

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1618t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-14: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) Value on Value on all Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 POR. BOR other Resets Bank 9 48Ch Unimplemented to 492h 493h TMR3L Timer3 Module Register XXXX XXXX XXXX XXXX TMR3H 494h Timer3 Module Register XXXX XXXX XXXX XXXX 495h T3CON TMR3CS<1:0> T3CKPS<1:0> **T3SYNC** TMR3CON

496h T3GCON TMR3GE **T3GPOL** T3GTM T3GSPM T3GGO/ T3GVAL T3GSS<1:0> XXXX XXXX XXXX XXXX DONE 497h Unimplemented to 499h 49Ah TMR5L Timer5 Module Register XXXX XXXX XXXX XXXX TMR5H 49Bh Timer5 Module Register XXXX XXXX XXXX XXXX T5CKPS<1:0> 49Ch T5CON TMR5CS<1:0> ____ **T5SYNC** ____ TMR5CON xxxx -x-x xxxx -x-x TMR5GE T5GSS<1:0> 49Dh **T5GCON** T5GPOL T5GTM T5GSPM T5GGO/ T5GVAL XXXX XXXX XXXX XXXX DONE 49Eh Unimplemented ____ ____ ____ 49Fh Unimplemented ____ ____

Bank 10

50Ch - Unimplemented - 51Fh - -	_
---	---

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: PIC16F1614/8 only.

2: Unimplemented, read as '1'.

3: PIC16(L)F1614 only.

4: PIC16(L)F1618 only.

xxxx -x-x

xxxx -x-x

11.0			11.0							
0-0	K/W-U/U	K/W-U/U	0-0				K/W-U/U			
	C2IF	C1IF		BCL1IF	IMR6IF	IMR4IF	CCP2IF			
bit 7							bit 0			
Legend:										
R = Reada	ble bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'				
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Rese						
'1' = Bit is :	set	'0' = Bit is cleared								
bit 7	Unimplemen	ted: Read as '	0'							
bit 6	C2IF: Compa	rator C2 Interru	ıpt Flag bit							
	1 = Interrupt i	s pending								
		s not pending								
bit 5	C1IF: Compa	rator C1 Interru	ipt Flag bit							
	⊥ = Interrupt i 0 = Interrupt i	\perp = interrupt is pending 0 = Interrupt is not pending								
hit 4	Unimplemen	ted: Read as 'i	n'							
hit 3	BCI 1IE: MSS	SP Bus Collision	° n Interrunt El	ag hit						
bit o	1 = Interrupt i	s pending	in interrupt in							
	0 = Interrupt i	s not pending								
bit 2	TMR6IF: Time	er6 to PR6 Inte	rrupt Flag bit							
	1 = Interrupt i	s pending								
	0 = Interrupt i	s not pending								
bit 1	TMR4IF: Time	er4 to PR4 Inte	rrupt Flag bit							
	1 = Interrupt i	s pending								
		s not pending								
bit 0	CCP2IF: CCF	P2 Interrupt Fla	g bit							
	1 = Interrupt i	s pending								
		s not pending								
Note:	Interrupt flag bits a	re set when an	interrupt							
	condition occurs, re	egardless of the	e state of							
	its corresponding e	enable bit or th	e Global							
	LIADIE DIT, GIE O	should ensu	register.							
	appropriate interru	pt flag bits are c	lear prior							
	to enabling an inte	rrupt.	I							

