E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	640 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s103f3p6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The STM8S103F2/x3 access line 8-bit microcontrollers offer 8 Kbyte Flash program memory, plus integrated true data EEPROM. The STM8S microcontroller family reference manual (RM0016) refers to devices in this family as low-density. They provide the following benefits: performance, robustness, and reduced system cost.

Device performance and robustness are ensured by advanced core and peripherals made in a state-of-the art technology, a 16 MHz clock frequency, robust I/Os, independent watchdogs with separate clock source, and a clock security system.

The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k write/erase cycles and a high system integration level with internal clock oscillators, watchdog and brown-out reset.

Full documentation is offered as well as a wide choice of development tools.

Device	STM8S103K3	STM8S103F3	STM8S103F2	
Pin count	32	20	20	
Maximum number of GPIOs (I/Os)	28	16	16	
Ext. interrupt pins	27	16	16	
Timer CAPCOM channels	7	7	7	
Timer complementary outputs	3	2	2	
A/D converter channels	4	5	5	
High sink I/Os	21	12	12	
Low density Flash program memory (bytes)	8K	8K	4К	
Data EEPROM (bytes)	640 ⁽¹⁾	640 ⁽¹⁾	640 ⁽¹⁾	
RAM (bytes)	1K	1K	1K	
Peripheral set	Multipurpose timer (TIM1), SPI, I2C, UART window WDG, independent WDG, ADC, PWM timer (TIM2), 8-bit timer (TIM4)			

Table 1. STM8S103F2/x3 access line features

1. No read-while-write (RWW) capability.

4.2 Single wire interface module (SWIM) and debug module (DM)

The single wire interface module and debug module permits non-intrusive, real-time incircuit debugging and fast memory programming.

SWIM

Single wire interface module for direct access to the debug module and memory programming. The interface can be activated in all device operation modes. The maximum data transmission speed is 145 bytes/ms.

Debug module

The non-intrusive debugging module features a performance close to a full-featured emulator. Beside memory and peripherals, also CPU operation can be monitored in real-time by means of shadow registers.

- R/W to RAM and peripheral registers in real-time
- R/W access to all resources by stalling the CPU
- Breakpoints on all program-memory instructions (software breakpoints)
- Two advanced breakpoints, 23 predefined configurations

4.3 Interrupt controller

- Nested interrupts with three software priority levels,
- 32 interrupt vectors with hardware priority,
- Up to 27 external interrupts on 6 vectors including TLI,
- Trap and reset interrupts

4.4 Flash program and data EEPROM memory

- 8 Kbyte of Flash program single voltage Flash memory,
- 640 byte true data EEPROM,
- User option byte area.

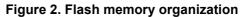
Write protection (WP)

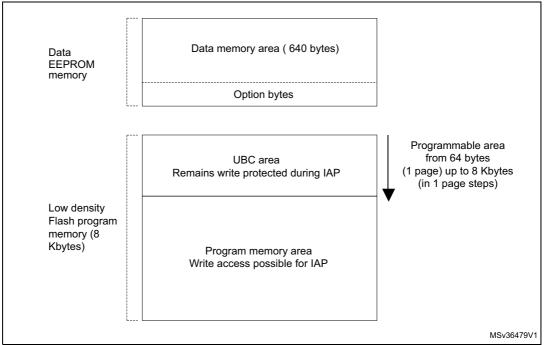
Write protection of Flash program memory and data EEPROM is provided to avoid unintentional overwriting of memory that could result from a user software malfunction.

There are two levels of write protection. The first level is known as MASS (memory access security system). MASS is always enabled and protects the main Flash program memory, data EEPROM and option bytes.

To perform in-application programming (IAP), this write protection can be removed by writing a MASS key sequence in a control register. This allows the application to write to data EEPROM, modify the contents of main program memory or the device option bytes.

A second level of write protection, can be enabled to further protect a specific area of memory known as UBC (user boot code). Refer to the figure below.


