# E·XFL



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                               |
|----------------------------|----------------------------------------------------------------------|
| Core Processor             | STM8                                                                 |
| Core Size                  | 8-Bit                                                                |
| Speed                      | 16MHz                                                                |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                      |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                |
| Number of I/O              | 16                                                                   |
| Program Memory Size        | 4KB (4K x 8)                                                         |
| Program Memory Type        | FLASH                                                                |
| EEPROM Size                | 640 x 8                                                              |
| RAM Size                   | 1K x 8                                                               |
| Voltage - Supply (Vcc/Vdd) | 2.95V ~ 5.5V                                                         |
| Data Converters            | A/D 5x10b                                                            |
| Oscillator Type            | Internal                                                             |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                   |
| Mounting Type              | Surface Mount                                                        |
| Package / Case             | 20-TSSOP (0.173", 4.40mm Width)                                      |
| Supplier Device Package    | 20-TSSOP                                                             |
| Purchase URL               | https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s103f2p3 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

|    | 11.2  | UFQFPN32 package information                 |
|----|-------|----------------------------------------------|
|    | 11.3  | UFQFPN20 package information                 |
|    | 11.4  | SDIP32 package information                   |
|    | 11.5  | TSSOP20 package information                  |
|    | 11.6  | SO20 package information 103                 |
|    | 11.7  | UFQFPN recommended footprint 104             |
| 12 | Ther  | mal characteristics                          |
|    | 12.1  | Reference document                           |
|    | 12.2  | Selecting the product temperature range      |
| 13 | Orde  | ring information                             |
|    | 13.1  | STM8S103 FASTROM microcontroller option list |
| 14 | STM   | 3 development tools 113                      |
|    | 14.1  | Emulation and in-circuit debugging tools     |
|    |       | 14.1.1 STice key features 113                |
|    | 14.2  | Software tools                               |
|    |       | 14.2.1 STM8 toolset                          |
|    |       | 14.2.2 C and assembly toolchains             |
|    | 14.3  | Programming tools                            |
| 15 | Revis | sion history                                 |



| Table 49.<br>Table 50. | EMI data    87      ESD absolute maximum ratings    87                    |   |
|------------------------|---------------------------------------------------------------------------|---|
| Table 51.              | Electrical sensitivities                                                  | 8 |
| Table 52.              | LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data   | 0 |
| Table 53.              | UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat   |   |
|                        | package mechanical data                                                   | 3 |
| Table 54.              | UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat |   |
|                        | package mechanical data                                                   | 5 |
| Table 55.              | SDIP32 package mechanical data                                            | 8 |
| Table 56.              | TSSOP20 package mechanical data 100                                       | 0 |
| Table 57.              | SO20 mechanical data                                                      | 3 |
| Table 58.              | Thermal characteristics                                                   | 6 |
| Table 59.              | Document revision history                                                 | 6 |



# 2 Description

The STM8S103F2/x3 access line 8-bit microcontrollers offer 8 Kbyte Flash program memory, plus integrated true data EEPROM. The STM8S microcontroller family reference manual (RM0016) refers to devices in this family as low-density. They provide the following benefits: performance, robustness, and reduced system cost.

Device performance and robustness are ensured by advanced core and peripherals made in a state-of-the art technology, a 16 MHz clock frequency, robust I/Os, independent watchdogs with separate clock source, and a clock security system.

The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k write/erase cycles and a high system integration level with internal clock oscillators, watchdog and brown-out reset.

Full documentation is offered as well as a wide choice of development tools.

| Device                                         | STM8S103K3         | STM8S103F3                                          | STM8S103F2         |
|------------------------------------------------|--------------------|-----------------------------------------------------|--------------------|
| Pin count                                      | 32                 | 20                                                  | 20                 |
| Maximum number of GPIOs (I/Os)                 | 28                 | 16                                                  | 16                 |
| Ext. interrupt pins                            | 27                 | 16                                                  | 16                 |
| Timer CAPCOM channels                          | 7                  | 7                                                   | 7                  |
| Timer complementary outputs                    | 3                  | 2                                                   | 2                  |
| A/D converter channels                         | 4                  | 5                                                   | 5                  |
| High sink I/Os                                 | 21                 | 12                                                  | 12                 |
| Low density Flash<br>program memory<br>(bytes) | 8K                 | 8K                                                  | 4К                 |
| Data EEPROM (bytes)                            | 640 <sup>(1)</sup> | 640 <sup>(1)</sup>                                  | 640 <sup>(1)</sup> |
| RAM (bytes)                                    | 1K                 | 1K                                                  | 1K                 |
| Peripheral set                                 |                    | M1), SPI, I2C, UART wind<br>PWM timer (TIM2), 8-bit |                    |

