E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	640 × 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SO
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s103f2m6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Introd	luction	9
2	Descr	ription	10
3	Block	diagram	11
4	Produ	act overview	12
	4.1	Central processing unit STM8	12
	4.2	Single wire interface module (SWIM) and debug module (DM)	13
	4.3	Interrupt controller	13
	4.4	Flash program and data EEPROM memory	13
	4.5	Clock controller	15
	4.6	Power management	16
	4.7	Watchdog timers	16
	4.8	Auto wakeup counter	17
	4.9	Beeper	17
	4.10	TIM1 - 16-bit advanced control timer	17
	4.11	TIM2 - 16-bit general purpose timer	17
	4.12	TIM4 - 8-bit basic timer	18
	4.13	Analog-to-digital converter (ADC1)	18
	4.14	Communication interfaces	18
		4.14.1 UART1	19
		4.14.2 SPI	-
		4.14.3 l ² C	20
5	Pinou	It and pin description	21
	5.1	STM8S103K3 UFQFPN32/LQFP32/SDIP32 pinout and pin description	22
	5.2	STM8S103F2/F3 TSSOP20/SO20/UFQFPN20 pinout and pin description	
		5.2.1 STM8S103F2/F3 TSSOP20/SO20 pinout	26
		5.2.2 STM8S103F2/F3 UFQFPN20 pinout	27
	5.3	Alternate function remapping	30

DocID15441 Rev 14

1 Introduction

This datasheet contains the description of the device features, pinout, electrical characteristics, mechanical data and ordering information.

- For complete information on the STM8S microcontroller memory, registers and peripherals, please refer to the STM8S microcontroller family reference manual (RM0016).
- For information on programming, erasing and protection of the internal Flash memory please refer to the STM8S Flash programming manual (PM0051).
- For information on the debug and SWIM (single wire interface module) refer to the STM8 SWIM communication protocol and debug module user manual (UM0470).
- For information on the STM8 core, please refer to the STM8 CPU programming manual (PM0044).

5 Pinout and pin description

Туре	I= Input, O = Output, S = Power supply				
Level	Input	CM = CMOS			
	Output	HS = High sink			
Output speed	O1 = Slow (up to 2 MHz) O2 = Fast (up to 10 MHz) O3 = Fast/slow programmability with slow as default state after reset O4 = Fast/slow programmability with fast as default state after reset				
Dent and a sector	Input float = floating, wpu = weak pull-up				
Port and control configuration	Output	T = True open drain, OD = Open drain, PP = Push pull			
Reset state	Bold X (pin state after internal reset release). Unless otherwise specified, the pin state is the same during the reset phase and after the internal reset release.				

Table 4. Legend/abbreviations for pin description tables

					Input			Out	put		c	ate	ion
TSSOP/SO20	UFQFPN20	Pin name	Type	floating	ndw	Ext. interrupt	High sink ⁽¹⁾	Speed	QD	ΡР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
14	11	PC4/ CLK_CCO/ TIM1_ CH4/AIN2/[TIM1_ CH2N]	I/O	x	x	x	HS	O3	x	x	Port C4	Configurable clock output/Timer 1 - channel 4/Analog input 2	Timer 1 - inverted channel 2 [AFR7]
15	12	PC5/ SPI_SCK [TIM2_CH1]	I/O	x	x	x	HS	O3	x	х	Port C5	SPI clock	Timer 2 - channel 1 [AFR0]
16	13	PC6/ SPI_MOSI [TIM1_CH1]	I/O	x	х	х	HS	O3	х	х	Port C6	SPI master out/slave in	Timer 1 - channel 1 [AFR0]
17	14	PC7/ SPI_MISO [TIM1_CH2]	I/O	x	х	х	HS	O3	х	х	Port C7	SPI master in/ slave out	Timer 1 - channel 2 [AFR0]
18	15	PD1/ SWIM	I/O	х	х	х	HS	04	х	х	Port D1	SWIM data interface	-
19	16	PD2/AIN3/[T IM2_CH3]	I/O	x	х	х	HS	O3	х	х	Port D2	Analog input 3	Timer 2 - channel 3 [AFR1]
20	17	PD3/ AIN4/ TIM2_CH2/ ADC_ETR	I/O	x	х	х	HS	O3	х	х	Port D3	Analog input 4/ Timer 2 - channel 2/ADC external trigger	-