REGISTER 7-8: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

9.7 Register Definitions: Windowed Watchdog Timer Control

U-0	U-0	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W-0/0	
_	-			WDTPS<4:0> ⁽¹⁾			SEN	
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable b	bit	U = Unimplem	ented bit, read	as '0'		
u = Bit is und	changed	x = Bit is unkno	own	-n/n = Value at	POR and BOF	R/Value at all oth	ner Resets	
'1' = Bit is se	et	'0' = Bit is clea	red	q = Value depe	ends on conditi	on		
bit 7-6	Unimpleme	nted: Read as '0)'					
bit 5-1	WDTPS<4:0	>: Watchdog Tin	ner Prescale S	elect bits ⁽¹⁾				
	Bit Value =	Prescale Rate						
	11111 = Re	eserved. Results	in minimum in	terval (1:32)				
	•							
	•							
	10011 = Re	eserved. Results	in minimum in	terval (1:32)				
	10010 = 1:0	8388608 (2 ²³) (li 4104204 (2 ²²) (li	nterval 256s no	ominal)				
	10001 = 1.4	+194304 (2) (11 2097152 (2 ²¹) (11	nterval 64s nor	ninal)				
	01111 = 1:	1:1048576 (2 ²⁰) (Interval 32s nominal)						
	01110 = 1:	524288 (2 ¹⁹) (Int	terval 16s nom	inal)				
	01101 = 1:	262144 (2 ¹⁸) (Int	terval 8s nomir	al)				
	01100 = 1:	131072 (2 ¹⁷) (Int	terval 4s nomin	al)				
	01011 = 1:0	35536 (Interval 2	s nominal) (Re	eset value)				
	01010 = 1:	32768 (Interval 1 16384 (Interval 5	IS NOMINAI)	I)				
	01001 = 1	8192 (Interval 25	56 ms nominal)	")				
	00111 = 1:4	4096 (Interval 12	28 ms nominal)					
	00110 = 1:	2048 (Interval 64	ms nominal)					
	00101 = 1:	1024 (Interval 32	2 ms nominal)					
	00100 = 1:	512 (Interval 16)	ms nominal)					
	00011 = 1:2	256 (Interval 8 m 128 (Interval 4 m	is nominal)					
	00010 = 1.	64 (Interval 2 ms	nominal)					
	00000 = 1:	32 (Interval 1 ms	nominal)					
bit 0	SEN: Softwa	re Enable/Disab	le for Watchdo	g Timer bit				
	If WDTE<1:0)> = 1x:		0				
	This bit is igr	ored.						
	<u>If WDTE<1:0</u>)> = <u>01</u> :						
	1 = WDT is	turned on						
	0 = WDI IS							
	This bit is iar	<u>12 – 00</u> . 10red.						

REGISTER 9-1: WDTCON0: WATCHDOG TIMER CONTROL REGISTER 0

- Note 1: Times are approximate. WDT time is based on 31 kHz LFINTOSC.
 - 2: When WDTCPS <4:0> in CONFIG3 = 11111, the Reset value of WDTPS<4:0> is 01011. Otherwise, the Reset value of WDTPS<4:0> is equal to WDTCPS<4:0> in CONFIG3.
 - 3: When WDTCPS <4:0> in CONFIG3 \neq 11111, these bits are read-only.

© 2014-2016 Microchip Technology Inc

PIC16(L)F1614/8

U-0	U-0	R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1	
	—	SLRA5	SLRA4	—	SLRA2	SLRA1	SLRA0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown				-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7-6	Unimplemen	ted: Read as '	0'					
bit 5-4	SLRA<5:4>:	PORTA Slew F	Rate Enable b	its				
	For RA<5:4>	pins, respectiv	ely					
	\perp = Port pin s	lew rate is limit lews at maxim	eo Im rate					
hit 3		ted: Read as '	n'					
			o Data Enabla h	:t-				
DIL 2-0	SLRA<2:0>:	PURIA SIEW F	ale Enable d	its				
	1 = Port pin s	lew rate is limit	ed					
	0 = Port pin s	lews at maxim	um rate					
	•							

REGISTER 12-7: SLRCONA: PORTA SLEW RATE CONTROL REGISTER

REGISTER 12-8: INLVLA: PORTA INPUT LEVEL CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 INLVLA<5:0>: PORTA Input Level Select bits

For RA<5:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

13.8 Register Definitions: PPS Input Selection

REGISTER 13-1: xxxPPS: PERIPHERAL xxx INPUT

U-0	U-0	U-0	R/W-q/u	R/W-q/u	R/W-q/u	R/W-q/u	R/W-q/u
—	—	—			xxxPPS<4:0>		
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BOF	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = value dep	ends on periphe	eral	
bit 7-5	Unimplemen	ted: Read as 'o)'				
bit 4-3	<pre>xxxPPS<4:3>: Peripheral xxx Input PORT Selection bits 11 = Reserved. Do not use. 10 = Peripheral input is PORTC 01 = Peripheral input is PORTB (PIC16(L)F1618 only) 00 = Peripheral input is PORTA</pre>						
bit 2-0	xxxPPS<2:0> 111 = Periphe 110 = Periphe 101 = Periphe 100 = Periphe 011 = Periphe 010 = Periphe 001 = Periphe	 Peripheral xx eral input is from eral input is from 	x Input Bit Se n PORTx Bit n PORTx Bit	election bits ⁽¹⁾ 7 (Rx7) 6 (Rx6) 5 (Rx5) 4 (Rx4) 3 (Rx3) 2 (Rx2) 1 (Rx1) 0 (Rx0)			

Note 1: See Table 13-1 for Reset values.

