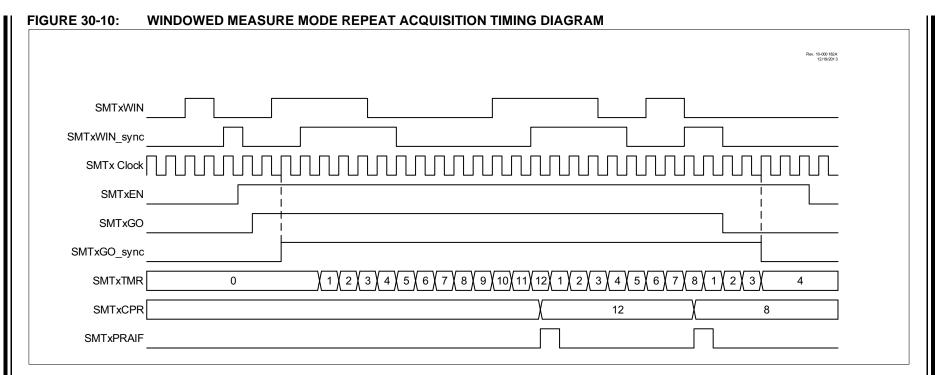
See Section22.0 "Timer1/3/5 Module with Gate Control" for more information on configuring Timer1.

Note: Clocking Timer1 from the system clock (Fosc) should not be used in Compare mode. In order for Compare mode to recognize the trigger event on the CCPx pin, TImer1 must be clocked from the instruction clock (Fosc/4) or from an external clock source.

26.2.3 SOFTWARE INTERRUPT MODE


When Generate Software Interrupt mode is chosen (MODE<3:0> = 1010), the CCPx module does not assert control of the CCPx pin (see the CCPxCON register).

26.2.4 COMPARE DURING SLEEP


The Compare mode is dependent upon the system clock (Fosc) for proper operation. Since Fosc is shut down during Sleep mode, the Compare mode will not function properly during Sleep.

26.2.5 CAPTURE OUTPUT

When in Compare mode, the CCP will provide an output upon the 16-bit value of the CCPRxH:CCPRxL register pair matching the TMR1H:TMR1L register pair. The compare output depends on which Compare mode the CCP is configured as. If the MODE bits of CCPxCON register are equal to '1011' or '1010', the CCP module will output high, while TMR1 is equal to CCPRxH:CCPRxL register pair. This means that the pulse width is determined by the TMR1 prescaler. If the MODE bits of CCPxCON are equal to '0001' or '0010', the output will toggle upon a match, going from '0' to '1' or vice-versa. If the MODE bits of CCPxCON are equal to '1001', the output is cleared on a match, and if the MODE bits are equal to '1000', the output is set on a match. This output is available as an input signal to the CWG, as an auto-conversion trigger for the ADC, as an external Reset signal for the TMR2 modules, as a window input to the SMT, and as an input to the CLC module. In addition, the CCPx pin output can be mapped to output pins through the use of PPS (see Section13.2 "PPS Outputs").

PIC16(L)F1614/8

		Rev. 10-000188A 4/222016
SMTxWIN		
SMTxWIN_sync		
SMTx_signal		
SMTx_signalsync		
SMTxEN		
SMTxGO		
SMTxGO_sync		i
SMTxTMR 0 1 2 3 4	5 (1)(2)(3)(4)(5)	
SMTxCPW		13
SMTxCPR	4	
SMTxPWAIF		
SMTxPRAIF		

REGISTER 30-2: SMTxCON1: SMT CONTROL REGISTER 1

R/W/HC-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
SMTxGO	REPEAT	_	—		MODE	E<3:0>	
bit 7							bit (
Legend:							
HC = Bit is cle	ared by hardw	vare		HS = Bit is se	et by hardware		
R = Readable	•	W = Writable	hit		nented bit, rea	d as '0'	
u = Bit is unch		x = Bit is unkr				DR/Value at all	other Resets
'1' = Bit is set	ungeu	'0' = Bit is clea			pends on condi		
i Bit io oot				y value dep			
bit 7	1 = Increme	MT GO Data Ac nting, acquiring nting, acquiring	data is enable				
bit 6	REPEAT: SMT Repeat Acquisition Enable bit 1 = Repeat Data Acquisition mode is enabled 0 = Single Acquisition mode is enabled						
bit 5-4	Unimpleme	nted: Read as '	כ'				
bit 3-0	MODE<3:0> 1111 = Rese	 SMT Operation erved 	Node Select	t bits			
	1001 = Gate 1000 = Cour 0111 = Capt 0110 = Time 0101 = Gate 0100 = Wind 0011 = High	dowed counter ed counter nter ture e of flight ed windowed me dowed measure a and low time m od and Duty-Cyc ed Timer	easurement	ı			

