

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-VQFN Exposed Pad
Supplier Device Package	16-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1614-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 11-16: SCANTRIG: SCAN TRIGGER SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0				
	_	_	_	TSEL<3:0>							
bit 7				t							
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
u = Bit is uncha	anged	x = Bit is unkn	nown	-n/n = Value a	t POR and BC	R/Value at all o	ther Resets				
'1' = Bit is set		'0' = Bit is clea	ared								
bit 7-4	Unimplemen	ted: Read as 'd	כ'								
hit 2 0											

bit 3-0	TSEL<3:0>: Scanner Data Trigger Input Selection bits
	1111-1010 = Reserved
	1001 = SMT2_Match
	1000 = SMT1_Match
	0111 = TMR0_Overflow
	0110 = TMR5_Overflow
	0101 = TMR3_Overflow
	0100 = TMR1_Overflow
	0011 = TMR6_postscaled
	0010 = TMR4 postscaled
	0001 = TMR2 postscaled

0000 = LFINTOSC	
-----------------	--

TABLE 11-4: SUMMARY OF REGISTERS ASSOCIATED WITH CRC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
CRCACCH				ACC<	15:8>				142	
CRCACCL	ACC<7:0>									
CRCCON0	EN	CRCGO	BUSY	ACCM	_		SHIFTM	FULL	141	
CRCCON1		DLEN<3:0> PLEN<3:0>								
CRCDATH				DAT<1	15:8>				142	
CRCDATL				DAT<	7:0>				142	
CRCSHIFTH				SHIFT<	:15:8>				143	
CRCSHIFTL				SHIFT	<7:0>				143	
CRCXORH				XOR<	15:8>			_	143	
CRCXORL				XOR<7:1>					143	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	97	
PIR4	SCANIF	CRCIF	SMT2PWAIF	SMT2PRAIF	SMT2IF	SMT1PWAIF	SMT1PRAIF	SMT1IF	106	
PIE4	SCANIE	CRCIE	SMT2PWAIE	SMT2PRAIE	SMT2IE	SMT1PWAIE	SMT1PRAIE	SMT1IE	101	
SCANCON0	EN	SCANGO	BUSY	INVALID	INTM		MODE<	1:0>	144	
SCANHADRH				HADR<	:15:8>				146	
SCANHADRL				HADR	<7:0>				146	
SCANLADRH				LADR<	15:8>				145	
SCANLADRL				LADR	<7:0>				145	
SCANTRIG						TSEL	<3:0>		147	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the CRC module.

* Page provides register information.

19.8 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in **Section35.0** "**Electrical Specifications**" for more details.

19.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 19-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

FIGURE 19-3: ANALOG INPUT MODEL

A maximum source impedance of 10 k Ω is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

24.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

24.1 MSSP Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

The SPI interface supports the following modes and features:

- Master mode
- Slave mode
- Clock Parity
- Slave Select Synchronization (Slave mode only)
- · Daisy-chain connection of slave devices

Figure 24-1 is a block diagram of the SPI interface module.

FIGURE 24-1: MSSP BLOCK DIAGRAM (SPI MODE)

24.2.6 SPI OPERATION IN SLEEP MODE

In SPI Master mode, module clocks may be operating at a different speed than when in Full-Power mode; in the case of the Sleep mode, all clocks are halted.

Special care must be taken by the user when the MSSP clock is much faster than the system clock.

In Slave mode, when MSSP interrupts are enabled, after the master completes sending data, an MSSP interrupt will wake the controller from Sleep.

If an exit from Sleep mode is not desired, MSSP interrupts should be disabled.

In SPI Master mode, when the Sleep mode is selected, all module clocks are halted and the transmission/ reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all eight bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
ANSELA	—	—	-	ANSA4	—	ANSA2	ANSA1	ANSA0	152		
ANSELC	ANSC7 ⁽²⁾	ANSC6 ⁽²⁾		_	ANSC3	ANSC2	ANSC1	ANSC0	166		
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	97		
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	98		
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	103		
RxyPPS	—	—	_			RxyPPS<4:0>	>		172		
SSPCLKPPS	—	—	-		SS	PCLKPPS<4	:0>		174, 172		
SSPDATPPS	—	—	-		SSPDATPPS<4:0>						
SSPSSPPS	—	—	-		S	SPSSPPS<4:	0>		174, 172		
SSP1BUF	Synchronous	s Serial Port F	Receive Buffe	r/Transmit Re	egister				262*		
SSP1CON1	WCOL	SSPOV	SSPEN	СКР		SSPM	1<3:0>		307		
SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	306		
SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	306		
TRISA	—	—	TRISA5	TRISA4	_(1)	TRISA2	TRISA1	TRISA0	151		
TRISB ⁽²⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	—	—	—	158		
TRISC	TRISC7 ⁽²⁾	TRISC6 ⁽²⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	165		

TABLE 24-1: SUMMARY OF REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the MSSP in SPI mode. * Page provides register information.