REGISTER 13-2: RxyPPS: PIN Rxy OUTPUT SOURCE SELECTION REGISTER

U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
—	—	—			RxyPPS<4:0>		
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimplen	nented bit, read	as '0'	
u = Bit is unchanged x = Bit is unknown			nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RxyPPS<4:0>:** Pin Rxy Output Source Selection bits Selection code determines the output signal on the port pin. See Table 13-2 for the selection codes

19.8 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in **Section35.0** "**Electrical Specifications**" for more details.

19.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 19-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

FIGURE 19-3: ANALOG INPUT MODEL

A maximum source impedance of 10 k Ω is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

22.6 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR1ON bit of the T1CON register
- TMR1IE bit of the PIE1 register
- · PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

22.7 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- PEIE bit of the INTCON register must be set
- T1SYNC bit of the T1CON register must be set
- TMR1CS bits of the T1CON register must be configured

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

FIGURE 22-2: TIMER1 INCREMENTING EDGE

Timer1 oscillator will continue to operate in Sleep regardless of the T1SYNC bit setting.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0	152
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	97
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	98
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	103
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Count								
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Count								
TMR3H	Holding Regi	ister for the M	ost Significant	t Byte of the 1	16-bit TMR3 C	ount			227*
TMR3L	Holding Regi	ister for the Le	east Significar	nt Byte of the	16-bit TMR3 (Count			227*
TMR5H	Holding Regi	ister for the M	ost Significant	t Byte of the 1	l6-bit TMR5 C	ount			227*
TMR5L	Holding Register for the Least Significant Byte of the 16-bit TMR5 Count								
TRISA	_	—	TRISA5	TRISA4	_(1)	TRISA2	TRISA1	TRISA0	151
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	_	T1SYNC	_	TMR10N	231
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GS	S<1:0>	232
T3CON	TMR3C	S<1:0>	T3CKP	S<1:0>	—	T3SYNC	_	TMR3ON	231
T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/ DONE	T3GVAL	T3GS	S<1:0>	232
T5CON	TMR5C	S<1:0>	T5CKP	S<1:0>	—	T5SYNC	_	TMR5ON	231
T5GCON	TMR5GE	T5GPOL	T5GTM	T5GSPM	T5GGO/ DONE	T5GVAL	T5GS	S<1:0>	232

TABLE 22-5: SUMMARY OF REGISTERS ASSOCIATED WITH	TIMER1
--	--------

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Timer1 module. * Page provides register information.

Note 1: Unimplemented, read as '1'.

23.5.2 HARDWARE GATE MODE

The Hardware Gate modes operate the same as the Software Gate mode except the TMRx_ers external signal can also gate the timer. When used with the CCP the gating extends the PWM period. If the timer is stopped when the PWM output is high then the duty cycle is also extended.

When MODE<4:0> = 00001 then the timer is stopped when the external signal is high. When MODE<4:0> = 00010 then the timer is stopped when the external signal is low.

Figure 23-5 illustrates the Hardware Gating mode for MODE<4:0> = 00001 in which a high input level starts the counter.

FIGURE 23-5	HARDWARE GATE MODE TIMING DIAGRAM (MODE = 00001)	
1 IGUNE 23-J.	TARDWARE GATE WODE TIMING DIAGRAM		

	Rev:10.0001688 55002014	
MODE	0b00001	
TMRx_clk		
TMRx_ers		
PRx	5	
TMRx	$0 \qquad \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1$	
TMRx_postscaled		
PWM Duty Cycle PWM Output	3	