The size of the UBC is programmable through the UBC option byte, in increments of 1 page (64-byte block) by programming the UBC option byte in ICP mode.



This divides the program memory into two areas:

- Main program memory: up to 8 Kbyte minus UBC
- User-specific boot code (UBC): Configurable up to 8 Kbyte

The UBC area remains write-protected during in-application programming. This means that the MASS keys do not unlock the UBC area. It protects the memory used to store the boot program, specific code libraries, reset and interrupt vectors, the reset routine and usually the IAP and communication routines.

Read-out protection (ROP)

The read-out protection blocks reading and writing the Flash program memory and data EEPROM memory in ICP mode (and debug mode). Once the read-out protection is activated, any attempt to toggle its status triggers a global erase of the program and data memory. Even if no protection can be considered as totally unbreakable, the feature provides a very high level of protection for a general purpose microcontroller.

5 Pinout and pin description

Туре	I= Input, O = Output, S = Power supply				
Level	Input	CM = CMOS			
	Output	HS = High sink			
Output speed					
Dent and a sector	Input float = floating, wpu = weak pull-up				
Port and control configuration	T = True open drain,OutputOD = Open drain,PP = Push pull				
Reset state	N N	(pin state after internal reset release). otherwise specified, the pin state is the same during the reset and after the internal reset release.			

Table 4. Legend/abbreviations for pin description tables

					Input			Out	put		c	ate	ion
TSSOP/SO20	UFQFPN20	Pin name	Type	floating	ndw	Ext. interrupt	High sink ⁽¹⁾	Speed	QD	ΡР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
14	11	PC4/ CLK_CCO/ TIM1_ CH4/AIN2/[TIM1_ CH2N]	I/O	x	x	x	HS	O3	x	x	Port C4	Configurable clock output/Timer 1 - channel 4/Analog input 2	Timer 1 - inverted channel 2 [AFR7]
15	12	PC5/ SPI_SCK [TIM2_CH1]	I/O	x	x	x	HS	O3	х	х	Port C5	SPI clock	Timer 2 - channel 1 [AFR0]
16	13	PC6/ SPI_MOSI [TIM1_CH1]	I/O	x	х	х	HS	O3	х	х	Port C6	SPI master out/slave in	Timer 1 - channel 1 [AFR0]
17	14	PC7/ SPI_MISO [TIM1_CH2]	I/O	x	х	х	HS	O3	х	х	Port C7	SPI master in/ slave out	Timer 1 - channel 2 [AFR0]
18	15	PD1/ SWIM	I/O	х	х	х	HS	04	х	х	Port D1	SWIM data interface	-
19	16	PD2/AIN3/[T IM2_CH3]	I/O	x	х	х	HS	O3	х	х	Port D2	Analog input 3	Timer 2 - channel 3 [AFR1]
20	17	PD3/ AIN4/ TIM2_CH2/ ADC_ETR	I/O	x	х	х	HS	O3	х	х	Port D3	Analog input 4/ Timer 2 - channel 2/ADC external trigger	-

Table 6. STM8S103F2 and STM8S103F3 pin descriptions (continued)

1. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package. In addition, the total driven current must respect the absolute maximum ratings.

2. When the MCU is in halt/active-halt mode, PA1 is automatically configured in input weak pull-up and cannot be used for waking up the device. In this mode, the output state of PA1 is not driven. It is recommended to use PA1 only in input mode if halt/active-halt is used in the application.

