E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	640 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s103f2p6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

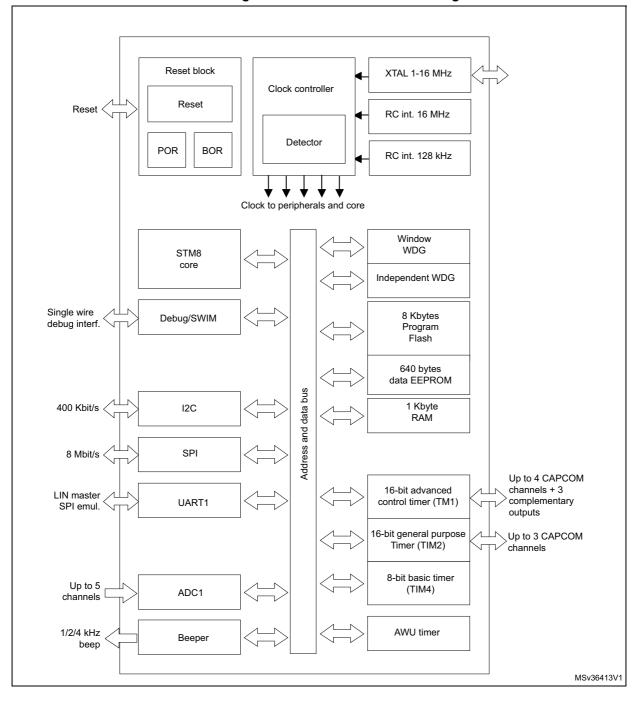
2 Description

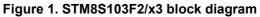
The STM8S103F2/x3 access line 8-bit microcontrollers offer 8 Kbyte Flash program memory, plus integrated true data EEPROM. The STM8S microcontroller family reference manual (RM0016) refers to devices in this family as low-density. They provide the following benefits: performance, robustness, and reduced system cost.

Device performance and robustness are ensured by advanced core and peripherals made in a state-of-the art technology, a 16 MHz clock frequency, robust I/Os, independent watchdogs with separate clock source, and a clock security system.

The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k write/erase cycles and a high system integration level with internal clock oscillators, watchdog and brown-out reset.

Full documentation is offered as well as a wide choice of development tools.


Device	STM8S103K3	STM8S103F3	STM8S103F2
Pin count	32	20	20
Maximum number of GPIOs (I/Os)	28	16	16
Ext. interrupt pins	27	16	16
Timer CAPCOM channels	7	7	7
Timer complementary outputs	3	2	2
A/D converter channels	4	5	5
High sink I/Os	21	12	12
Low density Flash program memory (bytes)	8K	8K	4К
Data EEPROM (bytes)	640 ⁽¹⁾	640 ⁽¹⁾	640 ⁽¹⁾
RAM (bytes)	1K	1K	1K
Peripheral set		M1), SPI, I2C, UART wind PWM timer (TIM2), 8-bit	


Table 1. STM8S103F2/x3 access line features

1. No read-while-write (RWW) capability.

3 Block diagram

57

DocID15441 Rev 14

Independent watchdog timer

The independent watchdog peripheral can be used to resolve processor malfunctions due to hardware or software failures.

It is clocked by the 128 kHz LSI internal RC clock source, and thus stays active even in case of a CPU clock failure

The IWDG time base spans from 60 μ s to 1 s.

4.8 Auto wakeup counter

- Used for auto wakeup from active halt mode,
- Clock source: Internal 128 kHz internal low frequency RC oscillator or external clock,
- LSI clock can be internally connected to TIM1 input capture channel 1 for calibration.

4.9 Beeper

The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz.

The beeper output port is only available through the alternate function remap option bit AFR7.