DS40001769B-page 249

PIC16(L)F1614/8

24.8 Register Definitions: MSSP Control

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0		
SMP	CKE	D/A	Р	S	R/W	UA	BF		
bit 7							bit 0		
Legend:									
R = Readable bit		W = Writable bit		U = Unimpleme	ented bit, read as '0'				
u = Bit is unchang	ed	x = Bit is unknow	n	-n/n = Value at	POR and BOR/Valu	e at all other Res	ets		
'1' = Bit is set		'0' = Bit is cleared	b						
bit 7	SMP: SPI Data I <u>SPI Master mode</u> 1 = Input data sa 0 = Input data sa <u>SPI Slave mode</u> <u>SMP must be cle</u> In I ² C Master or 1 = Slew rate cc 0 = Slew rate cc	nput Sample bit <u>e:</u> ampled at end of d ampled at middle o <u>sared when SPI is</u> <u>Slave mode:</u> ontrol disabled for i	ata output time f data output tin used in Slave n Standard Speec High-Speed mor	ne node 1 mode (100 kHz de (400 kHz)	and 1 MHz)				
bit 6	 0 = Slew rate control enabled for High-Speed mode (400 kHz) CKE: SPI Clock Edge Select bit (SPI mode only) In SPI Master or Slave mode: 1 = Transmit occurs on transition from active to Idle clock state 0 = Transmit occurs on transition from Idle to active clock state In ¹²CTM mode only:								
bit 5	D/A: Data/Addre 1 = Indicates tha 0 = Indicates tha	ss bit (I ² C mode o t the last byte rece t the last byte rece	nly) eived or transmi eived or transmi	tted was data tted was address					
bit 4	P: Stop bit (I ² C mode only. 1 = Indicates tha 0 = Stop bit was	This bit is cleared t a Stop bit has be not detected last	when the MSSF en detected las	? module is disab t (this bit is '0' on	led, SSPEN is clear Reset)	ed.)			
bit 3	S: Start bit (I ² C mode only. 1 = Indicates that 0 = Start bit was	This bit is cleared t a Start bit has be not detected last	when the MSSF een detected las	? module is disab it (this bit is '0' on	led, SSPEN is clear Reset)	red.)			
bit 2	 c) = start bit was not detected last RM: Read/Write bit information (I²C mode only) This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to t next Start bit, Stop bit, or not ACK bit. In I²C Slave mode: Read Write In I²C Master mode: Transmit is in progress Transmit is not in progress OR-ing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is in Idle mode 						ess match to the		
bit 1	UA: Update Add 1 = Indicates that 0 = Address doe	ress bit (10-bit I ² C t the user needs to s not need to be u	mode only) o update the ad pdated	dress in the SSP	1ADD register				
bit 0	BF: Buffer Full S <u>Receive (SPI an</u> 1 = Receive corr 0 = Receive not <u>Transmit (I²C mo</u> 1 = Data transmi 0 = Data transmi	tatus bit <u>d I²C modes):</u> iplete, SSP1BUF i complete, SSP1BUF ode only): t in progress (doe: t complete (does r	s full UF is empty s not include the not include the A	e ACK and Stop bits	oits), SSP1BUF is fu s), SSP1BUF is emp	III oty			

25.1.2.8 Asynchronous Reception Set-up

- Initialize the SPxBRGH, SPxBRGL register pair 1 and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 25.4 "EUSART Baud Rate Generator (BRG)").
- Clear the ANSEL bit for the RX pin (if applicable). 2.
- 3. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 4. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- If 9-bit reception is desired, set the RX9 bit. 5.
- Enable reception by setting the CREN bit. 6.
- 7. The RCIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- Read the RCxSTA register to get the error flags 8. and, if 9-bit data reception is enabled, the ninth data bit.
- 9. Get the received eight Least Significant data bits from the receive buffer by reading the RCxREG register.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

25.1.2.9 9-bit Address Detection Mode Set-up

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPxBRGH, SPxBRGL register pair 1 and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 25.4 "EUSART Baud Rate Generator (BRG)").
- Clear the ANSEL bit for the RX pin (if applicable). 2.
- Enable the serial port by setting the SPEN bit. 3. The SYNC bit must be clear for asynchronous operation.
- 4 If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. Enable 9-bit reception by setting the RX9 bit.
- Enable address detection by setting the ADDEN 6. bit.
- Enable reception by setting the CREN bit. 7.
- 8. The RCIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- Read the RCxSTA register to get the error flags. 9. The ninth data bit will always be set.
- 10. Get the received eight Least Significant data bits from the receive buffer by reading the RCxREG register. Software determines if this is the device's address.
- 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 12. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

					SYNC	C = 0, BRGH	H = 1, BRC	G16 = 0				
BAUD	Fos	c = 8.00	0 MHz	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—	—	_	_	_					300	0.16	207
1200		—	—	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	_	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	_	_	_
57.6k	55556	-3.55	8	_	_	_	57.60k	0.00	3	—	_	_
115.2k	—	_	—	—	—	_	115.2k	0.00	1	—	—	