3. In the open-drain output column, "T" defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDD are not implemented).1

Address	Block	Register label	Register name	Reset status		
0x00 526A		TIM1_CCR3L	TIM1 capture/compare register 3 low	0x00		
0x00 526B		TIM1_CCR4H	TIM1 capture/compare register 4 high	0x00		
0x00 526C	TIM1	TIM1_CCR4L	TIM1 capture/compare register 4 low	0x00		
0x00 526D		TIM1_BKR	TIM1 break register	0x00		
0x00 526E		TIM1_DTR	TIM1 dead-time register	0x00		
0x00 526F		TIM1_OISR	TIM1 output idle state register	0x00		
0x00 5270 to 0x00 52FF	Reserved area (147 byte)					

Table 8. General hardware register map (continued)

7 Interrupt vector mapping

Table 10. Interrupt mapping							
IRQ no.	Source block	Description	Wakeup from halt mode	Wakeup from active-halt mode	Vector address		
-	RESET	Reset	Yes	Yes	0x00 8000		
-	TRAP	Software interrupt	-	-	0x00 8004		
0	TLI	External top level interrupt	-	-	0x00 8008		
1	AWU	Auto wake up from halt	-	Yes	0x00 800C		
2	CLK	Clock controller	-	-	0x00 8010		
3	EXTI0	Port A external interrupts	Yes ⁽¹⁾	Yes ⁽¹⁾	0x00 8014		
4	EXTI1	Port B external interrupts	Yes	Yes	0x00 8018		
5	EXTI2	Port C external interrupts	Yes	Yes	0x00 801C		
6	EXTI3	Port D external interrupts	Yes	Yes	0x00 8020		
7	EXTI4	Port E external interrupts	Yes	Yes	0x00 8024		
8	Reserved	-	-	-	0x00 8028		
9	Reserved	-	-	-	0x00 802C		
10	SPI	End of transfer	Yes	Yes	0x00 8030		
11	TIM1	TIM1 update/ overflow/ underflow/ trigger/ break	-	-	0x00 8034		
12	TIM1	TIM1 capture/ compare	-	-	0x00 8038		
13	TIM2	TIM2 update/ overflow	-	-	0x00 803C		
14	TIM2	TIM2 capture/ compare	-	-	0x00 8040		
15	Reserved	-	-	-	0x00 8044		
16	Reserved	-	-	-	0x00 8048		
17	UART1	Tx complete	-	-	0x00 804C		
18	UART1	Receive register DATA FULL	-	-	0x00 8050		
19	I2C	I2C interrupt	Yes	Yes	0x00 8054		
20	Reserved	-	_	-	0x00 8058		

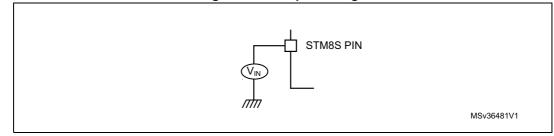
Table 10. Interrupt mapping

Option byte no.	Description		
	EXTCLK: External clock selection 0: External crystal connected to OSCIN/OSCOUT 1: External clock signal on OSCIN		
OPT4	CKAWUSEL: Auto wake-up unit/clock 0: LSI clock source selected for AWU 1: HSE clock with prescaler selected as clock source for AWU PRSC[1:0] AWU clock prescaler 0x: 16 MHz to 128 kHz prescaler		
	10: 8 MHz to 128 kHz prescaler 11: 4 MHz to 128 kHz prescaler		
OPT5	HSECNT[7:0]: HSE crystal oscillator stabilization time 0x00: 2048 HSE cycles 0xB4: 128 HSE cycles 0xD2: 8 HSE cycles 0xE1: 0.5 HSE cycles		

Table 12. Option byte description (continued)

8.1 Alternate function remapping bits

Table 13. STM8S103K3 alternate function remapping bits for 32-pin devices


Option byte no.	Description ⁽¹⁾
	AFR7 Alternate function remapping option 7 Reserved.
	 AFR6 Alternate function remapping option 6 0: AFR6 remapping option inactive: Default alternate function.⁽²⁾ 1: Port D7 alternate function = TIM1_CH4.
OPT2	 AFR5 Alternate function remapping option 5 0: AFR5 remapping option inactive: Default alternate function.⁽²⁾ 1: Port D0 alternate function = CLK_CCO.
	AFR[4:2] Alternate function remapping options 4:2 Reserved.
	AFR1 Alternate function remapping option 1 0: AFR1 remapping option inactive: Default alternate functions. ⁽²⁾ 1: Port A3 alternate function = SPI_NSS; port D2 alternate function = TIM2_CH3.
	AFR0 Alternate function remapping option 0 Reserved.