Table 1. STM8S103F2/x3 access line features

1. No read-while-write (RWW) capability.



# 4.12 TIM4 - 8-bit basic timer

- 8-bit auto reload, adjustable prescaler ratio to any power of 2 from 1 to 128
- Clock source: CPU clock
- Interrupt source: 1 x overflow/update

| Timer | Counter<br>size (bits) | Prescaler                            | Counting<br>mode | CAPCOM<br>channels | Complementary<br>outputs | Ext.<br>trigger | Timer<br>synchronization/<br>chaining |  |  |
|-------|------------------------|--------------------------------------|------------------|--------------------|--------------------------|-----------------|---------------------------------------|--|--|
| TIM1  | 16                     | Any integer<br>from 1 to<br>65536    | Up/down          | 4                  | 3                        | Yes             |                                       |  |  |
| TIM2  | 16                     | Any power<br>of 2 from 1<br>to 32768 | Up               | 3                  | 0                        | No              | No                                    |  |  |
| TIM4  | 8                      | Any power<br>of 2 from 1<br>to 128   | Up               | 0                  | 0                        | No              | NO                                    |  |  |

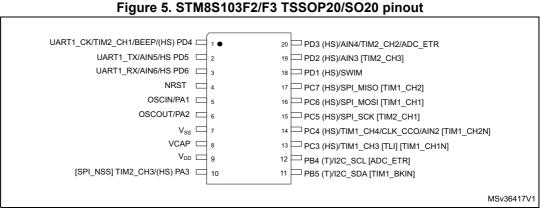
### Table 3. TIM timer features

# 4.13 Analog-to-digital converter (ADC1)

The STM8S103F2/x3 family products contain a 10-bit successive approximation A/D converter (ADC1) with up to 5 external multiplexed input channels and the following main features:

- Input voltage range: 0 to VDD
- Conversion time: 14 clock cycles
- Single and continuous and buffered continuous conversion modes
- Buffer size (n x 10 bits) where n = number of input channels
- Scan mode for single and continuous conversion of a sequence of channels
- Analog watchdog capability with programmable upper and lower thresholds
- Analog watchdog interrupt
- External trigger input
- Trigger from TIM1 TRGO
- End of conversion (EOC) interrupt

# 4.14 Communication interfaces


The following communication interfaces are implemented:

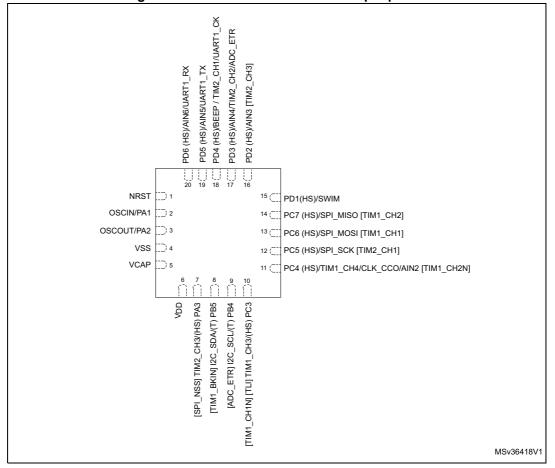
- UART1: Full feature UART, synchronous mode, SPI master mode, Smartcard mode, IrDA mode, single wire mode, LIN2.1 master capability
- SPI: Full and half-duplex, 8 Mbit/s
- I<sup>2</sup>C: Up to 400 kbit/s



# 5.2 STM8S103F2/F3 TSSOP20/SO20/UFQFPN20 pinout and pin description

## 5.2.1 STM8S103F2/F3 TSSOP20/SO20 pinout




1. HS high sink capability.

2. (T) True open drain (P-buffer and protection diode to VDD not implemented).

3. [] alternate function remapping option (If the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function)



## 5.2.2 STM8S103F2/F3 UFQFPN20 pinout



#### Figure 6. STM8S103F2/F3 UFQFPN20-pin pinout

1. HS high sink capability.

- 2. (T) True open drain (P-buffer and protection diode to VDD not implemented).
- 3. [] alternate function remapping option (if the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function).



