E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	640 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s103f3p3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

STM8S103F2 STM8S103F3 STM8S103K3

6	Memo	ory and	register map	31
	6.1	Memory	/ map	31
	6.2	Registe	r map	32
		6.2.1	I/O port hardware register map	32
		6.2.2	General hardware register map	33
		6.2.3	CPU/SWIM/debug module/interrupt controller registers	41
7	Interr	upt vec	tor mapping	43
8	Optio	on byte		45
	8.1	Alternat	e function remapping bits	47
9	Uniqu	ue ID		49
10	Elect	rical cha	aracteristics	50
	10.1	Parame	ter conditions	50
		10.1.1	Minimum and maximum values	50
		10.1.2	Typical values	50
		10.1.3	Typical curves	50
		10.1.4	Loading capacitor	50
		10.1.5	Pin input voltage	50
	10.2	Absolut	e maximum ratings	51
	10.3	Operati	ng conditions	52
		10.3.1	VCAP external capacitor	55
		10.3.2	Supply current characteristics	55
		10.3.3	External clock sources and timing characteristics	64
		10.3.4	Internal clock sources and timing characteristics	67
		10.3.5	Memory characteristics	69
		10.3.6	I/O port pin characteristics	70
		10.3.7	Reset pin characteristics	75
		10.3.8	SPI serial peripheral interface	77
		10.3.9	I ² C interface characteristics	81
		10.3.10	10-bit ADC characteristics	82
		10.3.11	EMC characteristics	86
11	Packa	age info	rmation	89
	11.1	LQFP32	2 package information	89
57			DocID15441 Rev 14	3/121

2 Description

The STM8S103F2/x3 access line 8-bit microcontrollers offer 8 Kbyte Flash program memory, plus integrated true data EEPROM. The STM8S microcontroller family reference manual (RM0016) refers to devices in this family as low-density. They provide the following benefits: performance, robustness, and reduced system cost.

Device performance and robustness are ensured by advanced core and peripherals made in a state-of-the art technology, a 16 MHz clock frequency, robust I/Os, independent watchdogs with separate clock source, and a clock security system.

The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k write/erase cycles and a high system integration level with internal clock oscillators, watchdog and brown-out reset.

Full documentation is offered as well as a wide choice of development tools.

Device	STM8S103K3	STM8S103F3	STM8S103F2		
Pin count	32	20	20		
Maximum number of GPIOs (I/Os)	28	16	16		
Ext. interrupt pins	27	16	16		
Timer CAPCOM channels	7	7	7		
Timer complementary outputs	3	2	2		
A/D converter channels	4	5	5		
High sink I/Os	21	12	12		
Low density Flash program memory (bytes)	8K	8K	4K		
Data EEPROM (bytes)	640 ⁽¹⁾	640 ⁽¹⁾	640 ⁽¹⁾		
RAM (bytes)	1K	1K	1K		
Peripheral set	Multipurpose timer (TIM1), SPI, I2C, UART window WDG, independent WDG, ADC, PWM timer (TIM2), 8-bit timer (TIM4)				

Table 1. STM8S103F2/x3 access line features

1. No read-while-write (RWW) capability.

This divides the program memory into two areas:

- Main program memory: up to 8 Kbyte minus UBC
- User-specific boot code (UBC): Configurable up to 8 Kbyte

The UBC area remains write-protected during in-application programming. This means that the MASS keys do not unlock the UBC area. It protects the memory used to store the boot program, specific code libraries, reset and interrupt vectors, the reset routine and usually the IAP and communication routines.

Read-out protection (ROP)

The read-out protection blocks reading and writing the Flash program memory and data EEPROM memory in ICP mode (and debug mode). Once the read-out protection is activated, any attempt to toggle its status triggers a global erase of the program and data memory. Even if no protection can be considered as totally unbreakable, the feature provides a very high level of protection for a general purpose microcontroller.

4.5 Clock controller

The clock controller distributes the system clock (fMASTER) coming from different oscillators to the core and the peripherals. It also manages clock gating for low power modes and ensures clock robustness.