1. Do not use more than one remapping option in the same port. It is forbidden to enable both AFR1 and AFR0.

2. Refer to pinout description.

Figure 9. Pin input voltage

10.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 16: Voltage characteristics*, *Table 17: Current characteristics* and *Table 18: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and a functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect the device's reliability.

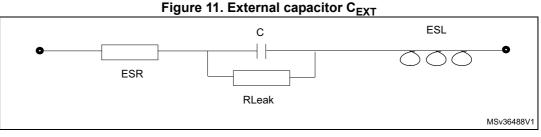
The device's mission profile (application conditions) is compliant with the JEDEC JESD47 Qualification Standard, the extended mission profiles are available on demand.

Symbol	Ratings	Min	Max	Unit	
V_{DDx} - V_{SS}	Supply voltage ⁽¹⁾	-0.3	6.5	V	
M	Input voltage on true open drain pins ⁽²⁾	V _{SS} - 0.3	6.5	V	
V _{IN}	Input voltage on any other pin ⁽²⁾	V _{SS} - 0.3	V _{DD} + 0.3	v	
V _{DDx} - V _{DD}	Variations between different power pins	-	50	mV	
V _{SSx} - V _{SS}	Variations between all the different ground pins	-	50	IIIV	
V _{ESD}	Electrostatic discharge voltage	see Absolute maximum rating (electrical sensitivity) on page 87			

Tabla	16	Voltago	characteristics
rapie	10.	voitage	characteristics

1. All power (V_{DD}) and ground (V_{SS}) pins must always be connected to the external power supply

2. This pin must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected


Table 17. Current characteristics

Symbol	Ratings	Max. ⁽¹⁾	Unit
I _{VDD}	Total current into V _{DD} power lines (source) ⁽²⁾	100	
I _{VSS}	Total current out of V_{SS} ground lines (sink) ⁽¹⁾	80	mA
	Output current sunk by any I/O and control pin	20	ША
IIO	Output current source by any I/Os and control pin	-20	

10.3.1 VCAP external capacitor

The stabilization for the main regulator is achieved by connecting an external capacitor C_{EXT} to the V_{CAP} pin. C_{EXT} is specified in *Table 19*. Care should be taken to limit the series inductance to less than 15 nH.

1. ESR is the equivalent series resistance and ESL is the equivalent inductance.

10.3.2 Supply current characteristics

The current consumption is measured as illustrated in Figure 9: Pin input voltage.

Total supply current consumption in run mode

The MCU is placed under the following conditions:

- All I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled (clock stopped by peripheral clock gating registers) except if explicitly mentioned.

Subject to general operating conditions for V_{DD} and T_A .

Symbol	Parameter	Conditions			Max ⁽¹⁾	Unit			
			HSE crystal osc. (16 MHz)	2.3	-				
	f _{CPU} = f _{MASTER} = 16 MHz	HSE user ext. clock (16 MHz)	2	2.35					
	DD(RUN) Supply current in Run mode, code		HSI RC osc. (16 MHz)	1.7	2				
I _{DD(RUN)}		Run mode,	Run mode,	Run mode,	Run mode,	f _{CPU} = f _{MASTER} /128 = 125 kHz	HSE user ext. clock (16 MHz)	0.86	-
	executed from RAM		HSI RC osc. (16 MHz)	0.7	0.87				
	f _{CPU} = f _{MASTER} /128 = 15.625 kHz	HSI RC osc. (16 MHz/8)	0.46	0.58					
		f _{CPU} = f _{MASTER} = 128 kHz	LSI RC osc. (128 kHz)	0.41	0.55				

10.3.5 Memory characteristics

RAM and hardware registers

Table 36. RAM and hardware registers

Symbol	Parameter	Conditions	Min	Unit
V_{RM}	Data retention mode ⁽¹⁾	Halt mode (or reset)	V _{IT-max} ⁽²⁾	V

1. Minimum supply voltage without losing data stored in RAM (in halt mode or under reset) or in hardware registers (only in halt mode). Guaranteed by design, not tested in production.