4.10 TIM1 - 16-bit advanced control timer

This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and half-bridge driver

- 16-bit up, down and up/down autoreload counter with 16-bit prescaler
- Four independent capture/compare channels (CAPCOM) configurable as input capture, output compare, PWM generation (edge and center aligned mode) and single pulse mode output
- Synchronization module to control the timer with external signals
- Break input to force the timer outputs into a defined state
- Three complementary outputs with adjustable dead time
- Encoder mode
- Interrupt sources: 3 x input capture/output compare, 1 x overflow/update, 1 x break

4.11 TIM2 - 16-bit general purpose timer

- 16-bit auto reload (AR) up-counter
- 15-bit prescaler adjustable to fixed power of 2 ratios 1...32768
- 3 individually configurable capture/compare channels
- PWM mode
- Interrupt sources: 3 x input capture/output compare, 1 x overflow/update

	22				Input			·	put	<u> </u>			u
SDIP32	LQFP/ UFQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink ⁽¹⁾	Speed	OD	РР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
15	10	PB6	I/O	Х	Х	Х	-	01	Х	Х	Port B6	-	-
16	11	PB5/ I2C_SDA	I/O	x	-	х	-	01	T ⁽³⁾	-	Port B5	I2C data	-
17	12	PB4/ I2C_SCL	I/O	x	-	х	-	01	Т	-	Port B4	I2C clock	-
18	13	PB3/AIN3/ TIM1_ETR	I/O	x	x	х	HS	O3	x	х	Port B3	Analog input 3/ Timer 1 external trigger	-
19	14	PB2/AIN2/ TIM1_CH3N	I/O	x	х	Х	HS	O3	х	Х	Port B2	Analog input 2/ Timer 1 - inverted channel 3	-
20	15	PB1/AIN1/ TIM1_CH2N	I/O	x	х	х	HS	O3	х	х	Port B1	Analog input 1/ Timer 1 - inverted channel 2	-
21	16	PB0/AIN0/ TIM1_CH1N	I/O	x	x	х	HS	O3	x	х	Port B0	Analog input 0/ Timer 1 - inverted channel 1	-
22	17	PE5/SPI_N SS	I/O	х	х	х	HS	O3	х	х	Port E5	SPI master/slave select	-
23	18	PC1/ TIM1_CH1/ UART1_CK	I/O	x	x	х	HS	O3	х	х	Port C1	Timer 1 - channel 1 UART1 clock	-
24	19	PC2/ TIM1_CH2	I/O	х	х	х	HS	O3	х	х	Port C2	Timer 1 - channel 2	-
25	20	PC3/ TIM1_CH3	I/O	x	х	х	HS	O3	х	х	Port C3	Timer 1 - channel 3	-
26	21	PC4/ TIM1_CH4/ CLK_CCO	I/O	x	х	Х	HS	O3	x	Х	Port C4	Timer 1 - channel 4 /configurable clock output	-
27	22	PC5/ SPI_SCK	I/O	x	х	х	HS	O3	х	х	Port C5	SPI clock	-
28	23	PC6/ SPI_MOSI	I/O	x	х	х	HS	O3	х	х	Port C6	SPI master out/slave in	-

Table 5. STM8S103K3 pin descriptions (continued)

					Input			Out	put		c	ate	ion
TSSOP/SO20	UFQFPN20	Pin name	Type	floating	ndw	Ext. interrupt	High sink ⁽¹⁾	Speed	QD	ΡР	Main function (after reset)	Main function (after reset) Default alternate function Alternate function after remap	
14	11	PC4/ CLK_CCO/ TIM1_ CH4/AIN2/[TIM1_ CH2N]	I/O	x	x	x	HS	O3	x	x	Port C4	Configurable clock output/Timer 1 - channel 4/Analog input 2	Timer 1 - inverted channel 2 [AFR7]
15	12	PC5/ SPI_SCK [TIM2_CH1]	I/O	x	x	x	HS	O3	x	х	Port C5	SPI clock	Timer 2 - channel 1 [AFR0]
16	13	PC6/ SPI_MOSI [TIM1_CH1]	I/O	x	х	х	HS	O3	х	х	Port C6	SPI master out/slave in	Timer 1 - channel 1 [AFR0]
17	14	PC7/ SPI_MISO [TIM1_CH2]	I/O	x	х	х	HS	O3	х	х	Port C7	SPI master in/ slave out	Timer 1 - channel 2 [AFR0]
18	15	PD1/ SWIM	I/O	x	х	х	HS	04	х	х	Port D1	SWIM data interface	-
19	16	PD2/AIN3/[T IM2_CH3]	I/O	x	х	х	HS	O3	х	х	Port D2	Analog input 3	Timer 2 - channel 3 [AFR1]
20	17	PD3/ AIN4/ TIM2_CH2/ ADC_ETR	I/O	x	х	х	HS	O3	х	х	Port D3	Analog input 4/ Timer 2 - channel 2/ADC external trigger	-

