

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1618-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)
IADLL 3-14.	

TADLE	: 3-14: SPE		ION REGIST	ER SUIVIIVIA							
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 3											
18Ch	ANSELA	—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0	1 -111	1 -111
18Dh	ANSELB ⁽⁴⁾	—	—	ANSB5	ANSB4	—	—	—	—	11	11
18Eh	ANSELC	ANSC7 ⁽⁴⁾	ANSC6 ⁽⁴⁾	—	—	ANSC3	ANSC2	ANSC1	ANSC0	11 1111	11 1111
18Fh	—	Unimplemented	nimplemented								—
190h	—	Unimplemented	Inimplemented								—
191h	PMADRL	Flash Program	Memory Address	Register Low B	Byte					0000 0000	0000 0000
192h	PMADRH	(2)	Flash Program	Memory Address	s Register High I	3yte				1000 0000	1000 0000
193h	PMDATL	Flash Program	Memory Read D	ata Register Lov	v Byte					xxxx xxxx	uuuu uuuu
194h	PMDATH	—	—	Flash Program	Memory Read D	ata Register Hig	h Byte			xx xxxx	uu uuuu
195h	PMCON1	(2)	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	1000 x000	1000 q000
196h	PMCON2	Flash Program	Memory Control	Register 2						0000 0000	0000 0000
197h	VREGCON ⁽¹⁾	—	—	—	—	—	—	VREGPM	Reserved	01	01
198h	—	Unimplemented	1							—	—
199h	RC1REG	EUSART Recei	ve Data Register							0000 0000	0000 0000
19Ah	TX1REG	EUSART Trans	mit Data Registe	r						0000 0000	0000 0000
19Bh	SP1BRGL	RGL Baud Rate Generator Data Register Low							0000 0000	0000 0000	
19Ch	SP1BRGH	Baud Rate Generator Data Register High							0000 0000	0000 0000	
19Dh	RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19Eh	TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
19Fh	BAUD1CON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	01-0 0-00	01-0 0-00

PIC16(L)F1614/8

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: PIC16F1614/8 only.

2: Unimplemented, read as '1'.

3: PIC16(L)F1614 only.

4: PIC16(L)F1618 only.

4.3 Code Protection

Code protection allows the device to be protected from unauthorized access. Internal access to the program memory is unaffected by any code protection setting.

4.3.1 PROGRAM MEMORY PROTECTION

The entire program memory space is protected from external reads and writes by the \overline{CP} bit in Configuration Words. When $\overline{CP} = 0$, external reads and writes of program memory are inhibited and a read will return all '0's. The CPU can continue to read program memory, regardless of the protection bit settings. Writing the program memory is dependent upon the write protection setting. See **Section 4.4 "Write Protection"** for more information.

4.4 Write Protection

Write protection allows the device to be protected from unintended self-writes. Applications, such as boot loader software, can be protected while allowing other regions of the program memory to be modified.

The WRT<1:0> bits in Configuration Words define the size of the program memory block that is protected.

4.5 User ID

Four memory locations (8000h-8003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are readable and writable during normal execution. See **Section 10.4 "User ID, Device ID and Configuration Word Access"** for more information on accessing these memory locations. For more information on checksum calculation, see the "*PIC12(L)F1612/16(L)F161X Memory Programming Specification*" (DS40001720).

R/W-0/	0 R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
SCANI	F CRCIF	SMT2PWAIF	SMT2PRAIF	SMT2IF	SMT1PWAIF	SMT1PRAIF	SMT1IF			
bit 7				•			bit			
Legend:										
R = Reada	able bit	W = Writable I	bit	U = Unimple	mented bit, read	l as '0'				
u = Bit is u	•	x = Bit is unkn	own	-n/n = Value	at POR and BO	R/Value at all ot	her Resets			
'1' = Bit is	set	'0' = Bit is clea	ared							
bit 7	SCANIF: So	canner Interrupt	Flag bit							
		t is pending t is not pending								
bit 6	CRCIF: CR	C Interrupt Flag	bit							
	1 = Interrup	t is pending								
hit 5	•	t is not pending	Midth Acquisiti	on Intorrunt E	log bit					
bit 5		IF: SMT2 Pulse If is pending	width Acquisiti	оп іпцентирі г	nag bit					
		t is not pending								
bit 4		F: SMT2 Period	Acquisition Int	errupt Flag bi	t					
		t is pending								
	0 = Interrup	t is not pending								
bit 3		MT2 Match Inter	upt Flag bit							
		t is pending t is not pending								
bit 2	-	IF: SMT1 Pulse	Width Acquisiti	on Interrunt F	ilaa hit					
		t is pending		on interrupt i	lag bit					
		t is not pending								
bit 1	SMT1PRAI	F: SMT1 Period	Acquisition Int	errupt Flag bi	t					
		1 = Interrupt is pending								
	-	t is not pending								
bit 0		MT1 Match Inter	upt Flag bit							
		t is pending t is not pending								
	0 – interrup	t is not pending								
Note:	Interrupt flag bits									
	condition occurs,									
	its corresponding Enable bit, GIE									
	User software									
	appropriate interi	rupt flag bits are o								
	to enabling an in	terrupt.								