Table 6. STM8S103F2 and STM8S103F3 pin descriptions (continued)

1. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package. In addition, the total driven current must respect the absolute maximum ratings.

2. When the MCU is in halt/active-halt mode, PA1 is automatically configured in input weak pull-up and cannot be used for waking up the device. In this mode, the output state of PA1 is not driven. It is recommended to use PA1 only in input mode if halt/active-halt is used in the application.

3. In the open-drain output column, "T" defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDD are not implemented).1

Address	Block	Register label	Register name	Reset status
0x00 5208 to 0x00 520F		Rese	rved area (8 byte)	
0x00 5210		I2C_CR1	I2C control register 1	0x00
0x00 5211		I2C_CR2	I2C control register 2	0x00
0x00 5212		I2C_FREQR	I2C frequency register	0x00
0x00 5213		I2C_OARL	I2C Own address register low	0x00
0x00 5214		I2C_OARH	I2C Own address register high	0x00
0x00 5215			Reserved	
0x00 5216		I2C_DR	I2C data register	0x00
0x00 5217	I2C	I2C_SR1	I2C status register 1	0x00
0x00 5218		I2C_SR2	I2C status register 2	0x00
0x00 5219		I2C_SR3	I2C status register 3	0x0X
0x00 521A		I2C_ITR	I2C interrupt control register	0x00
0x00 521B		I2C_CCRL	I2C Clock control register low	0x00
0x00 521C		I2C_CCRH	I2C Clock control register high	0x00
0x00 521D		I2C_TRISER	I2C TRISE register	0x02
0x00 521E		I2C_PECR	I2C packet error checking register	0x00
0x00 521F to 0x00 522F		Reser	ved area (17 byte)	
0x00 5230		UART1_SR	UART1 status register	0xC0
0x00 5231		UART1_DR	UART1 data register	0xXX
0x00 5232		UART1_BRR1	UART1 baud rate register 1	0x00
0x00 5233		UART1_BRR2	UART1 baud rate register 2	0x00
0x00 5234		UART1_CR1	UART1 control register 1	0x00
0x00 5235	UART1	UART1_CR2	UART1 control register 2	0x00
0x00 5236		UART1_CR3	UART1 control register 3	0x00
0x00 5237		UART1_CR4	UART1 control register 4	0x00
0x00 5238		UART1_CR5	UART1 control register 5	0x00
0x00 5239		UART1_GTR	UART1 guard time register	0x00
0x00 523A		UART1_PSCR	UART1 prescaler register	0x00
0x00 523B to 0x00 523F		Reser	ved area (21 byte)	

Table 8. General hardware register map (continued)

10 Electrical characteristics

10.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

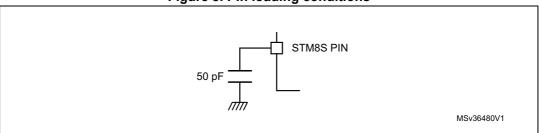
10.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C, and $T_A = T_{Amax}$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3 \Sigma$).

10.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 5.0$ V. They are given only as design guidelines and are not tested.


Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2 \Sigma$).

10.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

10.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 8*.

Figure 8. Pin loading conditions

10.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 9*.