Note 1: Unimplemented, read as '1'.

2: PIC16(L)F1618 only.

24.6.13.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level (Case 1).
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1' (Case 2).

When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPxADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled. If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 24-36). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 24-37.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 24-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

24.8 Register Definitions: MSSP Control

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0				
SMP	CKE	D/A	Р	S	R/W	UA	BF				
bit 7							bit 0				
Legend:											
R = Readable bit		W = Writable bit		U = Unimpleme	ented bit, read as '0'	, read as '0'					
u = Bit is unchang	ed	x = Bit is unknow	n	-n/n = Value at	POR and BOR/Valu	e at all other Res	ets				
'1' = Bit is set		'0' = Bit is cleared	b								
bit 7	SMP: SPI Data I <u>SPI Master mode</u> 1 = Input data sa 0 = Input data sa <u>SPI Slave mode</u> <u>SMP must be cle</u> In I ² C Master or 1 = Slew rate cc 0 = Slew rate cc	nput Sample bit <u>e:</u> ampled at end of d ampled at middle o <u>sared when SPI is</u> <u>Slave mode:</u> ontrol disabled for I	ata output time f data output tin used in Slave n Standard Speec High-Speed mor	ne node 1 mode (100 kHz de (400 kHz)	and 1 MHz)						
bit 6	 0 = Slew rate control enabled for High-Speed mode (400 kHz) CKE: SPI Clock Edge Select bit (SPI mode only) In SPI Master or Slave mode: 1 = Transmit occurs on transition from active to Idle clock state 0 = Transmit occurs on transition from Idle to active clock state In I²CTM mode only: 										
bit 5	D/A: Data/Addre 1 = Indicates tha 0 = Indicates tha	ss bit (I ² C mode o t the last byte rece t the last byte rece	nly) eived or transmi eived or transmi	tted was data tted was address							
bit 4	P: Stop bit (I ² C mode only. 1 = Indicates tha 0 = Stop bit was	This bit is cleared t a Stop bit has be not detected last	when the MSSF en detected las	? module is disab t (this bit is '0' on	led, SSPEN is clear Reset)	ed.)					
bit 3	S: Start bit (I ² C mode only. 1 = Indicates that 0 = Start bit was	This bit is cleared t a Start bit has be not detected last	when the MSSF een detected las	? module is disab it (this bit is '0' on	led, SSPEN is clear Reset)	red.)					
bit 2	 0 = Start bit was not detected last R/W: Read/Write bit information (I²C mode only) This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next Start bit, Stop bit, or not ACK bit. In I²C Slave mode: 1 = Read 0 = Write In I²C Master mode: 1 = Transmit is in progress 0 = Transmit is not in progress 										
bit 1	 UA: Update Address bit (10-bit I²C mode only) 1 = Indicates that the user needs to update the address in the SSP1ADD register 0 = Address does not need to be updated 										
bit 0	BF: Buffer Full S <u>Receive (SPI an</u> 1 = Receive corr 0 = Receive not <u>Transmit (I²C mo</u> 1 = Data transmi 0 = Data transmi	tatus bit <u>d I²C modes):</u> iplete, SSP1BUF i complete, SSP1BUF ode only): t in progress (doe: t complete (does r	s full UF is empty s not include the not include the A	e ACK and Stop bits	oits), SSP1BUF is fu s), SSP1BUF is emp	III oty					

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1												
BAUD	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 16.000 MHz			Fosc = 11.0592 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	13332	300.0	0.00	9215	
1200	1200	-0.01	4166	1200	0.00	3839	1200.1	0.01	3332	1200	0.00	2303	
2400	2400	0.02	2082	2400	0.00	1919	2399.5	-0.02	1666	2400	0.00	1151	
9600	9597	-0.03	520	9600	0.00	479	9592	-0.08	416	9600	0.00	287	
10417	10417	0.00	479	10425	0.08	441	10417	0.00	383	10433	0.16	264	
19.2k	19.23k	0.16	259	19.20k	0.00	239	19.23k	0.16	207	19.20k	0.00	143	
57.6k	57.47k	-0.22	86	57.60k	0.00	79	57.97k	0.64	68	57.60k	0.00	47	
115.2k	116.3k	0.94	42	115.2k	0.00	39	114.29k	-0.79	34	115.2k	0.00	23	