Features

- Clock prescaler: to get the best compromise between speed and current consumption the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.
- **Safe clock switching:** clock sources can be changed safely on the fly in run mode through a configuration register. The clock signal is not switched until the new clock source is ready. The design guarantees glitch-free switching.
- **Clock management:** to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- **Master clock sources:** four different clock sources can be used to drive the master clock:
 - 1-16 MHz high-speed external crystal (HSE)
 - Up to 16 MHz high-speed user-external clock (HSE user-ext)
 - 16 MHz high-speed internal RC oscillator (HSI)
 - 128 kHz low-speed internal RC (LSI)
- **Startup clock:** After reset, the microcontroller restarts by default with an internal 2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- Clock security system (CSS): This feature can be enabled by software. If an HSE clock failure occurs, the internal RC (16 MHz/8) is automatically selected by the CSS and an interrupt can optionally be generated.
- **Configurable main clock output (CCO):** This outputs an external clock for use by the application.

Bit	Peripheral clock	Bit	Peripheral clock	Bit	Peripheral clock	Bit	Peripheral clock
PCKEN17	TIM1	PCKEN13	UART1	PCKEN27	Reserved	PCKEN23	ADC
PCKEN16	Reserved	PCKEN12	Reserved	PCKEN26	Reserved	PCKEN22	AWU
PCKEN15	TIM2	PCKEN11	SPI	PCKEN25	Reserved	PCKEN21	Reserved
PCKEN14	TIM4	PCKEN10	I2C	PCKEN24	Reserved	PCKEN20	Reserved

Table 2. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers

5.1 STM8S103K3 UFQFPN32/LQFP32/SDIP32 pinout and pin description

Figure 3. STM8S103K3 UFQFPN32/LQFP32 pinout

1. (HS) high sink capability.

2. (T) True open drain (P-buffer and protection diode to V_{DD} not implemented).

3. [] alternate function remapping option (if the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function).

5.2 STM8S103F2/F3 TSSOP20/SO20/UFQFPN20 pinout and pin description

5.2.1 STM8S103F2/F3 TSSOP20/SO20 pinout

1. HS high sink capability.

2. (T) True open drain (P-buffer and protection diode to VDD not implemented).

3. [] alternate function remapping option (If the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function)

7 Interrupt vector mapping

IRQ no.	Source block	Description	Wakeup from halt mode	Wakeup from active-halt mode	Vector address
-	RESET	Reset	Yes	Yes	0x00 8000
-	TRAP	Software interrupt	-	-	0x00 8004
0	TLI	External top level interrupt	-	-	0x00 8008
1	AWU	Auto wake up from halt	-	Yes	0x00 800C
2	CLK	Clock controller	-	-	0x00 8010
3	EXTI0	Port A external interrupts	Yes ⁽¹⁾	Yes ⁽¹⁾	0x00 8014
4	EXTI1	Port B external interrupts	Yes	Yes	0x00 8018
5	EXTI2	Port C external interrupts	Yes	Yes	0x00 801C
6	EXTI3	Port D external interrupts	Yes	Yes	0x00 8020
7	EXTI4	Port E external interrupts	Yes	Yes	0x00 8024
8	Reserved	-	-	-	0x00 8028
9	Reserved	-	-	-	0x00 802C
10	SPI	End of transfer	Yes	Yes	0x00 8030
11	TIM1	TIM1 update/ overflow/ underflow/ trigger/ break	-	-	0x00 8034
12	TIM1	TIM1 capture/ compare	-	-	0x00 8038
13	TIM2	TIM2 update/ overflow	-	-	0x00 803C
14	TIM2	TIM2 capture/ compare	-	-	0x00 8040
15	Reserved	-	-	-	0x00 8044
16	Reserved	-	-	-	0x00 8048
17	UART1	Tx complete	-	-	0x00 804C
18	UART1	Receive register DATA FULL	-	-	0x00 8050
19	I2C	I2C interrupt	Yes	Yes	0x00 8054
20	Reserved	-	-	-	0x00 8058

Table 10. Interrupt mapping

DocID15441 Rev 14

Option byte no.	Description				
	EXTCLK: External clock selection				
	0: External crystal connected to OSCIN/OSCOUT				
	1: External clock signal on OSCIN				
	CKAWUSEL: Auto wake-up unit/clock				
	0: LSI clock source selected for AWU				
OF14	1: HSE clock with prescaler selected as clock source for AWU				
	PRSC[1:0] AWU clock prescaler				
	0x: 16 MHz to 128 kHz prescaler				
	10: 8 MHz to 128 kHz prescaler				
	11: 4 MHz to 128 kHz prescaler				
	HSECNT[7:0]: HSE crystal oscillator stabilization time				
	0x00: 2048 HSE cycles				
OPT5	0xB4: 128 HSE cycles				
	0xD2: 8 HSE cycles				
	0xE1: 0.5 HSE cycles				