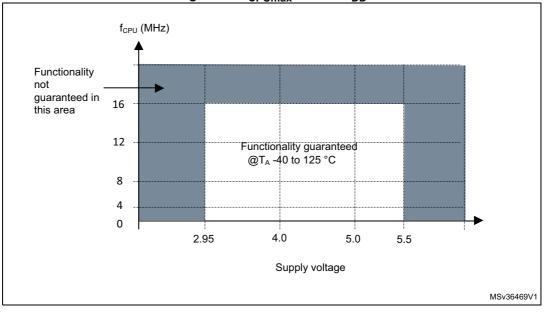
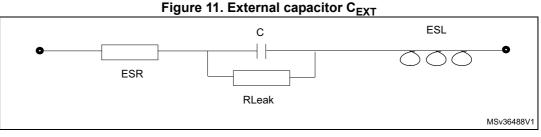

Symbol	Parameter	Conditions	Min	Max	Unit
	TSSOP20	TSSOP20	-	59	
		SO20W	-	55	
P _D ⁽³⁾	Power dissipation	UFQFPN20	-	55	
PD	at T _A = 125 °C for suffix 3	LQFP32	-	83	mW
		UFQFPN32	-	132	
		SDIP32	-	83	
T _A	Ambient temperature for suffix 6 version	Maximum power dissipation	-40	85	
T _A	Ambient temperature for suffix 3 version	Maximum power dissipation	-40	125	°C
т	Junction temperature range	Suffix 6 version	-40	105	
ТJ		Suffix 3 version	-40	130	

Table 19. General operating conditions (continued)

1. Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter dependency on temperature, DC bias and frequency in addition to other factors. The parameter maximum value must be respected for the full application range.

2. This frequency of 1 MHz as a condition for $V_{\mbox{CAP}}$ parameters is given by design of internal regulator.

To calculate P_{Dmax}(T_A), use the formula P_{Dmax}=(T_{Jmax}- T_A)/Θ_{JA} (see Section 12: Thermal characteristics) with the value for T_{Jmax} given in the previous table and the value for Θ_{JA} given in Section 12: Thermal characteristics


Table 20. Operating conditions at power-up/power-down

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{VDD}	V _{DD} rise time rate	-	2	-	∞	us/V
	V _{DD} fall time rate ⁽¹⁾	-	2	-	8	μ5/ V

10.3.1 VCAP external capacitor

The stabilization for the main regulator is achieved by connecting an external capacitor C_{EXT} to the V_{CAP} pin. C_{EXT} is specified in *Table 19*. Care should be taken to limit the series inductance to less than 15 nH.

1. ESR is the equivalent series resistance and ESL is the equivalent inductance.

10.3.2 Supply current characteristics

The current consumption is measured as illustrated in Figure 9: Pin input voltage.

Total supply current consumption in run mode

The MCU is placed under the following conditions:

- All I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled (clock stopped by peripheral clock gating registers) except if explicitly mentioned.

Subject to general operating conditions for V_{DD} and T_A .

Symbol	Parameter	Conditi	ons	Тур	Max ⁽¹⁾	Unit
			HSE crystal osc. (16 MHz)	2.3	-	
		t _{CPU} = t _{MASTER} = 16 MHz	HSE user ext. clock (16 MHz)	2	2.35	
	Supply current in		HSI RC osc. (16 MHz)	1.7	2	
I _{DD(RUN)}	Run mode, code	f _{CPU} = f _{MASTER} /128 = 125 kHz	HSE user ext. clock (16 MHz)	0.86	-	mA
	executed from RAM		HSI RC osc. (16 MHz)	0.7	0.87	
		f _{CPU} = f _{MASTER} /128 = 15.625 kHz	HSI RC osc. (16 MHz/8)	0.46	0.58	
		f _{CPU} = f _{MASTER} = 128 kHz	LSI RC osc. (128 kHz)	0.41	0.55	