TABLE 25-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1												
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832	
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207	
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103	
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25	
10417	10417	0	191	10417	0.00	95	10473	0.53	87	10417	0.00	23	
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12	
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	—	—	
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	—	—	—	

TABLE 25-7:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
TRANSMISSION

	-								
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	_		ANSA4	—	ANSA2	ANSA1	ANSA0	152
ANSELB ⁽¹⁾	_	_	ANSB5	ANSB4	_	_	_	_	159
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	_	_	ANSC3	ANSC2	ANSC1	ANSC0	166
BAUD1CON	ABDOVF	RCIDL		SCKP	BRG16	—	WUE	ABDEN	323
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	97
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	98
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	103
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	322
RxyPPS	_	_	_		ſ	RxyPPS<4:0	>		172
SP1BRGL				BRG<	:7:0>				324
SP1BRGH				BRG<	15:8>				324
TRISA	_	_	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	151
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	_	—	_	—	158
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	165
TX1REG			EUS	ART Transm	iit Data Regis	ster			313*
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	321

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master transmission. * Page provides register information.

Note 1: PIC16(L)F1618 only.

2: Unimplemented, read as '1'.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PR2			Tin	ner2 module F	Period Registe	er			359*
PWM3CON	EN	—	OUT	POL	_	—	_	—	361
PWM3DCH		DC<9:2>							
PWM3DCL	DC<1:0>					_	361		
PWM4CON	EN	_	OUT	POL	_		_		361
PWM4DCH				DC<	9:2>				361
PWM4DCL	DC<	1:0>	—	—	_	_	—	_	361
T2CON	ON		CKPS<2:0>			OUTPS	S<3:0>		254
TMR2				Timer2 modu	le Register				235*
TRISA	_		TRISA5	TRISA4	—(1)	TRISA2	TRISA1	TRISA0	151
TRISC	TRISC7 ⁽²⁾	TRISC6 ⁽²⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	165

TABLE 27-3: SUMMARY OF REGISTERS ASSOCIATED WITH PWM

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the PWM. * Page provides register information.

Note 1: Unimplemented, read as '1'.

2: PIC16(L)F1618 only.

© 2014-2016 Microchip Technology Inc.

DS40001769B-page 411

PIC16(L)F1614/8

FIGURE 30-8:

-8: HIGH AND LOW MEASURE MODE REPEAT ACQUISITION TIMING DIAGRAM

		11.0					
0-0	0-0	0-0	K/VV-U/U	K/W-U/U		K/W-U/U	K/W-U/U
hit 7	—	_			33EL54:02		h:+ 0
DIT 7							DIt U
Legena:	1.11		1.11				
R = Readable	DIT	vv = vvritable	DI		nented bit, read		
u = Bit is unch	anged	x = Bit is unki	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared	q = Value dep	ends on condit	tion	
bit 7-5	Unimplemen	ted: Read as '	0'				
bit 4-0	SSEL<4:0>:	SMT2 Signal S	Selection bits				
	11111 = Res	erved					
	•						
	10101 = Res	erved					
	10100 = PW	M4_out					
	10011 = PW	M3_out					
	10010 = CCI	P2_out					
	10001 = CC	P1_out					
	10000 = IMI	R0_overflow					
	01111 = Res	T1 match					
	01101 = TMF	R5 overflow					
	01100 = TMF	R3 overflow					
	01011 = TM	R1_overflow					
	01010 = Res	served					
	01001 = Res	erved					
	01000 = LC2	2_out					
	00111 = LC1	_out					
	00110 - TMI	R0_posiscaled					
	00100 = TMI	R2 postscaled					
	00011 = ZCE	D1 out					
	00010 = C2	DUT_sync					
	00001 = C1C	OUT_sync					
	00000 = SM	TxSIG pin					

REGISTER 30-8: SMT2SIG: SMT2 SIGNAL INPUT SELECT REGISTER

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	
	SMTxCPR<7:0>							
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable bi	t	U = Unimple	mented bit, rea	d as '0'		
u = Bit is uncha	anged	x = Bit is unkno	wn	-n/n = Value	at POR and BC	R/Value at all	other Resets	
'1' = Bit is set		'0' = Bit is clear	ed					

REGISTER 30-12: SMTxCPRL: SMT CAPTURED PERIOD REGISTER – LOW BYTE

bit 7-0 SMTxCPR<7:0>: Significant bits of the SMT Period Latch – Low Byte

REGISTER 30-13: SMTxCPRH: SMT CAPTURED PERIOD REGISTER - HIGH BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x
SMTxCPR<15:8>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxCPR<15:8>: Significant bits of the SMT Period Latch – High Byte

REGISTER 30-14: SMTxCPRU: SMT CAPTURED PERIOD REGISTER - UPPER BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x
			SMTxCP	R<23:16>			
bit 7							bit 0
l egend.							