Table 6. STM8S103F2 and STM8S103F3 pin descriptions (continued)

1. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package. In addition, the total driven current must respect the absolute maximum ratings.

2. When the MCU is in halt/active-halt mode, PA1 is automatically configured in input weak pull-up and cannot be used for waking up the device. In this mode, the output state of PA1 is not driven. It is recommended to use PA1 only in input mode if halt/active-halt is used in the application.

3. In the open-drain output column, "T" defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDD are not implemented).1

7 Interrupt vector mapping

Table 10. Interrupt mapping										
IRQ no.	Source block	Description	Wakeup from halt mode	Wakeup from active-halt mode	Vector address					
-	RESET	Reset	Yes	Yes	0x00 8000					
-	TRAP	Software interrupt	-	-	0x00 8004					
0	TLI	External top level interrupt	-	-	0x00 8008					
1	AWU	Auto wake up from halt	-	Yes	0x00 800C					
2	CLK	Clock controller	-	-	0x00 8010					
3	EXTI0	Port A external interrupts	Yes ⁽¹⁾	Yes ⁽¹⁾	0x00 8014					
4	EXTI1	Port B external interrupts	Yes	Yes	0x00 8018					
5	EXTI2	Port C external interrupts	Yes	Yes	0x00 801C					
6	EXTI3	Port D external interrupts	Yes	Yes	0x00 8020					
7	EXTI4	Port E external interrupts	Yes	Yes	0x00 8024					
8	Reserved	-	-	-	0x00 8028					
9	Reserved	-	-	-	0x00 802C					
10	SPI	End of transfer	Yes	Yes	0x00 8030					
11	TIM1	TIM1 update/ overflow/ underflow/ trigger/ break	-	-	0x00 8034					
12	TIM1	TIM1 capture/ compare	-	-	0x00 8038					
13	TIM2	TIM2 update/ overflow	-	-	0x00 803C					
14	TIM2	TIM2 capture/ compare	-	-	0x00 8040					
15	Reserved	-	-	-	0x00 8044					
16	Reserved	-	-	-	0x00 8048					
17	UART1	Tx complete	-	-	0x00 804C					
18	UART1	Receive register DATA FULL	-	-	0x00 8050					
19	I2C	I2C interrupt	Yes	Yes	0x00 8054					
20	Reserved	-	_	-	0x00 8058					

Table 10. Interrupt mapping

IRQ no.	Source block	Description	Wakeup from halt mode	Wakeup from active-halt mode	Vector address						
21	Reserved	-	-	-	0x00 805C						
22	ADC1	ADC1 end of conversion/analog watchdog interrupt	-	-	0x00 8060						
23	TIM4	TIM4 update/ overflow	-	-	0x00 8064						
24	Flash	EOP/WR_PG_DIS	-	-	0x00 8068						
	Reserved										

Table 10. Interrupt mapping (continued)

1. Except PA1.

Option byte no.	Description					
	EXTCLK: External clock selection 0: External crystal connected to OSCIN/OSCOUT 1: External clock signal on OSCIN					
OPT4	CKAWUSEL: Auto wake-up unit/clock 0: LSI clock source selected for AWU 1: HSE clock with prescaler selected as clock source for AWU PRSC[1:0] AWU clock prescaler 0x: 16 MHz to 128 kHz prescaler 10: 8 MHz to 128 kHz prescaler					
	11: 4 MHz to 128 kHz prescaler					
OPT5	HSECNT[7:0]: HSE crystal oscillator stabilization time 0x00: 2048 HSE cycles 0xB4: 128 HSE cycles 0xD2: 8 HSE cycles 0xE1: 0.5 HSE cycles					