REGISTER 7-10: PIR4: PERIPHERAL INTERRUPT REQUEST REGISTER 4

11.10.6 WDT INTERACTION

Operation of the WDT is not affected by scanner activity. Hence, it is possible that long scans, particularly in Burst mode, may exceed the WDT time-out period and result in an undesired device Reset. This should be considered when performing memory scans with an application that also utilizes WDT.

11.10.7 IN-CIRCUIT DEBUG (ICD) INTERACTION

The scanner freezes when an ICD halt occurs, and remains frozen until user-mode operation resumes. The debugger may inspect the SCANCON0 and SCANLADR registers to determine the state of the scan.

The ICD interaction with each operating mode is summarized in Table 11-3.

	Scanner Operating Mode						
ICD Halt	Peek	Concurrent Triggered	Burst				
External Halt	If Scanner would peek an instruction that is not executed (because of ICD entry), the peek will occur after ICD exit, when the instruction executes.	If external halt is asserted during a scan cycle, the instruction (delayed by scan) may or may not execute before ICD entry, depending on external halt timing.		If external halt is asserted during the BSF (SCANCON.GO), ICD entry occurs, and the burst is delayed until ICD exit. Otherwise, the current NVM-access cycle will complete, and then the scanner will be interrupted for ICD entry.			
		If external halt is asserted during the cycle immediately prior to the scan cycle, both scan and instruction execution happen after the ICD exits.	If external halt is asserted during the burst, the burst is suspended and will resume with ICD exit.				
PC Breakpoint		Scan cycle occurs before ICD entry and instruction execution happens after the ICD exits.	If PCPB (or single step) is on				
Data Breakpoint		The instruction with the dataBP executes and ICD entry occurs immediately after. If scan is requested during that cycle, the scan cycle is postponed until the ICD exits.	BSF (SCANCON.GO), the ICD is entered before execution; execution of the burst will occur at ICD exit, and the burst will run to completion.				
Single Step		If a scan cycle is ready after the debug instruction is executed, the scan will read PFM and then the ICD is re-entered.	Note that the burst can be interrupted by an external halt.				
SWBP and ICDINST		If scan would stall a SWBP, the scan cycle occurs and the ICD is entered.	If SWBP replaces BSF(SCANCON.GO), the ICD will be entered; instruction execution will occur at ICD exit (from ICDINSTR register), and the burst will run to completion.				

TABLE 11-3: ICD AND SCANNER INTERACTIONS

REGISTER 12-25: HIDRVC: PORTC HIGH DRIVE STRENGTH REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0		
—	—	HIDC5	HIDC4	—	—	—	—		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'			
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7-6	Unimplemen	ted: Read as '	0'						
bit 5	HIDC5: High	Current Drive E	Enable on Port	t C5					
	1 = High Drive enabled								
	0 = High Drive disabled								
bit 4	HIDC4: High Current Drive Enable on Port C4								
	1 = High Drive enabled								
	0 = High Drive disabled								

bit 3-0 Unimplemented: Read as '0'