# 6.2 Register map

# 6.2.1 I/O port hardware register map

### Table 7. I/O port hardware register map

| Address   | Block  | Register label | Register name                     | Reset status        |
|-----------|--------|----------------|-----------------------------------|---------------------|
| 0x00 5000 |        | PA_ODR         | Port A data output latch register | 0x00                |
| 0x00 5001 |        | PA_IDR         | Port A input pin value register   | 0xXX <sup>(1)</sup> |
| 0x00 5002 | Port A | PA_DDR         | Port A data direction register    | 0x00                |
| 0x00 5003 |        | PA_CR1         | Port A control register 1         | 0x00                |
| 0x00 5004 |        | PA_CR2         | Port A control register 2         | 0x00                |
| 0x00 5005 |        | PB_ODR         | Port B data output latch register | 0x00                |
| 0x00 5006 |        | PB_IDR         | Port B input pin value register   | 0xXX <sup>(1)</sup> |
| 0x00 5007 | Port B | PB_DDR         | Port B data direction register    | 0x00                |
| 0x00 5008 |        | PB_CR1         | Port B control register 1         | 0x00                |
| 0x00 5009 |        | PB_CR2         | Port B control register 2         | 0x00                |
| 0x00 500A |        | PC_ODR         | Port C data output latch register | 0x00                |
| 0x00 500B |        | PB_IDR         | Port C input pin value register   | 0xXX <sup>(1)</sup> |
| 0x00 500C | Port C | PC_DDR         | Port C data direction register    | 0x00                |
| 0x00 500D |        | PC_CR1         | Port C control register 1         | 0x00                |
| 0x00 500E |        | PC_CR2         | Port C control register 2         | 0x00                |
| 0x00 500F |        | PD_ODR         | Port D data output latch register | 0x00                |
| 0x00 5010 |        | PD_IDR         | Port D input pin value register   | 0xXX <sup>(1)</sup> |
| 0x00 5011 | Port D | PD_DDR         | Port D data direction register    | 0x00                |
| 0x00 5012 |        | PD_CR1         | Port D control register 1         | 0x02                |
| 0x00 5013 |        | PD_CR2         | Port D control register 2         | 0x00                |
| 0x00 5014 |        | PE_ODR         | Port E data output latch register | 0x00                |
| 0x00 5015 |        | PE_IDR         | Port E input pin value register   | 0xXX <sup>(1)</sup> |
| 0x00 5016 | Port E | PE_DDR         | Port E data direction register    | 0x00                |
| 0x00 5017 |        | PE_CR1         | Port E control register 1         | 0x00                |
| 0x00 5018 |        | PE_CR2         | Port E control register 2         | 0x00                |
| 0x00 5019 |        | PF_ODR         | Port F data output latch register | 0x00                |
| 0x00 501A | 1      | PF_IDR         | Port F input pin value register   | 0xXX <sup>(1)</sup> |
| 0x00 501B | Port F | PF_DDR         | Port F data direction register    | 0x00                |
| 0x00 501C |        | PF_CR1         | Port F control register 1         | 0x00                |
| 0x00 501D | 1      | PF_CR2         | Port F control register 2         | 0x00                |

1. Depends on the external circuitry.



# 6.2.2 General hardware register map

|                        |                        | . General hardware | Tegistel map                                     |                     |  |  |
|------------------------|------------------------|--------------------|--------------------------------------------------|---------------------|--|--|
| Address                | Block                  | Register label     | Register name                                    | Reset status        |  |  |
| 0x00 501E to 0x00 5059 |                        | Reser              | rved area (60 byte)                              |                     |  |  |
| 0x00 505A              |                        | FLASH_CR1          | Flash control register 1                         | 0x00                |  |  |
| 0x00 505B              |                        | FLASH_CR2          | Flash control register 2                         | 0x00                |  |  |
| 0x00 505C              |                        | FLASH_NCR2         | Flash complementary control register 2           | 0xFF                |  |  |
| 0x00 505D              | Flash                  | FLASH_FPR          | Flash protection register                        | 0x00                |  |  |
| 0x00 505E              |                        | FLASH_NFPR         | Flash complementary<br>protection register       | 0xFF                |  |  |
| 0x00 505F              |                        | FLASH_IAPSR        | Flash in-application programming status register | 0x00                |  |  |
| 0x00 5060 to 0x00 5061 | Reserved area (2 byte) |                    |                                                  |                     |  |  |
| 0x00 5062              | Flash                  | FLASH_PUKR         | Flash program memory<br>unprotection register    | 0x00                |  |  |
| 0x00 5063              |                        | Rese               | rved area (1 byte)                               |                     |  |  |
| 0x00 5064              | Flash                  | FLASH _DUKR        | Data EEPROM unprotection register                | 0x00                |  |  |
| 0x00 5065 to 0x00 509F |                        | Reser              | rved area (59 byte)                              |                     |  |  |
| 0x00 50A0              | ITC                    | EXTI_CR1           | External interrupt control register 1            | 0x00                |  |  |
| 0x00 50A1              | ΠC                     | EXTI_CR2           | External interrupt control register 2            | 0x00                |  |  |
| 0x00 50A2 to 0x00 50B2 |                        | Reser              | rved area (17 byte)                              |                     |  |  |
| 0x00 50B3              | RST                    | RST_SR             | Reset status register                            | 0xXX <sup>(1)</sup> |  |  |
| 0x00 50B4 to 0x00 50BF |                        | Reser              | rved area (12 byte)                              |                     |  |  |
| 0x00 50C0              | CLK                    | CLK_ICKR           | Internal clock control register                  | 0x01                |  |  |
| 0x00 50C1              | ULK                    | CLK_ECKR           | External clock control register                  | 0x00                |  |  |
| 0x00 50C2              |                        | Rese               | rved area (1 byte)                               |                     |  |  |

Table 8. General hardware register map

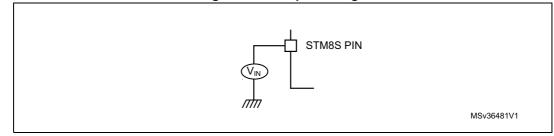


# 9 Unique ID

The devices feature a 96-bit unique device identifier which provides a reference number that is unique for any device and in any context. The 96 bits of the identifier can never be altered by the user.