Total current consumption in active halt mode

	Parameter		Conditio	ns				
Symbol		Main voltage regulator (MVR) ⁽²⁾	Flash mode ⁽³⁾	Clock source	Тур	Max at 85 °C ⁽¹⁾	Max at 85 °C ⁽¹⁾	Unit
			Operating mode	HSE crystal osc. (16 MHz)	1030	-	-	
			Operating mode	LSI RC osc. (128 kHz)	200	260	300	
1	Supply current in	On	Power down mode	HSE crystal osc. (16 MHz)	970	-	-	μA
IDD(AH)	active halt mode		Power down mode	LSI RC osc. (128 kHz)	150	200	230	μΛ
			Operating mode	LSI RC osc. (128 kHz)	66	85	110	
		Off	Power down mode	LSI RC osc. (128 kHz)	10	20	40	

Table 25. Total current consumption in active halt mode at V_{DD} = 5 V

1. Guaranteed by characterization results.

2. Configured by the REGAH bit in the CLK_ICKR register.

3. Configured by the AHALT bit in the FLASH_CR1 register.

Table 26. Total current consumption in active halt mode at V_{DD} = 3.3 V

	Parameter		Conditio	ns				
Symbol		Main voltage regulator (MVR) ⁽²⁾	Flash mode ⁽³⁾	Clock source	Тур	Max at 85 °C ⁽¹⁾	Max at 85 °C ⁽¹⁾	Unit
			Operating mode	HSE crystal osc. (16 MHz)	550	-	-	
			Operating mode	LSI RC osc. (128 kHz)	200	260	290	
	Supply current in	On	Power down mode	HSE crystal osc. (16 MHz)	970	-	-	μA
IDD(AH)	active halt mode		Power down mode	LSI RC osc. (128 kHz)	150	200	230	μΛ
			Operating mode	LSI RC osc. (128 kHz)	66	80	105	
		Off	Power down mode	LSI RC osc. (128 kHz)	10	18	35	

1. Guaranteed by characterization results.

2. Configured by the REGAH bit in the CLK_ICKR register.

3. Configured by the AHALT bit in the FLASH_CR1 register.

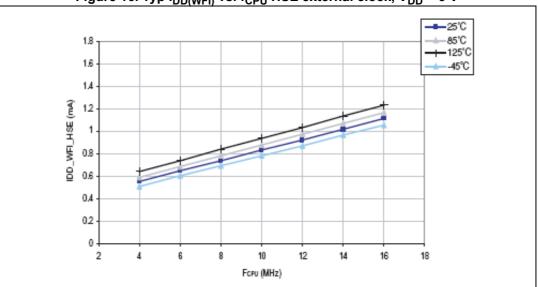
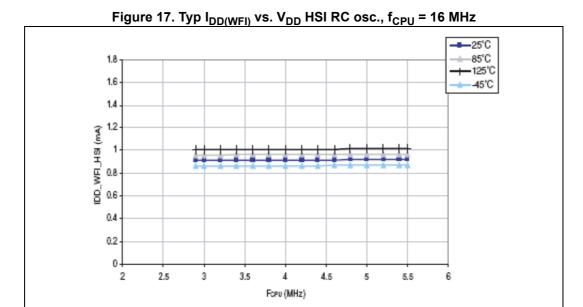