TABLE 12-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	—	—	ANSC3	ANSC2	ANSC1	ANSC0	166
HIDRVC		_	HIDC5	HIDC4	_	_	—	_	169
INLVLC	INLVLC7 ⁽¹⁾	INLVLC6 ⁽¹⁾	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	168
LATC	LATC7 ⁽¹⁾	LATC6 ⁽¹⁾	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	166
ODCONC	ODC7 ⁽¹⁾	ODC6 ⁽¹⁾	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	167
PORTC	RC7 ⁽¹⁾	RC6 ⁽¹⁾	RC5	RC4	RC3	RC2	RC1	RC0	165
SLRCONC	SLRC7 ⁽¹⁾	SLRC6 ⁽¹⁾	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	168
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	165
WPUC	WPUC7 ⁽¹⁾	WPUC6 ⁽¹⁾	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	167

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTC. **Note 1:** PIC16(L)F1618 only

D DDO - 4-0	Outrast Olamal		PIC16(L)F161	PIC16(I	L)F1614	
RxyPPS<4:0>	Output Signal	PORTA	PORTB	PORTC	PORTA	PORTC
11xxx	Reserved	•	•	٠	•	•
10111	Reserved	•	•	•	•	•
10110	Reserved	•	•	•	•	•
10101	Reserved	•	•	•	•	•
10100	Reserved	•	•	•	•	•
10011	DT	•	•	•	•	•
10010	TX/CK	•	•	•	•	•
10001	SDO/SDA ⁽¹⁾	•	•	•	•	•
10000	SCK/SCL ⁽¹⁾	•	•	•	•	•
01111	PWM4_out	•	•	•	•	•
01110	PWM3_out	•	•	•	•	•
01101	CCP2_out	•	•	•	•	•
01100	CCP1_out	•	•	•	•	•
01011	CWG1OUTD ⁽¹⁾	•	•	•	•	•
01010	CWG1OUTC ⁽¹⁾	•	•	•	•	•
01001	CWG1OUTB ⁽¹⁾	•	•	•	•	•
01000	CWG1OUTA ⁽¹⁾	•	•	•	•	•
00111	LC4_out	•	•	٠	•	•
00110	LC3_out	•	•	•	•	•
00101	LC2_out	•	•	•	•	•
00100	LC1_out	•	•	•	•	•
00011	ZCD1_out	•	•	٠	•	•
00010	sync_C2OUT	•	•	٠	•	•
00001	sync_C1OUT	•	•	•	•	•
00000	LATxy	•	•	•	•	•

TABLE 13-2: AV	AILABLE PORTS FOR OUTPUT BY PERIPHERAL ⁽²⁾
----------------	---

Note 1: TRIS control is overridden by the peripheral as required.

2: Unsupported peripherals will output a '0'.

17.3 Register Definitions: ADC Control

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
			CHS<4:0>			GO/DONE	ADON		
oit 7							bit		
Legend:									
R = Readal	ole bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'			
u = Bit is ur	nchanged	x = Bit is unk	nown	-n/n = Value a	at POR and B	OR/Value at all o	other Resets		
'1' = Bit is s	et	'0' = Bit is cle	ared						
hit 7	Unimalama	ntad. Dood oo	· • '						
bit 7	-	nted: Read as							
oit 6-2		Analog Channe		Duffor 1 Output	(3)				
	11111 = FV $11110 = DA$	C (Digital-to-Ar	je Relefence) i jalog Converte	Buffer 1 Output _{r)} (2)					
	11101 = Ter	nperature Indic	ator ⁽¹⁾	• /					
		, served. No cha		d.					
	•								
	•								
	01100 = Re	served. No cha	innel connecte	d.					
	01011 = AN								
	01010 = AN								
	01001 = AN								
	01000 = AN	served. No cha		d					
		served. No cha							
		served. No cha							
	00100 = Re	served. No cha	innel connecte	d.					
		served. No cha	innel connecte	d.					
	00111 = AN 00110 = AN								
	00110 - AN 00101 - AN								
	00100 = AN								
	00011 = AN								
	00010 = AN								
	00001 = AN 00000 = AN								
oit 1		ADC Conversio	n Status hit						
				tting this bit sta	rts an ADC co	nversion cycle.			
						sion has comple	eted.		
		version comple							
oit 0	ADON: ADC	Enable bit							
	1 = ADC is e								
		lisabled and co	-	-					
	See Section16.0	-							
	See Section18.0	-	-			more informatio	n.		
	See Section15.0	-	-	FVR)" for more	information.				
∆ • /	N<11:8> available on PIC16(1)E1618 only								

REGISTER 17-1: ADCON0: ADC CONTROL REGISTER 0

4: AN<11:8> available on PIC16(L)F1618 only.