The unique device identifier can be read in single byte and may then be concatenated using a custom algorithm.

The unique device identifier is ideally suited:


- For use as serial numbers
- For use as security keys to increase the code security in the program memory while using and combining this unique ID with software cryptographic primitives and protocols before programming the internal memory.
- To activate secure boot processes

| Address | Content<br>description |                            | Unique ID bits |   |       |        |   |   |   |
|---------|------------------------|----------------------------|----------------|---|-------|--------|---|---|---|
|         |                        | 7                          | 6              | 5 | 4     | 3      | 2 | 1 | 0 |
| 0x4865  | X co-ordinate on       |                            | U_ID[7:0]      |   |       |        |   |   |   |
| 0x4866  | the wafer              | U_ID[15:8]                 |                |   |       |        |   |   |   |
| 0x4867  | Y co-ordinate on       |                            | U_ID[23:16]    |   |       |        |   |   |   |
| 0x4868  | the wafer              | U_ID[31:24]                |                |   |       |        |   |   |   |
| 0x4869  | Wafer number           | U_ID[39:32]                |                |   |       |        |   |   |   |
| 0x486A  |                        |                            |                |   | U_ID[ | 47:40] |   |   |   |
| 0x486B  |                        |                            |                |   | U_ID[ | 55:48] |   |   |   |
| 0x486C  |                        |                            |                |   | U_ID[ | 63:56] |   |   |   |
| 0x486D  | Lot number             | U_ID[71:64]                |                |   |       |        |   |   |   |
| 0x486E  |                        | U_ID[79:72]<br>U_ID[87:80] |                |   |       |        |   |   |   |
| 0x486F  |                        |                            |                |   |       |        |   |   |   |
| 0x4870  |                        |                            |                |   | U_ID[ | 95:88] |   |   |   |

#### Table 15. Unique ID registers (96 bits)



#### Figure 9. Pin input voltage



# **10.2** Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 16: Voltage characteristics*, *Table 17: Current characteristics* and *Table 18: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and a functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect the device's reliability.

The device's mission profile (application conditions) is compliant with the JEDEC JESD47 Qualification Standard, the extended mission profiles are available on demand.

| Symbol                             | Ratings                                              | Min                                                                | Max                   | Unit |
|------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|-----------------------|------|
| $V_{DDx}$ - $V_{SS}$               | Supply voltage <sup>(1)</sup>                        | -0.3                                                               | 6.5                   | V    |
| M                                  | Input voltage on true open drain pins <sup>(2)</sup> | V <sub>SS</sub> - 0.3                                              | 6.5                   | V    |
| V <sub>IN</sub>                    | Input voltage on any other pin <sup>(2)</sup>        | V <sub>SS</sub> - 0.3                                              | V <sub>DD</sub> + 0.3 | v    |
| V <sub>DDx</sub> - V <sub>DD</sub> | Variations between different power pins              | -                                                                  | 50                    | mV   |
| V <sub>SSx</sub> - V <sub>SS</sub> | Variations between all the different ground pins     | -                                                                  | 50                    | IIIV |
| V <sub>ESD</sub>                   | Electrostatic discharge voltage                      | see Absolute maximum rat<br>(electrical sensitivity) or<br>page 87 |                       | -    |

| Tabla | 16  | Voltago | characteristics |
|-------|-----|---------|-----------------|
| rapie | 10. | voitage | characteristics |

1. All power (V<sub>DD</sub>) and ground (V<sub>SS</sub>) pins must always be connected to the external power supply

2. This pin must never be exceeded. This is implicitly insured if V<sub>IN</sub> maximum is respected. If V<sub>IN</sub> maximum cannot be respected, the injection current must be limited externally to the I<sub>INJ(PIN)</sub> value. A positive injection is induced by V<sub>IN</sub> > V<sub>DD</sub> while a negative injection is induced by V<sub>IN</sub> < V<sub>SS</sub>. For true open-drain pads, there is no positive injection current, and the corresponding V<sub>IN</sub> maximum must always be respected

#### Table 17. Current characteristics

| Symbol           | Ratings                                                                | Max. <sup>(1)</sup> | Unit |
|------------------|------------------------------------------------------------------------|---------------------|------|
| I <sub>VDD</sub> | Total current into V <sub>DD</sub> power lines (source) <sup>(2)</sup> | 100                 |      |
| I <sub>VSS</sub> | Total current out of $V_{SS}$ ground lines (sink) <sup>(1)</sup>       | 80                  | mA   |
|                  | Output current sunk by any I/O and control pin                         | 20                  | ША   |
| IIO              | Output current source by any I/Os and control pin                      | -20                 |      |