2. Refer to Section 10.3: Operating conditions for the value of V_{IT-max}.

Flash program memory/data EEPROM memory

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max	Unit	
V _{DD}	Operating voltage (all modes, execution/write/erase)	f _{CPU} ≤ 16 MHz	2.95	-	5.5	V	
t _{prog} Standard programming time (including erase) for byte/word/block (1 byte/4 byte/64 byte)		-	-	6	6.6		
1 0	Fast programming time for 1 block (64 byte)	-	-	3	3.33	3.33 ms 3.33	
t _{erase}	Erase time for 1 block (64 byte)	-	-	3	3.33		
N _{RW}	Erase/write cycles (program memory) ⁽²⁾	T _A = +85 °C	100k	-	-	cycle	
	Erase/write cycles (data memory) ⁽²⁾	T _A = +125 °C	300k	1M	-		
+	Data retention (program and data memory) after 10k erase/write cycles at T _A = +55 °C	T _{RET} = 55 °C	20	-	-	VOOL	
t_{RET} Data retention (data memory) after 300k erase/write cycles at T_A = +125°C		T _{RET} = 85 °C	1	-	-	year	
I _{DD}	Supply current (Flash programming or erasing for 1 to 128 byte)	-	-	2	-	mA	

Table 37. Flash program memory/data EEPROM memory

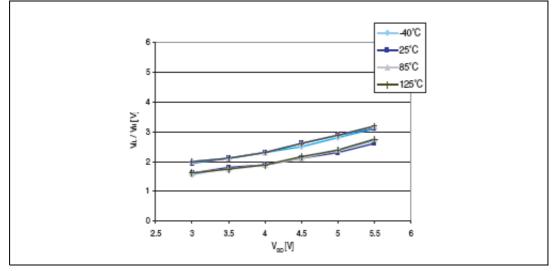
1. Guaranteed by characterization results.

2. The physical granularity of the memory is 4 byte, so cycling is performed on 4 byte even when a write/erase operation addresses a single byte.

10.3.7 Reset pin characteristics

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

•						
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)}	NRST input low level voltage ⁽¹⁾	-	-0.3	-	$0.3 \times V_{DD}$	
V _{IH(NRST)}	NRST input high level voltage ⁽¹⁾	I _{OL} = 2 mA	$0.7 ext{ x V}_{ ext{DD}}$	-	V _{DD} +0.3	V
V _{OL(NRST)}	NRST output low level voltage ⁽¹⁾	I _{OL} = 3 mA	-	-	0.5	
R _{PU(NRST)}	NRST pull-up resistor ⁽²⁾	-	30	55	80	kΩ
t _{IFP(NRST)}	NRST input filtered pulse ⁽³⁾	-	-	-	75	ns
t _{INFP(NRST)}	NRST Input not filtered pulse ⁽³⁾	-	500	-	-	110
t _{OP(NRST)}	NRST output pulse ⁽³⁾	-	20	-	-	μs