22.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

22.4 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If the external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section22.4.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

Note: When switching from synchronous to asynchronous operation, it is possible to skip an increment. When switching from asynchronous to synchronous operation, it is possible to produce an additional increment.

22.4.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

T1GSS	Timer1 Gate Source
00	Timer1 Gate pin (T1G)
01	Overflow of Timer0 (T0_overflow) (TMR0 increments from FFh to 00h)
10	Comparator 1 Output (C1_OUT_sync) ⁽¹⁾
11	Comparator 2 Output (C2_OUT_sync) ⁽¹⁾

Note 1: Optionally synchronized comparator output.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

22.5 Timer1 Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using Timer1 gate circuitry. This is also referred to as Timer1 Gate Enable.

Timer1 gate can also be driven by multiple selectable sources.

22.5.1 TIMER1 GATE ENABLE

The Timer1 Gate Enable mode is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 Gate Enable mode is configured using the T1GPOL bit of the T1GCON register.

When Timer1 Gate Enable mode is enabled, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 Gate Enable mode is disabled, no incrementing will occur and Timer1 will hold the current count. See Figure 22-3 for timing details.

TABLE 22-3:	TIMER1 GATE ENABLE
	SELECTIONS

T1CLK	T1GPOL	T1G	Timer1 Operation
1	0	0	Counts
1	0	1	Holds Count
\uparrow	1	0	Holds Count
\uparrow	1	1	Counts

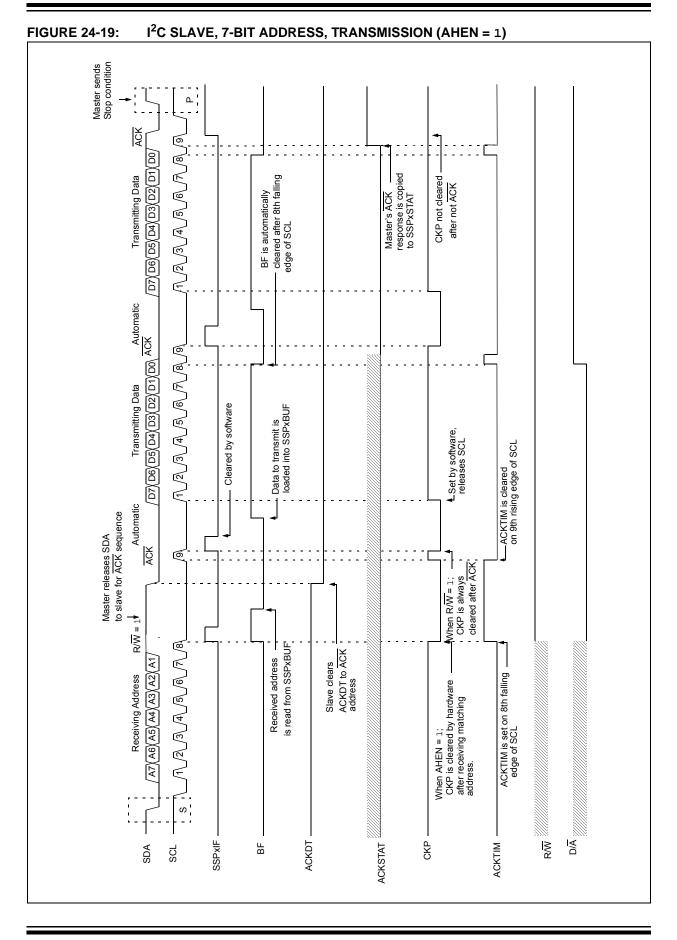
22.5.2 TIMER1 GATE SOURCE SELECTION

Timer1 gate source selections are shown in Table 22-4. Source selection is controlled by the T1GSS<1:0> bits of the T1GCON register. The polarity for each available source is also selectable. Polarity selection is controlled by the T1GPOL bit of the T1GCON register.