## Total current consumption in wait mode

| Symbol   | Parameter                                              | Conditi                                                      | ons                                   | Тур  | Max <sup>(1)</sup> | Unit |  |  |  |  |                                                       |                      |     |      |
|----------|--------------------------------------------------------|--------------------------------------------------------------|---------------------------------------|------|--------------------|------|--|--|--|--|-------------------------------------------------------|----------------------|-----|------|
|          |                                                        |                                                              | HSE crystal osc. (16 MHz)             | 1.6  | -                  |      |  |  |  |  |                                                       |                      |     |      |
|          | f <sub>CPU</sub> = f <sub>MASTER</sub> = 16 MHz        | HSE user ext. clock<br>(16 MHz)                              | 1.1                                   | 1.3  |                    |      |  |  |  |  |                                                       |                      |     |      |
|          | I <sub>DD(WFI)</sub> Supply<br>current in<br>wait mode |                                                              | HSI RC osc. (16 MHz)                  | 0.89 | 1.1                |      |  |  |  |  |                                                       |                      |     |      |
| IDD(WFI) |                                                        |                                                              |                                       |      |                    |      |  |  |  |  | f <sub>CPU</sub> = f <sub>MASTER</sub> /128 = 125 kHz | HSI RC osc. (16 MHz) | 0.7 | 0.88 |
|          |                                                        | f <sub>CPU</sub> = f <sub>MASTER</sub> /s128 =<br>15.625 kHz | HSI RC osc. (16 MHz/8) <sup>(2)</sup> | 0.45 | 0.57               |      |  |  |  |  |                                                       |                      |     |      |
|          |                                                        | f <sub>CPU</sub> = f <sub>MASTER</sub> = 128 kHz             | LSI RC osc. (128 kHz)                 | 0.4  | 0.54               |      |  |  |  |  |                                                       |                      |     |      |

## Table 23. Total current consumption in wait mode at $\rm V_{DD}$ = 5 V

1. Guaranteed by characterization results.

2. Default clock configuration measured with all peripherals off.

| Table 24. Total c | urrent consumption | in wait mode at | V <sub>DD</sub> = 3.3 V |
|-------------------|--------------------|-----------------|-------------------------|
|-------------------|--------------------|-----------------|-------------------------|

| Symbol   | Parameter                                              | Conditions                                                   |                                       |      | Max <sup>(1)</sup> | Unit |
|----------|--------------------------------------------------------|--------------------------------------------------------------|---------------------------------------|------|--------------------|------|
|          | Supply<br>I <sub>DD(WFI)</sub> current in<br>wait mode | f <sub>CPU</sub> = f <sub>MASTER</sub> = 16 MHz              | HSE crystal osc. (16 MHz)             | 1.1  | -                  |      |
|          |                                                        |                                                              | HSE user ext. clock<br>(16 MHz)       | 1.1  | 1.3                |      |
|          |                                                        |                                                              | HSI RC osc. (16 MHz)                  | 0.89 | 1.1                |      |
| IDD(WFI) |                                                        | f <sub>CPU</sub> = f <sub>MASTER</sub> /128 = 125 kHz        | HSI RC osc. (16 MHz)                  | 0.7  | 0.88               | mA   |
|          |                                                        | f <sub>CPU</sub> = f <sub>MASTER</sub> /s128 =<br>15.625 kHz | HSI RC osc. (16 MHz/8) <sup>(2)</sup> | 0.45 | 0.57               |      |
|          |                                                        | f <sub>CPU</sub> = f <sub>MASTER</sub> = 128 kHz             | LSI RC osc. (128 kHz)                 | 0.4  | 0.54               |      |

1. Guaranteed by characterization results.

2. Default clock configuration measured with all peripherals off.



#### HSE crystal/ceramic resonator oscillator

The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).

| Symbol                              | Parameter                                   | Conditions                             | Min | Тур | Мах                                             | Unit |
|-------------------------------------|---------------------------------------------|----------------------------------------|-----|-----|-------------------------------------------------|------|
| f <sub>HSE</sub>                    | External high speed oscillator frequency    | -                                      | 1   | -   | 16                                              | MHz  |
| R <sub>F</sub>                      | Feedback resistor                           | -                                      | -   | 220 | -                                               | kΩ   |
| C <sup>(1)</sup>                    | Recommended load capacitance <sup>(2)</sup> | -                                      | -   | -   | 20                                              | pF   |
| 1                                   | HSE oscillator power                        | C = 20 pF<br>f <sub>OSC</sub> = 16 MHz | -   | -   | 6 (start up)<br>1.6 (stabilized) <sup>(3)</sup> | mA   |
| IDD(HSE)                            | consumption                                 | C = 10 pF<br>f <sub>OSC</sub> = 16 MHz | -   | -   | 6 (start up)<br>1.2 (stabilized) <sup>(3)</sup> | mA   |
| 9 <sub>m</sub>                      | Oscillator<br>transconductance              | -                                      | 5   | -   | -                                               | mA/V |
| t <sub>SU(HSE)</sub> <sup>(4)</sup> | Startup time                                | V <sub>DD</sub> is stabilized          | -   | 1   | -                                               | ms   |

| Table | 33.         | HSE | oscillator | characteristics |
|-------|-------------|-----|------------|-----------------|
| Table | <b>UU</b> . |     | oscillator | characteristics |

1. C is approximately equivalent to 2 x crystal Cload.

2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small Rm value. Refer to crystal manufacturer for more details

3. Guaranteed by characterization results.

 t<sub>SU(HSE)</sub> is the start-up time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.