TABLE 25-5: BAUD F	RATES FOR ASYNCHRONOUS MODES	(CONTINUED)
--------------------	------------------------------	-------------

	SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 16.000 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	-0.01	4166	300.0	0.00	3839	300.03	0.01	3332	300.0	0.00	2303
1200	1200	-0.03	1041	1200	0.00	959	1200.5	0.04	832	1200	0.00	575
2400	2399	-0.03	520	2400	0.00	479	2398	-0.08	416	2400	0.00	287
9600	9615	0.16	129	9600	0.00	119	9615	0.16	103	9600	0.00	71
10417	10417	0.00	119	10378	-0.37	110	10417	0.00	95	10473	0.53	65
19.2k	19.23k	0.16	64	19.20k	0.00	59	19.23k	0.16	51	19.20k	0.00	35
57.6k	56.818	-1.36	21	57.60k	0.00	19	58.82k	2.12	16	57.60k	0.00	11
115.2k	113.636	-1.36	10	115.2k	0.00	9	111.11k	-3.55	8	115.2k	0.00	5

					SYNC	C = 0, BRGH	l = 0, BRC	G16 = 1					
BAUD	Fos	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207	
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51	
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25	
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_	
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5	
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	—	_	_	
57.6k	55556	-3.55	8	—	—	—	57.60k	0.00	3	—	—	—	
115.2k	—	_	_	—	_	_	115.2k	0.00	1	_	_	—	

30.1 SMT Operation

The core of the module is the 24-bit counter, SMTxTMR combined with a complex data acquisition front-end. Depending on the mode of operation selected, the SMT can perform a variety of measurements summarized in Table 30-1.

30.1.1 CLOCK SOURCES

Clock sources available to the SMT include:

- Fosc
- Fosc/4
- HFINTOSC 16 MHz
- LFINTOSC
- MFINTOSC 31.25 kHz

The SMT clock source is selected by configuring the CSEL<2:0> bits in the SMTxCLK register. The clock source can also be prescaled using the PS<1:0> bits of the SMTxCON0 register. The prescaled clock source is used to clock both the counter and any synchronization logic used by the module.

30.1.2 PERIOD MATCH INTERRUPT

Similar to other timers, the SMT triggers an interrupt when SMTxTMR rolls over to '0'. This happens when SMTxTMR = SMTxPR, regardless of mode. Hence, in any mode that relies on an external signal or a window to reset the timer, proper operation requires that SMTxPR be set to a period larger than that of the expected signal or window.

30.2 Basic Timer Function Registers

The SMTxTMR time base and the SMTxCPW/SMTxPR/SMTxCPR buffer registers serve several functions and can be manually updated using software.

30.2.1 TIME BASE

The SMTxTMR is the 24-bit counter that is the center of the SMT. It is used as the basic counter/timer for measurement in each of the modes of the SMT. It can be reset to a value of 24'h00_0000 by setting the RST bit of the SMTxSTAT register. It can be written to and read from software, but it is not guarded for atomic access, therefore reads and writes to the SMTxTMR should only be made when the GO = 0, or the software should have other measures to ensure integrity of SMTxTMR reads/writes.

30.2.2 PULSE WIDTH LATCH REGISTERS

The SMTxCPW registers are the 24-bit SMT pulse width latch. They are used to latch in the value of the SMTxTMR when triggered by various signals, which are determined by the mode the SMT is currently in. The SMTxCPW registers can also be updated with the current value of the SMTxTMR value by setting the CPWUP bit of the SMTxSTAT register.

30.2.3 PERIOD LATCH REGISTERS

The SMTxCPR registers are the 24-bit SMT period latch. They are used to latch in other values of the SMTxTMR when triggered by various other signals, which are determined by the mode the SMT is currently in.

The SMTxCPR registers can also be updated with the current value of the SMTxTMR value by setting the CPRUP bit in the SMTxSTAT register.

30.3 Halt Operation

The counter can be prevented from rolling-over using the STP bit in the SMTxCON0 register. When halting is enabled, the period match interrupt persists until the SMTxTMR is reset (either by a manual reset, **Section30.2.1 "Time Base**") or by clearing the SMTxGO bit of the SMTxCON1 register and writing the SMTxTMR values in software.