Mode	MODE	E<4:0>	Output	Operation		Timer Control			
Mode	<4:3>	<2:0>	Operation	Operation	Start	Reset	Stop		
		000		Software gate (Figure 23-4)	ON = 1	_	ON = 0		
Free	001	Period Pulse	Hardware gate, active-high (Figure 23-5)	ON = 1 and TMRx_ers = 1	_	ON = 0 or TMRx_ers = 0			
	010	T uloc	Hardware gate, active-low	ON = 1 and TMRx_ers = 0		ON = 0 or TMRx_ers = 1			
Free Running	0.0	011		Rising or falling edge Reset		TMRx_ers			
Period	00 100	100	Period	Rising edge Reset (Figure 23-6)		TMRx_ers ↑	ON = 0		
		101	Pulse	Falling edge Reset		TMRx_ers ↓			
		110	with Hardware Reset	Low level Reset	ON = 1	TMRx_ers = 0	ON = 0 or TMRx_ers = 0		
		111	Resel	High level Reset (Figure 23-7)		TMRx_ers = 1	ON = 0 or TMRx_ers = 1		
		000	One-shot	Software start (Figure 23-8)	ON = 1				
				001	Edge	Rising edge start (Figure 23-9)	ON = 1 and TMRx_ers ↑	_	
One-shot 01		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	-	l		
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_	ON = 0 or		
	01	100	Edge triggered start	Rising edge start and Rising edge Reset (Figure 23-10)	ON = 1 and TMRx_ers ↑	TMRx_ers ↑	Next clock after TMRx = PRx		
		101		Falling edge start and Falling edge Reset	ON = 1 and TMRx_ers ↓	TMRx_ers ↓	(Note 2)		
		110	and hardware Reset	Rising edge start and Low level Reset (Figure 23-11)	ON = 1 and TMRx_ers ↑	TMRx_ers = 0			
		111	(Note 1)	Falling edge start and High level Reset	ON = 1 and TMRx_ers ↓	TMRx_ers = 1			
		000		Rese	rved				
		001	Edge	Rising edge start (Figure 23-12)	ON = 1 and TMRx_ers ↑	_	ON = 0 or		
Mono-stable		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	_	Next clock after		
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_	TMRx = PRx (Note 3)		
Reserved	10	100		Rese	rved				
Reserved	erved 101			Rese	rved				
		110	Level triggered	High level start and Low level Reset (Figure 23-13)	ON = 1 and TMRx_ers = 1	TMRx_ers = 0	ON = 0 or		
One-shot	start and ¹¹¹ hardware Reset	Low level start & High level Reset	ON = 1 and TMRx_ers = 0	TMRx_ers = 1	Held in Reset (Note 2)				
Reserved	11	xxx		Rese	rved				

TABLE 23-1: TIMER2 OPERATING MODES

Note 1: If ON = 0 then an edge is required to restart the timer after ON = 1.


2: When TMRx = PRx then the next clock clears ON and stops TMRx at 00h.

3: When TMRx = PRx then the next clock stops TMRx at 00h but does not clear ON.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCP1CON	EN		OUT	FMT	MODE<3:0>				352
CCP2CON	EN	_	OUT	FMT		MODE	E<3:0>		352
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	97
PIE1	TMR1GIE	ADIE	_	_	-	CCP1IE	TMR2IE	TMR1IE	98
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	103
PR2	Timer2 Modu	mer2 Module Period Register							235*
TMR2	Holding Register for the 8-bit TMR2 Register								235*
T2CON	ON		CKPS<2:0>		OUTPS<3:0>				
T2CLKCON	—	_	_	_		CS<3:0>			
T2RST	_					256			
T2HLT	PSYNC	CKPOL	CKSYNC		MODE<4:0>				
PR4	Timer4 Module Period Register							235*	
TMR4	Holding Reg	ister for the 8	-bit TMR4 Re	gister					235*
T4CON	ON		CKPS<2:0>			OUTP	S<3:0>		254
T4CLKCON	—	_	_	_		CS<	<3:0>		253
T4RST	_		_	_		RSEL	_<3:0>		256
T4HLT	PSYNC	CKPOL	CKSYNC			MODE<4:0>			255
PR6	Timer6 Modu	ule Period Re	gister						235*
TMR6	Holding Reg	ister for the 8	-bit TMR6 Re	gister					235*
T6CON	ON		CKPS<2:0>			OUTP	S<3:0>		254
T6CLKCON	_	_	_	_			T6CS<2:0>		253
T6RST	—	_	_	_		RSEL	_<3:0>		256
T6HLT	PSYNC	CKPOL	CKSYNC			MODE<4:0>			255

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module.

* Page provides register information.