Table 12. Option byte description (continued)

8.1 Alternate function remapping bits

Table 13. STM8S103K3 alternate function remapping bits for 32-pin devices

Option byte no.	Description ⁽¹⁾
OPT2	AFR7 Alternate function remapping option 7 Reserved.
	 AFR6 Alternate function remapping option 6 0: AFR6 remapping option inactive: Default alternate function.⁽²⁾ 1: Port D7 alternate function = TIM1_CH4.
	 AFR5 Alternate function remapping option 5 0: AFR5 remapping option inactive: Default alternate function.⁽²⁾ 1: Port D0 alternate function = CLK_CCO.
	AFR[4:2] Alternate function remapping options 4:2 Reserved.
	AFR1 Alternate function remapping option 1 0: AFR1 remapping option inactive: Default alternate functions. ⁽²⁾ 1: Port A3 alternate function = SPI_NSS; port D2 alternate function = TIM2_CH3.
	AFR0 Alternate function remapping option 0 Reserved.

1. Do not use more than one remapping option in the same port. It is forbidden to enable both AFR1 and AFR0.

2. Refer to pinout description.

Total current consumption in wait mode

Symbol	Parameter	Conditions			Max ⁽¹⁾	Unit
			HSE crystal osc. (16 MHz)	1.6	-	
	f _{CPU} = f _{MASTER} = 16 MHz	HSE user ext. clock (16 MHz)	1.1	1.3		
	Supply		HSI RC osc. (16 MHz)	0.89	1.1	
IDD(WFI)	current in wait mode	f _{CPU} = f _{MASTER} /128 = 125 kHz	HSI RC osc. (16 MHz)	0.7	0.88	mA
		f _{CPU} = f _{MASTER} /s128 = 15.625 kHz	HSI RC osc. (16 MHz/8) ⁽²⁾	0.45	0.57	
		f _{CPU} = f _{MASTER} = 128 kHz	LSI RC osc. (128 kHz)	0.4	0.54	

Table 23. Total current consumption in wait mode at $\rm V_{DD}$ = 5 V

1. Guaranteed by characterization results.

2. Default clock configuration measured with all peripherals off.

Table 24. Total c	urrent consumption	in wait mode at	V _{DD} = 3.3 V
-------------------	--------------------	-----------------	-------------------------

Symbol	Parameter	Conditions			Max ⁽¹⁾	Unit	
			HSE crystal osc. (16 MHz)	1.1	-		
	f _{CPU} = f _{MASTER} = 16 MHz	HSE user ext. clock (16 MHz)	1.1	1.3			
	Supply		HSI RC osc. (16 MHz)	0.89	1.1		
IDD(WFI)	current in wait mode	f _{CPU} = f _{MASTER} /128 = 125 kHz	HSI RC osc. (16 MHz)	0.7	0.88	mA	
		f _{CPU} = f _{MASTER} /s128 = 15.625 kHz		HSI RC osc. (16 MHz/8) ⁽²⁾	0.45	0.57	
		f _{CPU} = f _{MASTER} = 128 kHz	LSI RC osc. (128 kHz)	0.4	0.54		