Table 12. Option byte description (continued)

8.1 Alternate function remapping bits

Table 13. STM8S103K3 alternate function remapping bits for 32-pin devices

Option byte no.	Description ⁽¹⁾
	AFR7 Alternate function remapping option 7 Reserved.
	AFR6 Alternate function remapping option 6 0: AFR6 remapping option inactive: Default alternate function. ⁽²⁾ 1: Port D7 alternate function = TIM1_CH4.
	AFR5 Alternate function remapping option 5 0: AFR5 remapping option inactive: Default alternate function. ⁽²⁾ 1: Port D0 alternate function = CLK_CCO.
0112	AFR[4:2] Alternate function remapping options 4:2 Reserved.
	AFR1 Alternate function remapping option 1 0: AFR1 remapping option inactive: Default alternate functions. ⁽²⁾ 1: Port A3 alternate function = SPI_NSS; port D2 alternate function = TIM2_CH3.
	AFR0 Alternate function remapping option 0 Reserved.

1. Do not use more than one remapping option in the same port. It is forbidden to enable both AFR1 and AFR0.

2. Refer to pinout description.

Symbol	Parameter	Conditions	Min	Max	Unit
		TSSOP20	-	59	
		SO20W	-	55	
р (3)	Power dissipation	UFQFPN20	-	55	mW
PD	at T _A = 125 °C for suffix 3	LQFP32	-	83	
		UFQFPN32	-	132	
		SDIP32	-	83	
T _A	Ambient temperature for suffix 6 version	Maximum power dissipation	-40	85	
T _A	Ambient temperature for suffix 3 version	Maximum power dissipation	-40	125	°C
TJ	lunction temperature range	Suffix 6 version	-40	105	
		Suffix 3 version	-40	130	

Table 19. General operating conditions (continued)

1. Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter dependency on temperature, DC bias and frequency in addition to other factors. The parameter maximum value must be respected for the full application range.

2. This frequency of 1 MHz as a condition for $V_{\mbox{CAP}}$ parameters is given by design of internal regulator.

To calculate P_{Dmax}(T_A), use the formula P_{Dmax}=(T_{Jmax}- T_A)/Θ_{JA} (see Section 12: Thermal characteristics) with the value for T_{Jmax} given in the previous table and the value for Θ_{JA} given in Section 12: Thermal characteristics

Table 20. Operating conditions at power-up/power-down

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{VDD}	V _{DD} rise time rate	-	2	-	∞ 	
	V_{DD} fall time rate ⁽¹⁾	_	2	-	8	μ5/ν

10.3.1 VCAP external capacitor

The stabilization for the main regulator is achieved by connecting an external capacitor C_{EXT} to the V_{CAP} pin. C_{EXT} is specified in *Table 19*. Care should be taken to limit the series inductance to less than 15 nH.

1. ESR is the equivalent series resistance and ESL is the equivalent inductance.

10.3.2 Supply current characteristics

The current consumption is measured as illustrated in Figure 9: Pin input voltage.

Total supply current consumption in run mode

The MCU is placed under the following conditions:

- All I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled (clock stopped by peripheral clock gating registers) except if explicitly mentioned.

Subject to general operating conditions for V_{DD} and T_A .

Table 21. Total current consumption with code execution in run mode at V_{DD} = 5

Symbol	Parameter	Conditions			Max ⁽¹⁾	Unit	
I _{DD(RUN)}	Supply current in Run mode, code executed from RAM	f _{CPU} = f _{MASTER} = 16 MHz	HSE crystal osc. (16 MHz)	2.3	-		
			HSE user ext. clock (16 MHz)	2	2.35	mA	
			HSI RC osc. (16 MHz)	1.7	2		
		f _{CPU} = f_{MASTER} /128 = 125 kHz ted	HSE user ext. clock (16 MHz)	0.86	-		
			HSI RC osc. (16 MHz)	0.7	0.87		
			f _{CPU} = f _{MASTER} /128 = 15.625 kHz	HSI RC osc. (16 MHz/8)	0.46	0.58	
		f _{CPU} = f _{MASTER} = 128 kHz	LSI RC osc. (128 kHz)	0.41	0.55		