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxCPR<23:16>: Significant bits of the SMT Period Latch – Upper Byte

REGISTER 32-2: PIDxINH: PID INPUT HIGH REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			IN<	15:8>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	ented bit, read as	'0'	
u = Bit is unchange	ed	x = Bit is unknowr	า	-n/n = Value at	POR and BOR/V	alue at all other I	Resets
'1' = Bit is set		'0' = Bit is cleared		q = Value depe	ends on condition		

bit 7-0

IN<15:8>: IN upper eight bits. IN is the 16-bit input from the control system to the PID module

REGISTER 32-3: PIDxINL: PID INPUT LOW REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			IN<	7:0>			
bit 7							bit 0
Legend:							
D. Develophie bit				II I I I a far a far a f	and a distance of a second		

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-0 IN<7:0>: IN lower eight bits. IN is the 16-bit input from the control system to the PID module

REGISTER 32-4: PIDxSETH: PID SET POINT HIGH REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
SET<15:8>							
bit 7 bi							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-0 SET<15:8>: SET upper eight bits. SET is the 16-bit user-controlled variable that the input from the control system is compared against to determine the error in the system

REGISTER 32-5: PIDxSETL: PID SET POINT LOW REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
SET<7:0>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-0 SET<7:0>: SET lower eight bits. SET is the 16-bit user-controlled variable that the input from the control system is compared against to determine the error in the system

33.0 IN-CIRCUIT SERIAL PROGRAMMING[™] (ICSP[™])

ICSP[™] programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP[™] programming:

- ICSPCLK
- ICSPDAT
- MCLR/VPP
- VDD
- Vss

In Program/Verify mode the program memory, user IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is the clock input. For more information on ICSPTM refer to the "*PIC12(L)F1612/PIC16(L)F161X Memory Programming Specification*" (DS40001720).

33.1 High-Voltage Programming Entry Mode

The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP to VIHH.

33.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC[®] Flash MCUs to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Words is set to '1', the ICSP Low-Voltage Programming Entry mode is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. MCLR is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.

If low-voltage programming is enabled (LVP = 1), the $\overline{\text{MCLR}}$ Reset function is automatically enabled and cannot be disabled. See **Section6.5** "**MCLR**" for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

33.3 Common Programming Interfaces

Connection to a target device is typically done through an ICSPTM header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6-connector) configuration. See Figure 33-1.

FIGURE 33-1: ICD RJ-11 STYLE CONNECTOR INTERFACE

Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 33-2.

35.3 DC Characteristics

TABLE 35-1: SUPPLY VOLTAGE

PIC16F1614/8				Standard Operating Conditions (unless otherwise stated)						
PIC16F1614/8										
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
D001	Vdd	Supply Voltage								
			VDDMIN 1.8 2.5	_	VDDMAX 3.6 3.6	V V	Fosc ≤ 16 MHz Fosc ≤ 32 MHz			
D001			2.3 2.5	_	5.5 5.5	V V	$Fosc \le 16 \text{ MHz}$ $Fosc \le 32 \text{ MHz}$			
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾					•			
			1.5			V	Device in Sleep mode			
D002*			1.7	—	—	V	Device in Sleep mode			
D002A*	VPOR	Power-on Reset Release Voltage	2)			-				
				1.6	_	V				
D002A*		(0)	—	1.6	—	V				
D002B*	VPORR*	Power-on Reset Rearm Voltage ⁽²⁾		1	r					
			—	0.8	_	V				
D002B*			—	1.5	—	V				
D003	VFVR	Fixed Voltage Reference Voltage								
Daga			_	1.024	_	V	-40°C ≤ IA ≤ +85°C			
D003			—	1.024	_	V	-40°C ≤ IA ≤ +85°C			
DUUSA	VADEVR	FVR Gain voltage Accuracy for A	-4	_	+4	%	1x VFVR, VDD \geq 2.5V 2x VFVR, VDD \geq 2.5V			
D003A			-5	—	+5	%	$\begin{array}{l} 1x \; \text{VFVR}, \; \text{VDD} \geq 2.5 \text{V} \\ 2x \; \text{VFVR}, \; \text{VDD} \geq 2.5 \text{V} \\ 4x \; \text{VFVR}, \; \text{VDD} \geq 4.75 \text{V} \end{array}$			
D003B	VCDAFVR	FVR Gain Voltage Accuracy for Comparator/ADC								
			-4	_	+4	%	1x VFVR, VDD $\geq 2.5V$ 2x VFVR, VDD $\geq 2.5V$			
D003B			-7	—	+7	%	$\begin{array}{l} 1x \; \text{VFVR}, \; \text{VDD} \geq 2.5 \text{V} \\ 2x \; \text{VFVR}, \; \text{VDD} \geq 2.5 \text{V} \\ 4x \; \text{VFVR}, \; \text{VDD} \geq 4.75 \text{V} \end{array}$			
D004*	SVDD	VDD Rise Rate ⁽²⁾								
			0.05		_	V/ms	Ensures that the Power-on Reset signal is released properly.			
D004*			0.05	_	—	V/ms	Ensures that the Power-on Reset signal is released properly.			