Figure 16. Typ $I_{DD(WFI)}$ vs. f_{CPU} HSE external clock, V_{DD} = 5 V

10.3.6 I/O port pin characteristics

General characteristics

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified. All unused pins must be kept at a fixed voltage, using the output mode of the I/O for example or an external pull-up or pull-down resistor.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL}	Input low level voltage		-0.3 V	-	0.3 x V _{DD}	V
V _{IH}	Input high level voltage	V _{DD} = 5 V	0.7 x V _{DD}	-	V _{DD} + 0.3 V	v
V _{hys}	Hysteresis ⁽¹⁾		-	700	-	mV
R _{pu}	Pull-up resistor	V_{DD} = 5 V, V_{IN} = V_{SS}	30	55	80	kΩ
t _R , t _F	Rise and fall time	Fast I/Os Load = 50 pF	-	-	35 ⁽²⁾	20
	(10% - 90%)	Standard and high sink I/Os Load = 50 pF	-	-	125 ⁽²⁾	ns
	Rise and fall time	Fast I/Os Load = 20 pF	-	-	20 ⁽²⁾	20
t _R , t _F	(10% - 90%)	Standard and high sink I/Os Load = 20 pF	-	-	50 ⁽²⁾	ns
I _{lkg}	Digital input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1 ⁽³⁾	μA
I _{Ikg ana}	Analog input leakage current	$V_{SS} \le V_{IN} \le V_{DD}$	-	-	±250 ⁽³⁾	nA
I _{lkg(inj)}	Leakage current in adjacent I/O	Injection current ±4 mA	-	-	±1 ⁽³⁾	μA

1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.

2. Data guaranteed by design.

3. Guaranteed by characterization results

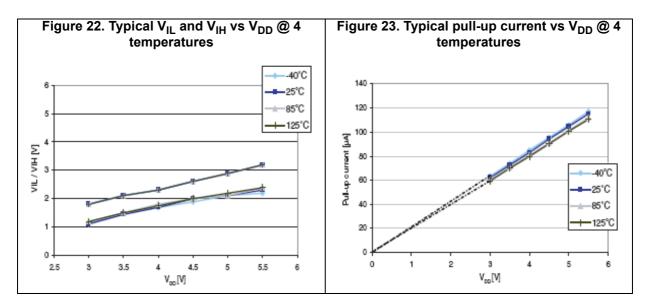
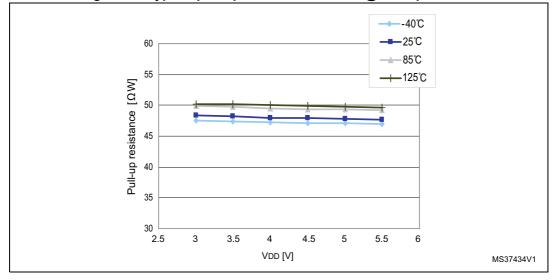



Figure 24. Typical pull-up resistance vs VDD @ 4 temperatures

Symbol	Parameter	Conditions	Min	Мах	Unit
N	Output low level with 8 pins sunk	I _{IO} = 10 mA, V _{DD} = 5 V	-	2.0	
V _{OL}	Output low level with 4 pins sunk	I _{IO} = 4 mA, V _{DD} = 3.3 V	-	1.0 ⁽¹⁾	V
	Output high level with 8 pins sourced	I _{IO} = 10 mA, V _{DD} = 5 V	2.8	-	V
V _{OH}	Output high level with 4 pins sourced	I _{IO} = 4 mA, V _{DD} = 3.3 V	2.1 ⁽¹⁾	-	

1. Guaranteed by characterization results

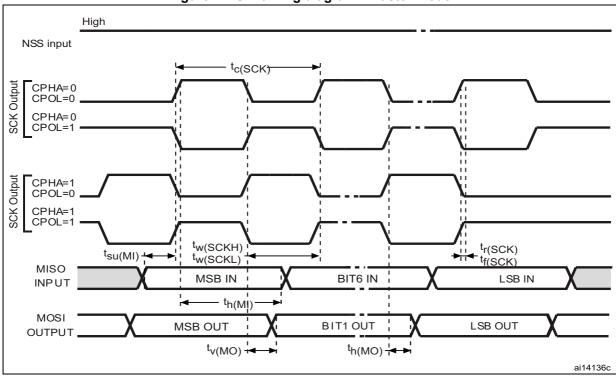
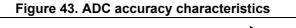
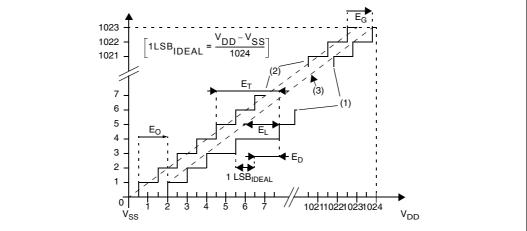