Figure 12. Typ $I_{DD(RUN)}$ vs. V_{DD} HSE user external clock, f_{CPU} = 16 MHz

Figure 14. Typ $I_{DD(RUN)}$ vs. V_{DD} HSI RC osc, f_{CPU} = 16 MHz

Low speed internal RC oscillator (LSI)

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

	Table 35.	LSI	oscillator	characteristics
--	-----------	-----	------------	-----------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSI}	Frequency	-	110	128	150	kHz
t _{su(LSI)}	LSI oscillator wakeup time	-	-	-	7	μs
IDD(LSI)	LSI oscillator power consumption	-	-	5	-	μA

25°C 85°C 125°C 5.00% -45'C 4.00% 3.00% 2.00% % accuracy 1.00% 0.00% -1.00% -2.00% -3.00% -4.00% -5.00% 3.5 2 2.5 3 4 4.5 5 5.5 6 $V_{pp}(V)$

Figure 21. Typical LSI frequency variation vs V_{DD} @ 4 temperatures

Figure 24. Typical pull-up resistance vs VDD @ 4 temperatures

|--|

Symbol	Parameter	Conditions	Min	Мах	Unit
M	Output low level with 8 pins sunk	I _{IO} = 10 mA, V _{DD} = 5 V	-	2.0	
VOL	Output low level with 4 pins sunk	I _{IO} = 4 mA, V _{DD} = 3.3 V	-	1.0 ⁽¹⁾	V
M	Output high level with 8 pins sourced	I _{IO} = 10 mA, V _{DD} = 5 V	2.8	-	v
∨он	Output high level with 4 pins sourced	I _{IO} = 4 mA, V _{DD} = 3.3 V	2.1 ⁽¹⁾	-	

1. Guaranteed by characterization results

Figure 41. SPI timing diagram - master mode

1. Measurement points are at CMOS levels: 0.3 V_{DD} and 0.7 $V_{\text{DD}}.$

OPT5 crystal oscillator stabilization HSECNT (check only one option)

- [] 2048 HSE cycles
- [] 128 HSE cycles
- [] 8 HSE cycles
- [] 0.5 HSE cycles

OTP6 is reserved

Comments:	
Supply operating range in the application:	
Notes:	
Date:	
Signature:	

14 STM8 development tools

Development tools for the STM8 microcontrollers include the full-featured STice emulation system supported by a complete software tool package including C compiler, assembler and integrated development environment with high-level language debugger. In addition, the STM8 is to be supported by a complete range of tools including starter kits, evaluation boards and a low-cost in-circuit debugger/programmer.

14.1 Emulation and in-circuit debugging tools

The STice emulation system offers a complete range of emulation and in-circuit debugging features on a platform that is designed for versatility and cost-effectiveness. In addition, STM8 application development is supported by a low-cost in-circuit debugger/programmer.

The STice is the fourth generation of full featured emulators from STMicroelectronics. It offers new advanced debugging capabilities including profiling and coverage to help detect and eliminate bottlenecks in application execution and dead code when fine tuning an application.

In addition, STice offers in-circuit debugging and programming of STM8 microcontrollers via the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an application while it runs on the target microcontroller.

For improved cost effectiveness, STice is based on a modular design that allows you to order exactly what you need to meet your development requirements and to adapt your emulation system to support existing and future ST microcontrollers.

14.1.1 STice key features

- Occurrence and time profiling and code coverage (new features),
- Advanced breakpoints with up to 4 levels of conditions,
- Data breakpoints,
- Program and data trace recording up to 128 KB records,
- Read/write on the fly of memory during emulation,
- In-circuit debugging/programming via SWIM protocol,
- 8-bit probe analyzer,
- 1 input and 2 output triggers,
- Power supply follower managing application voltages between 1.62 to 5.5 V,
- Modularity that allows you to specify the components you need to meet your development requirements and adapt to future requirements.
- Supported by free software tools that include integrated development environment (IDE), programming software interface and assembler for STM8.