## 10.3.5 Memory characteristics

### **RAM** and hardware registers

#### Table 36. RAM and hardware registers

| Symbol          | Parameter                          | Conditions           | Min                                | Unit |
|-----------------|------------------------------------|----------------------|------------------------------------|------|
| V <sub>RM</sub> | Data retention mode <sup>(1)</sup> | Halt mode (or reset) | V <sub>IT-max</sub> <sup>(2)</sup> | V    |

1. Minimum supply voltage without losing data stored in RAM (in halt mode or under reset) or in hardware registers (only in halt mode). Guaranteed by design, not tested in production.

2. Refer to Section 10.3: Operating conditions for the value of V<sub>IT-max</sub>.

#### Flash program memory/data EEPROM memory

| Symbol             | Parameter                                                                                     | Conditions                | Min <sup>(1)</sup> | Тур | Max  | Unit  |  |
|--------------------|-----------------------------------------------------------------------------------------------|---------------------------|--------------------|-----|------|-------|--|
| V <sub>DD</sub>    | Operating voltage<br>(all modes, execution/write/erase)                                       | f <sub>CPU</sub> ≤ 16 MHz | 2.95               | -   | 5.5  | V     |  |
| t <sub>prog</sub>  | Standard programming time (including<br>erase) for byte/word/block<br>(1 byte/4 byte/64 byte) | -                         | -                  | 6   | 6.6  |       |  |
| 1 0                | Fast programming time for 1 block (64 byte)                                                   | -                         | -                  | 3   | 3.33 | ms    |  |
| t <sub>erase</sub> | Erase time for 1 block (64 byte)                                                              | -                         | -                  | 3   | 3.33 | 3.33  |  |
| N <sub>RW</sub>    | Erase/write cycles<br>(program memory) <sup>(2)</sup>                                         | T <sub>A</sub> = +85 °C   | 100k               | -   | -    | cycle |  |
|                    | Erase/write cycles (data memory) <sup>(2)</sup> $T_A = +125 \text{ °C}$                       |                           | 300k               | 1M  | -    |       |  |
| +                  | Data retention (program and data memory) after 10k erase/write cycles at $T_A$ = +55 °C       | T <sub>RET</sub> = 55 °C  | 20                 | -   | -    | Voor  |  |
| t <sub>RET</sub>   | Data retention (data memory) after<br>300k erase/write cycles at<br>T <sub>A</sub> = +125°C   | T <sub>RET</sub> = 85 °C  | 1                  | -   | -    | year  |  |
| I <sub>DD</sub>    | Supply current (Flash programming or erasing for 1 to 128 byte)                               | -                         | -                  | 2   | -    | mA    |  |

#### Table 37. Flash program memory/data EEPROM memory

1. Guaranteed by characterization results.

2. The physical granularity of the memory is 4 byte, so cycling is performed on 4 byte even when a write/erase operation addresses a single byte.



## 10.3.10 10-bit ADC characteristics

Subject to general operating conditions for  $V_{\text{DD}},\,f_{\text{MASTER}},$  and  $T_{\text{A}}$  unless otherwise specified.

| Symbol                        | Parameter                               | Conditions                            | Min      | Тур  | Max             | Unit               |
|-------------------------------|-----------------------------------------|---------------------------------------|----------|------|-----------------|--------------------|
| f                             | ADC clock frequency                     | $V_{\text{DD}}\text{=}$ 2.95 to 5.5 V | 1        | -    | 4               | MHz                |
| f <sub>ADC</sub>              | ADC clock frequency                     | V <sub>DD</sub> = 4.5 to 5.5 V        | 1        | -    | 6               | IVITIZ             |
| V <sub>AIN</sub>              | Conversion voltage range <sup>(1)</sup> | -                                     | $V_{SS}$ | -    | V <sub>DD</sub> | V                  |
| C <sub>ADC</sub>              | Internal sample and hold capacitor      | -                                     | -        | 3    | -               | pF                 |
| t <sub>S</sub> <sup>(1)</sup> | Minimum sampling time                   | f <sub>ADC</sub> = 4 MHz              | -        | 0.75 | -               | 116                |
|                               |                                         | f <sub>ADC</sub> = 6 MHz              | -        | 0.5  | -               | μs                 |
| t <sub>STAB</sub>             | Wakeup time from standby                | -                                     | -        | 7.0  | -               | μs                 |
|                               | Minimum total conversion time           | f <sub>ADC</sub> = 4 MHz              |          | 3.5  |                 | μs                 |
| t <sub>CONV</sub>             | (including sampling time, 10-           | f <sub>ADC</sub> = 6 MHz              | 2.33     |      | μs              |                    |
|                               | bit resolution)                         | -                                     |          | 14   |                 | 1/f <sub>ADC</sub> |

| Table 4 | 5. ADC | characteristics |
|---------|--------|-----------------|
|---------|--------|-----------------|