SUBLW	Subtract W from literal				
Syntax:	[<i>label</i>] SUBLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	$k - (W) \to (W)$				
Status Affected:	C, DC, Z				
Description:	The W register is subtracted (2's com- plement method) from the 8-bit literal 'k'. The result is placed in the W regis- ter.				
	C = 0 W > k				
	$C = 1$ $W \le k$				

DC = 0

DC = 1

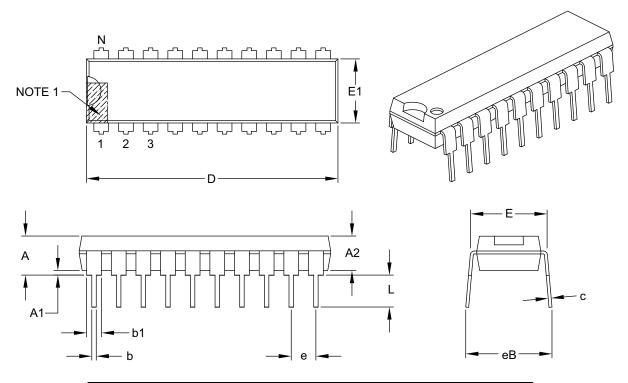
SUBWF	Subtract W from f
Syntax:	[label] SUBWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) - (W) \rightarrow (destination)

Status Affected:	C, DC, Z
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f.

C = 0	W > f
C = 1	$W \leq f$
DC = 0	W<3:0> > f<3:0>
DC = 1	W<3:0> ≤ f<3:0>

W<3:0> > k<3:0>

 $W<3:0> \le k<3:0>$


SUBWFB	Subtract W from f with Borrow
Syntax:	SUBWFB f {,d}
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	$(f) - (W) - (\overline{B}) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Subtract W and the BORROW flag (CARRY) from register 'f' (2's comple- ment method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of regis- ter 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.

TRIS	Load TRIS Register with W
Syntax:	[label] TRIS f
Operands:	$5 \le f \le 7$
Operation:	(W) \rightarrow TRIS register 'f'
Status Affected:	None
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.

20-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

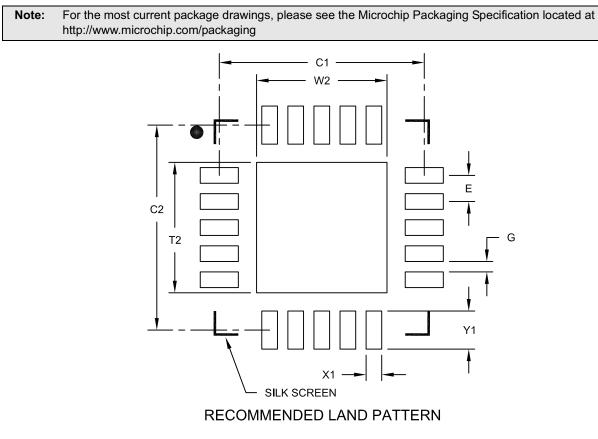
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		
Dimensio	n Limits	MIN	NOM	MAX	
Number of Pins	Ν		20		
Pitch	е		.100 BSC		
Top to Seating Plane	А	-	-	.210	
Molded Package Thickness	A2	.115	.130	.195	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.300	.310	.325	
Molded Package Width	E1	.240	.250	.280	
Overall Length	D	.980	1.030	1.060	
Tip to Seating Plane	L	.115	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.045	.060	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	-	-	.430	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.


3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-019B

20-Lead Plastic Quad Flat, No Lead Package (ML) - 4x4 mm Body [QFN] With 0.40 mm Contact Length

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			2.50
Optional Center Pad Length	T2			2.50
Contact Pad Spacing	C1		3.93	
Contact Pad Spacing	C2		3.93	
Contact Pad Width	X1			0.30
Contact Pad Length	Y1			0.73
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2126A