Date	Revision	Changes
16-Oct-1999	4	 Replaced VFQFPN32 package by UFQFPN32 package. Section 4.5: Clock controller: replaced TIM2 and TIM3 with reserved and TIM2 respectively in Table 2: Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers Total current consumption in halt mode: changed the maximum current consumption limit at 125 °C (and VDD= 5 V) from 35 μA to 55 μA. Functional EMS (electromagnetic susceptibility): renamed ESD as FESD (functional); added name of AN1709; replaced EC 1000 with IEC 61000.
		 Designing hardened software to avoid noise problems: replaced IEC 1000 with IEC 61000, added title of AN1015, and added footnote to EMS data table. Electromagnetic interference (EMI): replaced J 1752/3 with IEC 61967-2 and updated data of the EMI data table. Section 12.2: Selecting the product temperature range: changed the value of LQFP32 7x7 mm thermal resistance from 59 °C/W to 60 °C/W. Added Section 13.1: STM8S103 FASTROM microcontroller option list.
22-Apr-2010 5		 Added VFQFPN32 and SO20 packages. Updated Px_IDR reset value in <i>Table 7: I/O port hardware register</i> map. Section 10.3: Operating conditions: updated VCAP and ESR low limit, added ESL parameter, and Note 1 below <i>Table 19: General</i> operating conditions Updated ACCHSI in <i>Table 34: HSI oscillator characteristics</i>. Modified IDD(H)inand. Removed note 3 related to Accuracy of HSI oscillator. Updated maximum power dissipation in <i>Table 19: General operating</i> conditions. Updated Section 12: Thermal characteristics Replaced package pitch digit by VFQFPN/UFQFPN package digit in <i>Figure 63: STM8S103F2/x3 access line ordering information</i> scheme⁽¹⁾, and removed note 1.

Table 59.	Document	revision	history
-----------	----------	----------	---------

Date	Revision	Changes
09-Sep-2010	6	Removed VFQFPN32 package. Removed internal reference voltage from Section 4.13: Analog-to- digital converter (ADC1). Updated the reset state information in Table 4: Legend/abbreviations for pin description tables in Section 5: Pinout and pin description. Added footnote to PD1/SWIM pin in Table 5: STM8S103K3 pin descriptions. Updated pins 14 and 19 (TSSOP20/SO20) / pins 11 and 16 (UFQFPN20) in Table 6: STM8S103F2 and STM8S103F3 pin descriptions. Standardized all reset state values; updated the reset state values of the RST_SR, CLK_SWCR, CLK_HSITRIMR, CLK_SWIMCCR, IWDG_KR, and ADC_DRx registers in Table 8: General hardware register map. Updated AFR2 description of OPT 2 in Table 14: STM8S103Fx alternate function remapping bits for 20-pin devicess. Replaced 0.01 μ F with 0.1 μ f in Figure 38: Recommended reset pin protection. Added Figure 42: Typical application with I ² C bus and timing diagram and Table 44: I ² C characteristics. Updated footnote 1 in Table 46: ADC accuracy with R _{AIN} < 10 kQ V _{DD} = 5 V and Table 47: ADC accuracy with R _{AIN} < 10 kQ V _{DD} = 5 V and Table 47: ADC accuracy with R _{AIN} < 10 kQ V _{DD} = 3.3 V. Updated the Special marking section in Section 13.1: STM8S103 FASTROM microcontroller option list: Updated AFR2 description of OTP2 in Table 14: STM8S103Fx alternate function remapping bits for 20-pin devices Updated existing footnote and added three additional footnotes to Table 53: UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package mechanical data
12-Jul-2011	7	Updated the note related to true open-drain outputs in <i>Table 6:</i> <i>STM8S103F2 and STM8S103F3 pin descriptions</i> Removed CLK_CANCCR register from <i>Table 8: General hardware</i> <i>register map.</i> Added note for Px_IDR registers in <i>Table 7: I/O port hardware register</i> <i>map.</i> Added recommendation concerning NRST pin level, and power consumption sensitive applications, above <i>Figure 38: Recommended</i> <i>reset pin protection.</i> Removed typical HSI accuracy curve in <i>Section 10.3.4: Internal clock</i> <i>sources and timing characteristics.</i> Renamed package type 2 into package pitch and added pitch code "C" in <i>Figure 63: STM8S103F2/x3 access line ordering information</i> <i>scheme</i> ⁽¹⁾ and added UFQFPN20 in <i>Section 13.1: STM8S103</i> <i>FASTROM microcontroller option list.</i> Updated the disclaimer.

Table 59. Document revision history