PIC16(L)F1614/8

© 2014-2016 Microchip Technology Inc.

25.1 EUSART Asynchronous Mode

The EUSART transmits and receives data using the standard non-return-to-zero (NRZ) format. NRZ is implemented with two levels: a VOH Mark state which represents a '1' data bit, and a VOL Space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the Mark state. Each character transmission consists of one Start bit followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 25-5 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

25.1.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 25-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXxREG register.

25.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

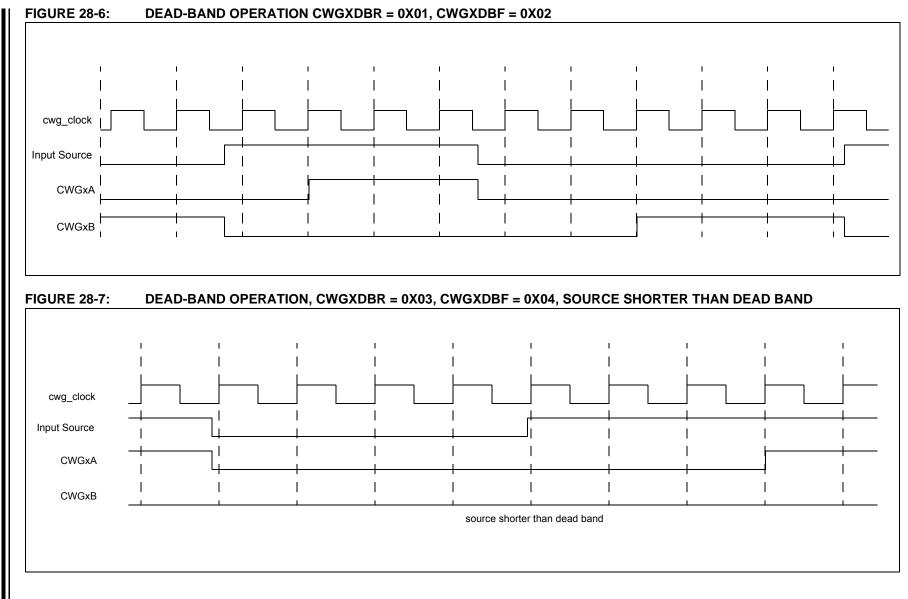
Setting the TXEN bit of the TXxSTA register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TXxSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCxSTA register enables the EUSART and automatically configures the TX/CK I/O pin as an output. If the TX/CK pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

Note: The TXIF Transmitter Interrupt flag is set when the TXEN enable bit is set.

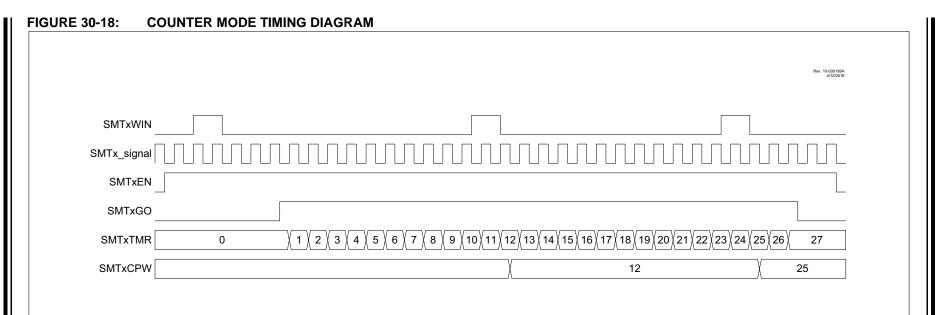
25.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXxREG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXxREG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXxREG until the Stop bit of the previous character has been transmitted. The pending character in the TXxREG is then transferred to the TSR in one Tcy immediately following the Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXxREG.

25.1.1.3 Transmit Data Polarity


The polarity of the transmit data can be controlled with the SCKP bit of the BAUDxCON register. The default state of this bit is '0' which selects high true transmit idle and data bits. Setting the SCKP bit to '1' will invert the transmit data resulting in low true idle and data bits. The SCKP bit controls transmit data polarity in Asynchronous mode only. In Synchronous mode, the SCKP bit has a different function. See **Section 25.5.1.2 "Clock Polarity**".