1. Guaranteed by characterization results.

2. Default clock configuration measured with all peripherals off.

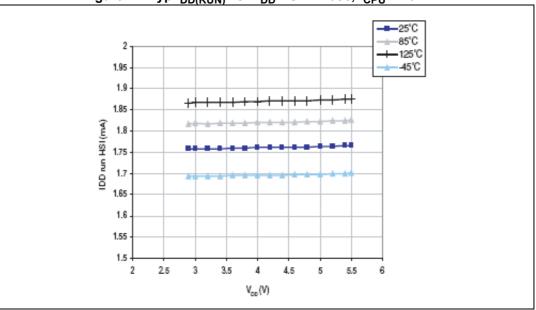
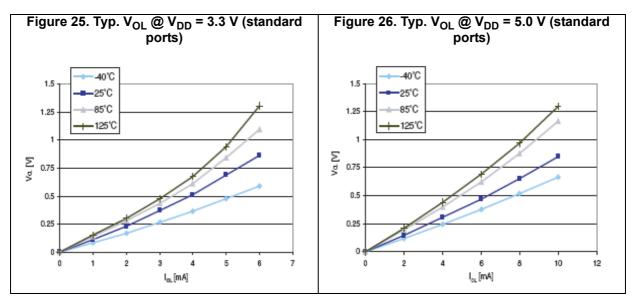



Figure 14. Typ $I_{DD(RUN)}$ vs. V_{DD} HSI RC osc, f_{CPU} = 16 MHz


Symbol	Parameter	Conditions	Min	Мах	Unit
V _{OL}	Output low level with 2 pins sunk	I _{IO} = 10 mA, V _{DD} = 5 V	-	1.0	
VOL	Output low level with 2 pins sunk	I _{IO} = 10 mA, V _{DD} = 3.3 V	-	1.5 ⁽¹⁾	V
V _{OH}	Output high level with 2 pins sourced	I _{IO} = 10 mA, V _{DD} = 5 V	-	2.0 ⁽¹⁾	

1. Guaranteed by characterization results

Symbol	Parameter	Conditions	Min	Мах	Unit
V _{OL}	Output low level with 8 pins sunk	I _{IO} = 10 mA, V _{DD} = 5 V	-	0.8	
	Output low level with 4	I _{IO} = 10 mA, V _{DD} = 3.3 V	-	1.0 ⁽¹⁾	
	pins sunk	I _{IO} = 20 mA, V _{DD} = 5 V	-	1.5 ⁽¹⁾	v
V _{OH}	Output high level with 8 pins sourced	I _{IO} = 10 mA, V _{DD} = 5 V	4.0	-	V
	Output high level with 4	I _{IO} = 10 mA, V _{DD} = 3.3 V	2.1 ⁽¹⁾	-	
	pins sourced	I _{IO} = 20 mA, V _{DD} = 5 V	3.3 ⁽¹⁾	-	

Table 41.	Output	drivina	current	(hiah	sink nor	ts)
	Output	univing	Current	(ingn	SILIK PUL	ເອງ

1. Guaranteed by characterization results.

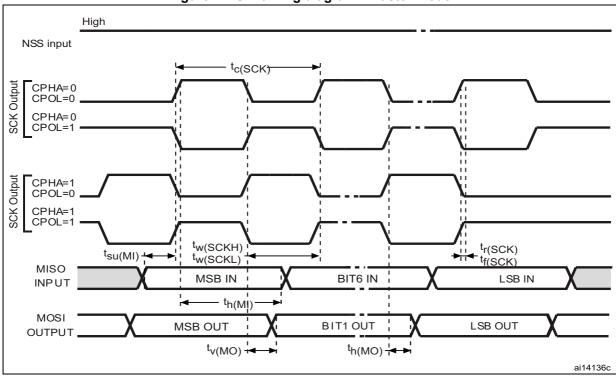


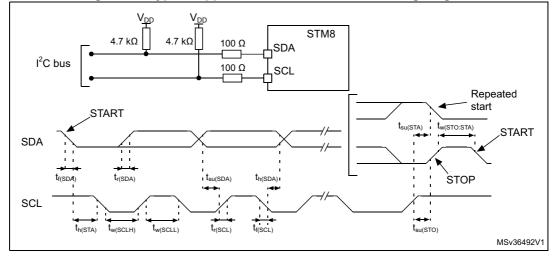
Figure 41. SPI timing diagram - master mode