Figure 41. SPI timing diagram - master mode

1. Measurement points are at CMOS levels: 0.3 V_{DD} and 0.7 $V_{\text{DD}}.$





Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
	T	f _{ADC} = 2 MHz	1.6	3.5	
E _T	Total unadjusted error ⁽²⁾	f _{ADC} = 4 MHz	1.9	4	
E _O	Offset error ⁽²⁾	f _{ADC} = 2 MHz	1	2.5	
		f _{ADC} = 4 MHz	1.5	2.5	
	Gain error ⁽²⁾	f _{ADC} = 2 MHz	1.3	3	LSB
E _G		f _{ADC} = 4 MHz	2	3	LOD
	Differential linearity error ⁽²⁾	f _{ADC} = 2 MHz	0.7	1.0	
E _D		f _{ADC} = 4 MHz	0.7	1.5	
EL	Integral linearity error ⁽²⁾	f _{ADC} = 2 MHz	0.6	1.5	
		f _{ADC} = 4 MHz	0.8	2	

1. Guaranteed by characterization results.

ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another 2. analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 10.3.6 does not affect the ADC accuracy.

- 1. Example of an actual transfer curve
- The ideal transfer curve 2.
- End point correlation line 3.

 E_T = Total unadjusted error: maximum deviation between the actual and the ideal transfer curves. E_O = Offset error: deviation between the first actual transition and the first ideal one. E_G = Gain error: deviation between the last ideal transition and the last actual one.

 $E_D = Differential linearity error: maximum deviation between any actual steps and the ideal one.$ $<math>E_L = Integral linearity error: maximum deviation between any actual transition and the end point correlation$ line.

10.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electromagnetic susceptibility)

While executing a simple application (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709 (EMC design guide for STM microcontrollers).

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring. See application note AN1015 (Software techniques for improving microcontroller EMC performance).

Symbol	Parameter	Conditions	Level/class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, T_A = 25 °C, f_{MASTER} = 16 MHz (HSI clock), Conforms to IEC 61000-4-2	2/B ⁽¹⁾
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, T_A = 25 °C, f_{MASTER} = 16 MHz (HSI clock), Conforms to IEC 61000-4-4	4/A ⁽¹⁾

Table 48. EMS data

1. Data obtained with HSI clock configuration, after applying the hardware recommendations described in AN2860 (EMC guidelines for STM8S microcontrollers).

Electromagnetic interference (EMI)

Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm IEC 61967-2 which specifies the board and the loading of each pin.

		Conditions					
Symbol	Parameter	General conditions	Monitored	Max f _{CPU} ⁽¹⁾		Unit	
			frequency band	16 MHz/ 8 MHz	16 MHz/ 16 MHz		
		$V_{DD} = 5 V,$ $T_A = 25 °C,$ LQFP32 package. Conforming to IEC 61967-2	V _{DD} = 5 V,	0.1 MHz to 30 MHz	5	5	
S _{EMI}	Peak level T _A LC		30 MHz to 130 MHz	4	5	dBµV	
			130 MHz to 1 GHz	5	5		
	EMI level		EMI level	2.5	2.5	-	

	Table	49.	EMI	data
--	-------	-----	-----	------

1. Guaranteed by characterization results.

Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD, DLU and LU) using specific measurement methods, the product is stressed to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts x (n+1) supply pin). One model can be simulated: Human body model. This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.