25.1.1.4 Transmit Interrupt Flag


The TXIF interrupt flag bit of the PIR1 register is set whenever the EUSART transmitter is enabled and no character is being held for transmission in the TXxREG. In other words, the TXIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXxREG. The TXIF flag bit is not cleared immediately upon writing TXxREG. TXIF becomes valid in the second instruction cycle following the write execution. Polling TXIF immediately following the TXxREG write will return invalid results. The TXIF bit is read-only, it cannot be set or cleared by software.

The TXIF interrupt can be enabled by setting the TXIE interrupt enable bit of the PIE1 register. However, the TXIF flag bit will be set whenever the TXxREG is empty, regardless of the state of TXIE enable bit.

To use interrupts when transmitting data, set the TXIE bit only when there is more data to send. Clear the TXIE interrupt enable bit upon writing the last character of the transmission to the TXxREG.

PIC16(L)F1614/8

30.8 Register Definitions: SMT Control

Long bit name prefixes for the Signal Measurement Timer peripherals are shown in Table 30-2. Refer to Section 1.1 "Register and Bit Naming Conventions" for more information.

TABLE 30-2:

Peripheral	Bit Name Prefix
SMT1	SMT1
SMT2	SMT2

REGISTER 30-1: SMTxCON0: SMT CONTROL REGISTER 0

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
EN ⁽¹⁾	—	STP	WPOL	SPOL	CPOL	SMTxPS<1:0>	
bit 7							bit 0

Legend:						
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'			
u = Bit is unchanged '1' = Bit is set		x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets			
		'0' = Bit is cleared				
bit 7	EN: SMT E	Enable bit ⁽¹⁾				
	1 = SMT is					
			e reset, clock requests are disabled			
bit 6	Unimplem	ented: Read as '0'				
bit 5	STP: SMT	Counter Halt Enable bit				
	When SMTxTMR = SMTxPR:					
		· •	match interrupt occurs when clocked			
1.11.4		, I	iod match interrupt occurs when clocked			
bit 4		/TxWIN Input Polarity Contr VIN signal is active-low/fallir				
		VIN signal is active-high/risi				
bit 3		ITxSIG Input Polarity Contro				
bit o		signal is active-low/falling e				
	0 = SMTx	signal is active-high/rising e	dge enabled			
bit 2	CPOL: SM	IT Clock Input Polarity Cont	rol bit			
			ng edge of the selected clock signal			
	0 = SMTxT	MR increments on the rising	g edge of the selected clock signal			
bit 1-0	•••••••	1:0>: SMT Prescale Select	bits			
	11 = Preso 10 = Preso					
	10 = Presc01 = Presc					
	01 = Presc					

Note 1: Setting EN to '0' does not affect the register contents.

REGISTER 30-15: SMTxCPWL: SMT CAPTURED PULSE WIDTH REGISTER – LOW BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x
			SMTxC	PW<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	mented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkno	own	-n/n = Value at POR and BOR/Value at all other Re			
'1' = Bit is set		'0' = Bit is clea	red				

bit 7-0 SMTxCPW<7:0>: Significant bits of the SMT PW Latch – Low Byte

REGISTER 30-16: SMTxCPWH: SMT CAPTURED PULSE WIDTH REGISTER - HIGH BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x		
SMTxCPW<15:8>									
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxCPW<15:8>: Significant bits of the SMT PW Latch – High Byte

REGISTER 30-17: SMTxCPWU: SMT CAPTURED PULSE WIDTH REGISTER - UPPER BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x			
SMTxCPW<23:16>									
						bit 0			
			SMTxCPV	SMTxCPW<23:16>	SMTxCPW<23:16>	SMTxCPW<23:16>			

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxCPW<23:16>: Significant bits of the SMT PW Latch – Upper Byte

REGISTER 31-3: ATxCLK: ANGULAR TIMER CLOCK SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-x/x
—	—	—	—	—	—	—	CS0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-1 Unimplemented: Read as '0' bit 0 CS0: Angular Timer Clock Selection bit 1 = HFINTOSC 16 MHz 0 = Fosc

REGISTER 31-4: ATxSIG: ANGULAR TIMER INPUT SIGNAL SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-x/x	R/W-x/x	R/W-x/x
—	—	—	—	—		SSEL<2:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-3 Unimplemented: Read as '0'