1. Measurement points are at CMOS levels: 0.3 V_{DD} and 0.7 $V_{\text{DD}}.$

10.3.9 I²C interface characteristics

Symbol	Parameter	Standard	mode l ² C	Fast mo	Unit	
Symbol	Farameter	Min ⁽²⁾	Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾	Unit
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs
t _{su(SDA)}	SDA setup time	250	-	100	-	
t _{h(SDA)}	SDA data hold time	0 ⁽³⁾	-	0 ⁽⁴⁾	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time (V _{DD} = 3 to 5.5 V)	-	1000	-	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time (V _{DD} = 3 to 5.5 V)	-	300	-	300	
t _{h(STA)}	START condition hold time	4.0	-	0.6	-	
t _{su(STA)}	Repeated START condition setup time	4.7	-	0.6	-	
t _{su(STO)}	STOP condition setup time	4.0	-	0.6	-	μs
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7	-	1.3	-	
C _b	Capacitive load for each bus line	-	400	-	400	pF

Table 44. I²C characteristics


1. $f_{MASTER},$ must be at least 8 MHz to achieve max fast I^2C speed (400 kHz)

2. Data based on standard I²C protocol requirement, not tested in production

3. The maximum hold time of the start condition has only to be met if the interface does not stretch the low time

4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL

Figure 42. Typical application with I²C bus and timing diagram

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
		f _{ADC} = 2 MHz	1.6	3.5	
E _T	Total unadjusted error ⁽²⁾	f _{ADC} = 4 MHz	2.2	4	
		f _{ADC} = 6 MHz	2.4	4.5	
		f _{ADC} = 2 MHz	1.1	2.5	
E _O	Offset error ⁽²⁾	f _{ADC} = 4 MHz	1.5	3	
		f _{ADC} = 6 MHz	1.8	3	
		f _{ADC} = 2 MHz	1.5	3	
E _G	Gain error ⁽²⁾	f _{ADC} = 4 MHz	2.1	3	LSB
		f _{ADC} = 6 MHz	2.2	4	
		f _{ADC} = 2 MHz	0.7	1.5	
E _D	Differential linearity error ⁽²⁾	f _{ADC} = 4 MHz	0.7	1.5	
		f _{ADC} = 6 MHz	0.7	1.5	
		f _{ADC} = 2 MHz	0.6	1.5	
E _L	Integral linearity error ⁽²⁾	f _{ADC} = 4 MHz	0.8	2	
		f _{ADC} = 6 MHz	0.8	2	

Table 46. ADC accuracy with R_{AIN} < 10 k Ω , V_{DD} = 5 V

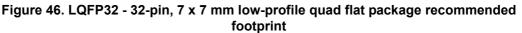
1. Guaranteed by characterization results.

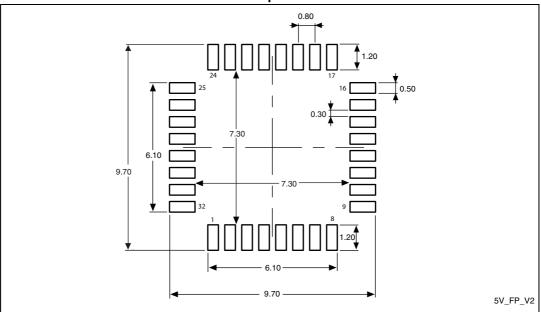
2. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 10.3.6 does not affect the ADC accuracy.

This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.

Symbol	Parameter	Conditions	Class ⁽¹⁾
		T _A = 25 °C	
LU	Static latch-up class	T _A = 85 °C	А
	-	T _A = 125 °C	

Table 51. Electrical sensitivities


1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B class strictly covers all the JEDEC criteria (international standard).