30.4 Polarity Control

The three input signals for the SMT have polarity control to determine whether or not they are active high/positive edge or active low/negative edge signals.

The following bits apply to Polarity Control:

- WSEL bit (Window Polarity)
- SSEL bit (Signal Polarity)
- CSEL bit (Clock Polarity)

These bits are located in the SMTxCON0 register.

30.5 Status Information

The SMT provides input status information for the user without requiring the need to deal with the polarity of the incoming signals.

30.5.1 WINDOW STATUS

Window status is determined by the WS bit of the SMTxSTAT register. This bit is only used in Windowed Measure, Gated Counter and Gated Window Measure modes, and is only valid when TS = 1, and will be delayed in time by synchronizer delays in non-Counter modes.

30.5.2 SIGNAL STATUS

Signal status is determined by the AS bit of the SMTxSTAT register. This bit is used in all modes except Window Measure, Time of Flight and Capture modes, and is only valid when TS = 1, and will be delayed in time by synchronizer delays in non-Counter modes.

30.5.3 GO STATUS

Timer run status is determined by the TS bit of the SMTxSTAT register, and will be delayed in time by synchronizer delays in non-Counter modes.

30.6.8 CAPTURE MODE

This mode captures the Timer value based on a rising or falling edge on the SMTWINx input and triggers an interrupt. This mimics the capture feature of a CCP module. The timer begins incrementing upon the SMTxGO bit being set, and updates the value of the SMTxCPR register on each rising edge of SMTWINx, and updates the value of the CPW register on each falling edge of the SMTWINx. The timer is not reset by any hardware conditions in this mode and must be reset by software, if desired. See Figure 30-16 and Figure 30-17.

REGISTER 31-3: ATxCLK: ANGULAR TIMER CLOCK SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-x/x
—	—	—	—	—	—	—	CS0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-1 Unimplemented: Read as '0' bit 0 CS0: Angular Timer Clock Selection bit 1 = HFINTOSC 16 MHz 0 = Fosc

REGISTER 31-4: ATxSIG: ANGULAR TIMER INPUT SIGNAL SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-x/x	R/W-x/x	R/W-x/x
—	—	—	—	—		SSEL<2:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-3 Unimplemented: Read as '0'

bit 2-0

SSEL<2:0>: Angular Input Signal Selection bit
111 = Reserved
110 = Reserved
101 = LC2_out
100 = LC1_out
011 = ZCD1_out
010 = cmp2_sync
001 = cmp1_sync
000 = ATxINPPS

33.0 IN-CIRCUIT SERIAL PROGRAMMING[™] (ICSP[™])

ICSP[™] programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP[™] programming:

- ICSPCLK
- ICSPDAT
- MCLR/VPP
- VDD
- Vss

In Program/Verify mode the program memory, user IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is the clock input. For more information on ICSPTM refer to the "*PIC12(L)F1612/PIC16(L)F161X Memory Programming Specification*" (DS40001720).

33.1 High-Voltage Programming Entry Mode

The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP to VIHH.

33.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC[®] Flash MCUs to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Words is set to '1', the ICSP Low-Voltage Programming Entry mode is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. MCLR is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.

If low-voltage programming is enabled (LVP = 1), the $\overline{\text{MCLR}}$ Reset function is automatically enabled and cannot be disabled. See **Section6.5** "**MCLR**" for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

33.3 Common Programming Interfaces

Connection to a target device is typically done through an ICSPTM header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6-connector) configuration. See Figure 33-1.

FIGURE 33-1: ICD RJ-11 STYLE CONNECTOR INTERFACE

Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 33-2.

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 36-67: ADC 10-bit Mode, Single-Ended INL, VDD = 3.0V, $TAD = 1 \ \mu$ S, 25°C.

FIGURE 36-68: ADC 10-bit Mode, Single-Ended INL, VDD = 3.0V, TAD = 4μ S, 25° C.

FIGURE 36-69: ADC 10-bit Mode, Single-Ended DNL, VDD = 3.0V, VREF = 3.0V.

FIGURE 36-70: ADC 10-bit Mode, Single-Ended INL, VDD = 3.0V, VREF = 3.0V.

FIGURE 36-71: ADC 10-bit Mode, Single-Ended DNL, VDD = 3.0V, $TAD = 1 \mu S$.

FIGURE 36-72: ADC 10-bit Mode, Single-Ended INL, VDD = 3.0V, TAD = 1μ S.