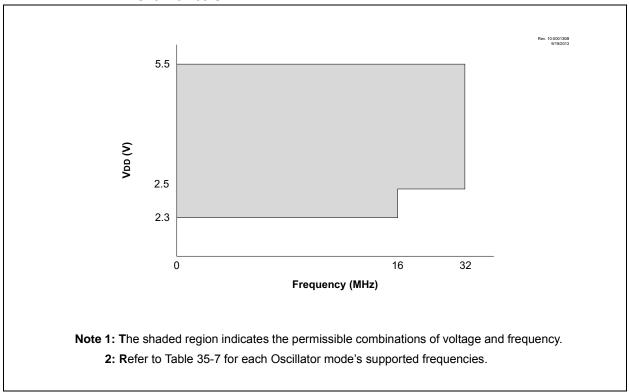
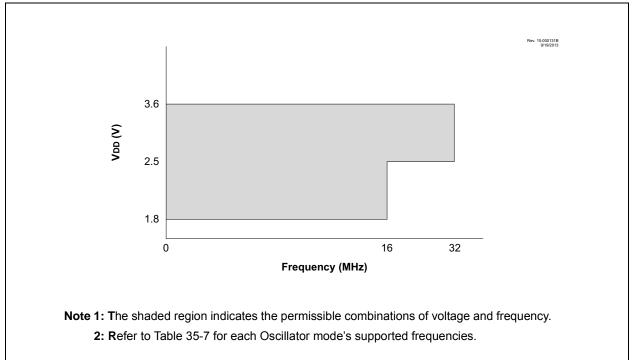
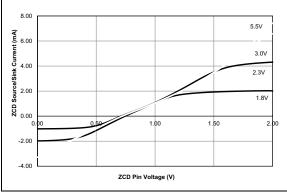
bit 2-0

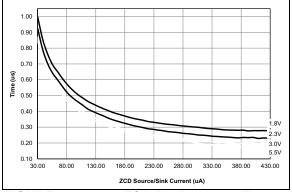
ar Input Signal Selection bit

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
PID1ACCU	ACC<34:32>							490	
PID1ACCHH	ACC<31:24>								490
PID1ACCHL	ACC<23:16>							490	
PID1ACCLH	ACC<15:8>							491	
PID1ACCLL	ACC<7:0>						491		
PID1CON	EN	BUSY	—	_	_		MODE<2:0>		482
PID1INH				IN<1	5:8>				483
PID1INL	IN<7:0>							483	
PID1K1H	K1<15:8>						484		
PID1K1L				K1<	7:0>				484
PID1K2H				K2<′	15:8>				484
PID1K2L				K2<	7:0>				484
PID1K3H	K3<15:8>						485		
PID1K3L	K3<7:0>						485		
PID10UTU	—	_	—	_		OUT<	35:32>		486
PID10UTHH				OUT<	31:24>				486
PID10UTHL				OUT<	23:16>				487
PID10UTLH				OUT<	:15:8>				487
PID10UTLL				OUT	<7:0>				487
PID1SETH	SET<15:8>					483			
PID1SETL	SET<7:0>						483		
PID1Z1U	—	—	—	—	—	—	—	Z116	488
PID1Z1H				Z1<′	15:8>				488
PID1Z1L				Z1<	7:0>				488
PID1Z2U			—			—		Z216	489
PID1Z2H				Z2<′	15:8>		· · · · · · · · · · · · · · · · · · ·	-	489
PID1Z2L				Z2<	7:0>				489
PIE5	TMR3GIE	TMR3IE	TMR5GIE	TMR5IE	—	AT1IE	PID1EIE	PID1DIE	102
PIR5	TMR3GIF	TMR3IF	TMR5GIF	TMR5IF	_	AT1IF	PID1EIF	PID1DIF	107

TABLE 32-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE PID M
--

FIGURE 35-1: VOLTAGE FREQUENCY GRAPH, -40°C \leq Ta \leq +125°C, PIC16F1614/8 ONLY


FIGURE 35-2: VOLTAGE FREQUENCY GRAPH, -40°C \leq Ta \leq +125°C, PIC16LF1614/8 ONLY

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 36-103: ZCD Pin Current over ZCD Pin Voltage, Typical Measured Values from -40°C to 125°C.

FIGURE 36-104: ZCD Pin Response Timer over Current, Typical Measured Values from -40°C to 125°C.