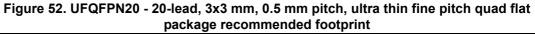
Cumb al	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.300	0.370	0.450	0.0118	0.0146	0.0177	
С	0.090	-	0.200	0.0035	-	0.0079	
D	8.800	9.000	9.200	0.3465	0.3543	0.3622	
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
D3	-	5.600	-	-	0.2205	-	
Е	8.800	9.000	9.200	0.3465	0.3543	0.3622	
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
E3	-	5.600	-	-	0.2205	-	
е	-	0.800	-	-	0.0315	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
CCC	-	-	0.100	-	-	0.0039	

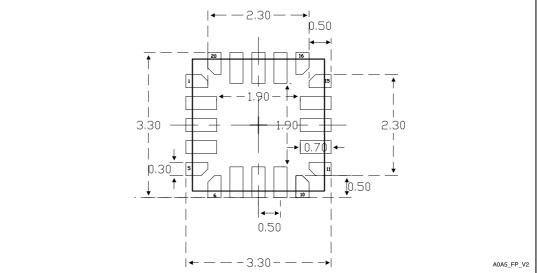
Table 52. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

DocID15441 Rev 14




Table 54. UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flatpackage mechanical data (continued)

		<u> </u>		,		
Dim.	mm			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Мах
L3	-	0.375	-	-	0.0148	-
L4	-	0.200	-	-	0.0079	-
L5	-	0.150	-	-	0.0059	-
b	0.180	0.250	0.300	0.0071	0.0098	0.0118
е	-	0.500	-	-	0.0197	-
ddd	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits

Section 11.7: UFQFPN recommended footprint shows the recommended footprints for UFQFPN with and without on-board emulation.

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

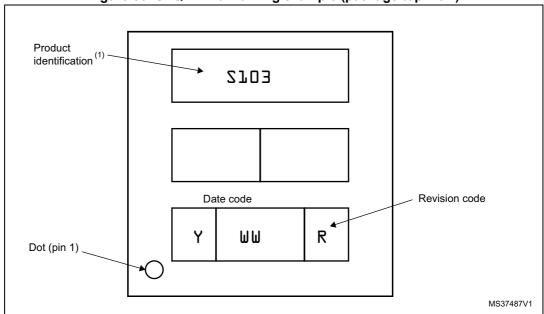
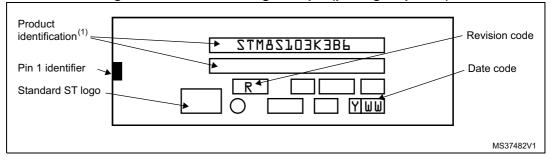


Figure 53. UFQFPN20 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Dim.		mm			inches ⁽¹⁾		
Dim.	Min	Тур	Мах	Min	Тур	Max	
eB	-	-	12.700	-	-	0.5000	
L	2.540	3.048	3.810	0.1000	0.1200	0.1500	


Table 55. SDIP32 package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

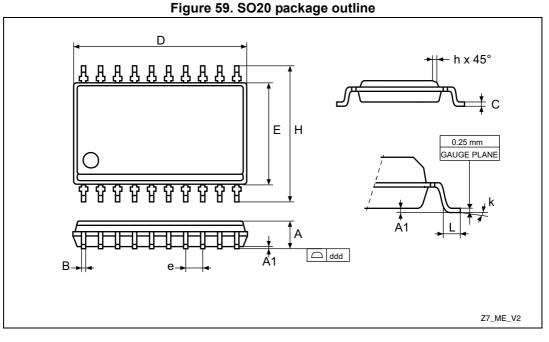


Figure 55. SDIP32 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

11.6 SO20 package information

Table 57. SO20 mechanical data

Dim.	mm			inches ⁽¹⁾			
Dini.	Min	Тур	Max	Min	Тур	Max	
A	2.350	-	2.650	0.0925	-	0.1043	
A1	0.100	-	0.300	0.0039	-	0.0118	
В	0.330	-	0.510	0.013	-	0.0201	
С	0.230	-	0.320	0.0091	-	0.0126	
D	12.600	-	13.000	0.4961	-	0.5118	
E	7.400	-	7.600	0.2913	-	0.2992	
е	-	1.270	-	-	0.0500	-	
Н	10.000	-	10.650	0.3937	-	0.4193	
h	0.250	-	0.750	0.0098	-	0.0295	
L	0.400	-	1.270	0.0157	-	0.0500	
k	0.0°	-	8.0°	0.0°	-	8.0°	
ddd	-	-	0.100	-	-	0.0039	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