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: See Figure 35-3, POR and POR REARM with Slow Rising VDD.

TABLE 35-2: SUPPLY CURRENT (IDD)^(1,2)

PIC16LF	1614/8	Standard Operating Conditions (unless otherwise stated)						
PIC16F1	614/8							
Param.	Device Characteristics	Min.	Тур†	Max.	Units	Conditions		
No.						Vdd	Note	
D013		—	30	90	μA	1.8	Fosc = 1 MHz,	
		-	55	110	μA	3.0	External Clock (ECM), Medium-Power mode	
D013		_	65	120	μA	2.3	Fosc = 1 MHz,	
		—	85	150	μA	3.0	External Clock (ECM),	
		—	115	200	μA	5.0	Medium-Power mode	
D014		_	115	260	μA	1.8	Fosc = 4 MHz,	
		—	210	380	μA	3.0	External Clock (ECM), Medium-Power mode	
D014			180	310	μA	2.3	Fosc = 4 MHz,	
		_	240	410	μA	3.0	External Clock (ECM),	
		_	295	520	μA	5.0		

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

TABLE 35-8: OSCILLATOR PARAMETERS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions	
OS08	HFosc	Internal Calibrated HFINTOSC Frequency ⁽¹⁾	—		16.0		MHz	(Note 2)	
OS09	LFosc	Internal LFINTOSC Frequency	—	_	31	_	kHz	(Note 3)	
OS10*	TIOSC ST	HFINTOSC Wake-up from Sleep Start-up Time	—	_	5	15	μS		
OS10A*	TLFOSC ST	LFINTOSC Wake-up from Sleep Start-up Time	—	_	0.5	_	ms	$-40^\circ C \le T \texttt{A} \le +125^\circ C$	

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1:To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

2: See Figure 35-6: "HFINTOSC Frequency Accuracy over Device VDD and Temperature",

3: See Figure 36-45: "LFINTOSC Frequency over VDD and Temperature, PIC16LF1614/8 Only", and Figure 36-46: "LFINTOSC Frequency over VDD and Temperature, PIC16F1614/8 Only".

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 36-7: IDD Typical, EC Oscillator MP Mode, PIC16F1614/8 Only.

FIGURE 36-8: IDD Maximum, EC Oscillator MP Mode, PIC16F1614/8 Only.

FIGURE 36-9: IDD Typical, EC Oscillator HP Mode, PIC16LF1614/8 Only.

FIGURE 36-10: IDD Maximum, EC Oscillator HP Mode, PIC16LF1614/8 Only.

FIGURE 36-11: IDD Typical, EC Oscillator HP Mode, PIC16F1614/8 Only.

FIGURE 36-12: IDD Maximum, EC Oscillator HP Mode, PIC16F1614/8 Only.

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension	Limits	MIN	NOM	MAX			
Number of Pins	N	14					
Pitch	е		0.65 BSC				
Overall Height	Α	-	-	1.20			
Molded Package Thickness	A2	0.80	1.00	1.05			
Standoff	A1	0.05	-	0.15			
Overall Width	E	6.40 BSC					
Molded Package Width	E1	4.30	4.40	4.50			
Molded Package Length	D	4.90	5.00	5.10			
Foot Length	L	0.45	0.60	0.75			
Footprint	(L1)	1.00 REF					
Foot Angle	φ	0°	-	8°			
Lead Thickness	С	0.09	-	0.20			
Lead Width	b	0.19	-	0.30			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-087C Sheet 2 of 2