 During the sample time, the sampling capacitance, C<sub>AIN</sub> (3 pF max), can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t<sub>S</sub>. After the end of the sample time t<sub>S</sub>, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t<sub>S</sub> depend on programming.



## **10.3.11 EMC characteristics**

Susceptibility tests are performed on a sample basis during product characterization.

### Functional EMS (electromagnetic susceptibility)

While executing a simple application (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V<sub>DD</sub> and V<sub>SS</sub> through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709 (EMC design guide for STM microcontrollers).

#### Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

#### Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring. See application note AN1015 (Software techniques for improving microcontroller EMC performance).

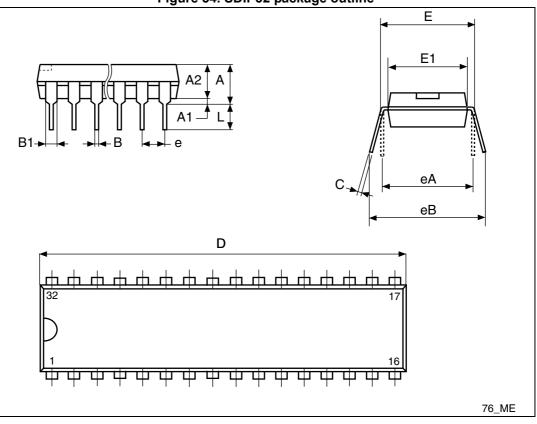

| Symbol            | Parameter                                                                                                                         | Conditions                                                                                          | Level/class        |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------|
| V <sub>FESD</sub> | Voltage limits to be applied on any I/O pin to induce a functional disturbance                                                    | $V_{DD}$ = 3.3 V, $T_A$ = 25 °C,<br>$f_{MASTER}$ = 16 MHz (HSI clock),<br>Conforms to IEC 61000-4-2 | 2/B <sup>(1)</sup> |
| V <sub>EFTB</sub> | Fast transient voltage burst limits to be applied through 100 pF on $V_{DD}$ and $V_{SS}$ pins to induce a functional disturbance | $V_{DD}$ = 3.3 V, $T_A$ = 25 °C,<br>$f_{MASTER}$ = 16 MHz (HSI clock),<br>Conforms to IEC 61000-4-4 | 4/A <sup>(1)</sup> |

Table 48. EMS data

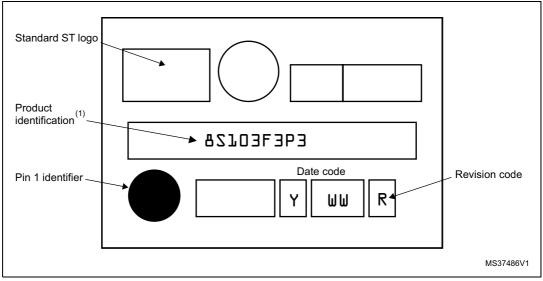
1. Data obtained with HSI clock configuration, after applying the hardware recommendations described in AN2860 (EMC guidelines for STM8S microcontrollers).

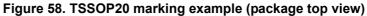


# 11.4 SDIP32 package information



#### Figure 54. SDIP32 package outline


#### Table 55. SDIP32 package mechanical data


| Dim  |        | mm     |        | inches <sup>(1)</sup> |        |        |
|------|--------|--------|--------|-----------------------|--------|--------|
| Dim. | Min    | Тур    | Мах    | Min                   | Тур    | Max    |
| А    | 3.556  | 3.759  | 5.080  | 0.1400                | 0.1480 | 0.2000 |
| A1   | 0.508  | -      | -      | 0.0200                | -      | -      |
| A2   | 3.048  | 3.556  | 4.572  | 0.1200                | 0.1400 | 0.1800 |
| В    | 0.356  | 0.457  | 0.584  | 0.0140                | 0.0180 | 0.0230 |
| B1   | 0.762  | 1.016  | 1.397  | 0.0300                | 0.0400 | 0.0550 |
| С    | 0.203  | 0.254  | 0.356  | 0.0079                | 0.0100 | 0.0140 |
| D    | 27.430 | 27.940 | 28.450 | 1.0799                | 1.1000 | 1.1201 |
| E    | 9.906  | 10.410 | 11.050 | 0.3900                | 0.4098 | 0.4350 |
| E1   | 7.620  | 8.890  | 9.398  | 0.3000                | 0.3500 | 0.3700 |
| е    | -      | 1.778  | -      | -                     | 0.0700 | -      |
| eA   | -      | 10.160 | -      | -                     | 0.4000 | -      |

### **Device marking**

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.