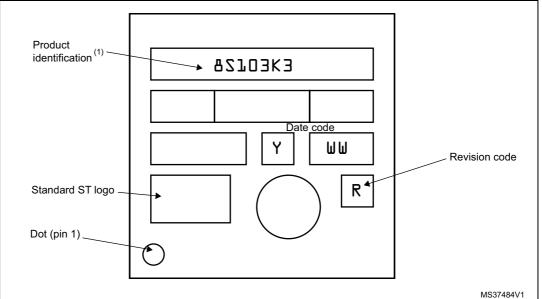
Symbol	Ratings Conditions		Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (Human body model)	$T_A = 25^{\circ}C$, conforming to JESD22-A114	А	4000	
V _{ESD(CDM)}	Electrostatic discharge voltage (Charge device model)	T _A = 25°C, conforming to SD22-C101 LQFP32 package	IV	1000	V

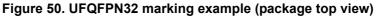
Table 50. ESD absolute maximum ratings

1. Guaranteed by characterization results

Static latch-up

Two complementary static tests are required on 10 parts to assess the latch-up performance.


- A supply overvoltage (applied to each power supply pin), and
- A current injection (applied to each input, output and configurable I/O pin) are performed on each sample.



Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Temperature range

[] -40°C to +85°C or [] -40°C to +125°C

Padding value for unused program memory (check only one option)

[]0xFF	Fixed value
[]0x83	TRAP instruction code
[]0x75	Illegal opcode (causes a reset when executed)

OTP0 memory readout protection (check only one option)

[] Disable or [] Enable

OTP1 user boot code area (UBC)

0x(__) fill in the hexadecimal value, referring to the datasheet and the binary format below:

UBC, bit0	[] 0: Reset [] 1: Set
UBC, bit1	[] 0: Reset [] 1: Set
UBC, bit2	[] 0: Reset [] 1: Set
UBC, bit3	[] 0: Reset [] 1: Set
UBC, bit4	[] 0: Reset [] 1: Set
UBC, bit5	[] 0: Reset [] 1: Set
UBC, bit6	[] 0: Reset [] 1: Set
UBC, bit7	[] 0: Reset [] 1: Set

OTP0 memory readout protection (check only one option)

[] Disable or [] Enable

OTP2 alternate function remapping for STM8S103K

Do not use more than one remapping option in the same port. It is forbidden to enable both AFR1 and AFR0.

Date	Revision	Changes
16-Oct-1999	4	 Replaced VFQFPN32 package by UFQFPN32 package. Section 4.5: Clock controller: replaced TIM2 and TIM3 with reserved and TIM2 respectively in Table 2: Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers Total current consumption in halt mode: changed the maximum current consumption limit at 125 °C (and VDD= 5 V) from 35 μA to 55 μA. Functional EMS (electromagnetic susceptibility): renamed ESD as FESD (functional); added name of AN1709; replaced EC 1000 with IEC 61000. Designing hardened software to avoid noise problems: replaced IEC 1000 with IEC 61000, added title of AN1015, and added footnote to EMS data table. Electromagnetic interference (EMI): replaced J 1752/3 with IEC 61967-2 and updated data of the EMI data table. Section 12.2: Selecting the product temperature range: changed the value of LQFP32 7x7 mm thermal resistance from 59 °C/W to 60 °C/W. Added Section 13.1: STM8S103 FASTROM microcontroller option list.
22-Apr-2010	5	 Added VFQFPN32 and SO20 packages. Updated Px_IDR reset value in <i>Table 7: I/O port hardware register</i> map. Section 10.3: Operating conditions: updated VCAP and ESR low limit, added ESL parameter, and Note 1 below <i>Table 19: General</i> operating conditions Updated ACCHSI in <i>Table 34: HSI oscillator characteristics</i>. Modified IDD(H)inand. Removed note 3 related to Accuracy of HSI oscillator. Updated maximum power dissipation in <i>Table 19: General operating</i> conditions. Updated Section 12: Thermal characteristics Replaced package pitch digit by VFQFPN/UFQFPN package digit in <i>Figure 63: STM8S103F2/x3 access line ordering information</i> scheme⁽¹⁾, and removed note 1.

Table 59.	Document revision	history
-----------	--------------------------	---------

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

DocID15441 Rev 14