 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.



# 14.3 **Programming tools**

During the development cycle, STice provides in-circuit programming of the STM8 Flash microcontroller on the application board via the SWIM protocol. Additional tools include a low-cost in-circuit programmer as well as ST socket boards, which provide dedicated programming platforms with sockets for the STM8 programming.

For production environments, programmers will include a complete range of gang and automated programming solutions from third-party tool developers already supplying programmers for the STM8 family.



| Date        | Revision | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16-Oct-1999 | 4        | <ul> <li>Replaced VFQFPN32 package by UFQFPN32 package.</li> <li>Section 4.5: Clock controller: replaced TIM2 and TIM3 with reserved and TIM2 respectively in Table 2: Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers</li> <li>Total current consumption in halt mode: changed the maximum current consumption limit at 125 °C (and VDD= 5 V) from 35 μA to 55 μA.</li> <li>Functional EMS (electromagnetic susceptibility): renamed ESD as FESD (functional); added name of AN1709; replaced EC 1000 with IEC 61000.</li> <li>Designing hardened software to avoid noise problems: replaced IEC 1000 with IEC 61000, added title of AN1015, and added footnote to EMS data table.</li> <li>Electromagnetic interference (EMI): replaced J 1752/3 with IEC 61967-2 and updated data of the EMI data table.</li> <li>Section 12.2: Selecting the product temperature range: changed the value of LQFP32 7x7 mm thermal resistance from 59 °C/W to 60 °C/W.</li> <li>Added Section 13.1: STM8S103 FASTROM microcontroller option list.</li> </ul> |
| 22-Apr-2010 | 5        | <ul> <li>Added VFQFPN32 and SO20 packages.</li> <li>Updated Px_IDR reset value in <i>Table 7: I/O port hardware register</i> map.</li> <li>Section 10.3: Operating conditions: updated VCAP and ESR low limit, added ESL parameter, and Note 1 below <i>Table 19: General</i> operating conditions</li> <li>Updated ACCHSI in <i>Table 34: HSI oscillator characteristics</i>. Modified IDD(H)inand. Removed note 3 related to Accuracy of HSI oscillator.</li> <li>Updated maximum power dissipation in <i>Table 19: General operating</i> conditions.</li> <li>Updated Section 12: Thermal characteristics</li> <li>Replaced package pitch digit by VFQFPN/UFQFPN package digit in <i>Figure 63: STM8S103F2/x3 access line ordering information</i> scheme<sup>(1)</sup>, and removed note 1.</li> </ul>                                                                                                                                                                                                                                                          |

| Table 59. | <b>Document revision</b> | history |
|-----------|--------------------------|---------|
|-----------|--------------------------|---------|



| Table 59. Document revision history |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date                                | Revision | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 03-Oct-2016                         | 13       | <ul> <li>Updated:</li> <li>Name of "LQFP32 package" to "LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data, Figure 45: LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline and Figure 46: LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline and Figure 46: LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline and Figure 46: LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline and Figure 46: LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package recommended footprint</li> <li>Section 10.2: Absolute maximum ratings</li> <li>Section 10.3.10: 10-bit ADC characteristics</li> <li>Figure 40: SPI timing diagram where slave mode and CPHA = 1</li> <li>Figure 41: SPI timing diagram - master mode</li> <li>Figure 63: STM8S103F2/x3 access line ordering information scheme<sup>(1)</sup>: corrected package name from VFQFPN to UFQFPN</li> <li>Table 8: General hardware register map</li> <li>Table 16: Voltage characteristics</li> <li>Table 17: Current characteristics</li> <li>Table 19: General operating conditions</li> <li>Table 20: Operating conditions at power-up/power-down</li> <li>Table 21: Total current consumption with code execution in run mode at V<sub>DD</sub> = 5 V</li> <li>Table 31: Peripheral current consumption</li> <li>Table 49: EMI data</li> <li>Updated footnotes on Table 18: Thermal characteristics, Table 38: I/O static characteristics, Table 43: SPI characteristics, Figure 45: LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline, Figure 48: UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package outline.</li> <li>Updated all the "Device marking" sections on Section 11: Package information</li> </ul> |
| 13-Feb-2017                         | 14       | Updated:<br>- Section 10.2: Absolute maximum ratings<br>- Section 11.3: UFQFPN20 package information<br>- Table 5: STM8S103K3 pin descriptions<br>- Table 6: STM8S103F2 and STM8S103F3 pin descriptions<br>- Table 21: Total current consumption with code execution in run<br>mode at V <sub>DD</sub> = 5 V<br>- Footnotes in all tables of Section 10: Electrical characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                     |          | Added:<br>– Figure 52: UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin<br>fine pitch quad flat package recommended footprint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

## Table 59. Document revision history