Table 42.	NRST	pin	characteristics
		P	

1. Guaranteed by characterization results.

2. The R_{PU} pull-up equivalent resistor is based on a resistive transistor.

3. Guaranteed by design.

Figure 35. Typical NRST V_{IL} and V_{IH} vs V_{DD} @ 4 temperatures

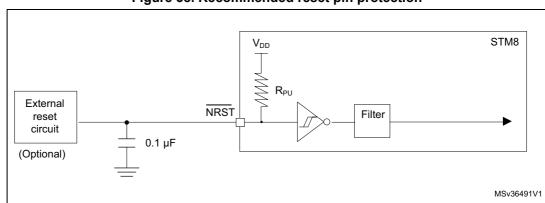


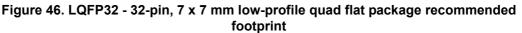
Figure 38. Recommended reset pin protection

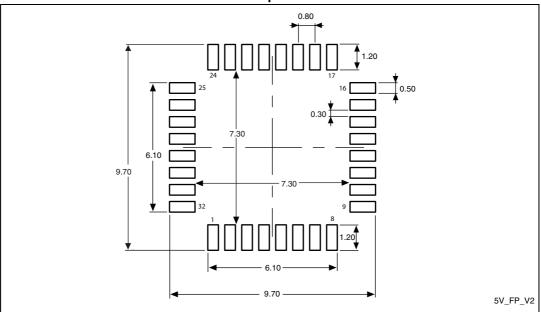
10.3.8 SPI serial peripheral interface

Unless otherwise specified, the parameters given in *Table 43* are derived from tests performed under ambient temperature, f_{MASTER} frequency and V_{DD} supply voltage conditions. $t_{MASTER} = 1/f_{MASTER}$.

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions ⁽¹⁾	Min	Мах	Unit
f _{SCK}	SPI clock frequency	Master mode	0	8	MHz
1/t _{c(SCK)}		Slave mode	0	7	

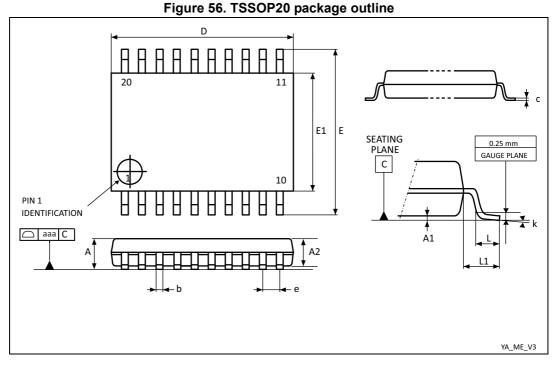

Table 43. SPI characteristics



Cumhal		millimeters		inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.300	0.370	0.450	0.0118	0.0146	0.0177	
С	0.090	-	0.200	0.0035	-	0.0079	
D	8.800	9.000	9.200	0.3465	0.3543	0.3622	
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
D3	-	5.600	-	-	0.2205	-	
Е	8.800	9.000	9.200	0.3465	0.3543	0.3622	
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
E3	-	5.600	-	-	0.2205	-	
е	-	0.800	-	-	0.0315	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
CCC	-	-	0.100	-	-	0.0039	

Table 52. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

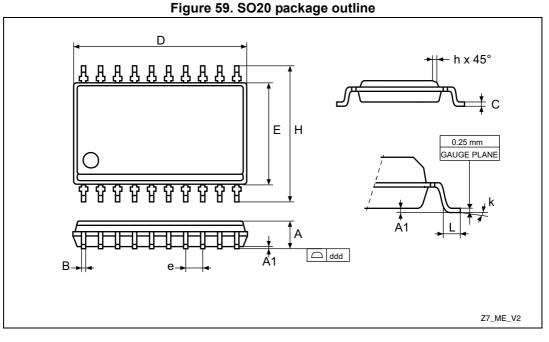


1. Dimensions are expressed in millimeters.

DocID15441 Rev 14

11.5 TSSOP20 package information

Table 56. TSSOP20 package mechanical data


Dim		mm			inches ⁽¹⁾		
Dim.	Min	Тур	Мах	Min	Тур	Max	
А	-	-	1.200	-	-	0.0472	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	0.800	1.000	1.050	0.0315	0.0394	0.0413	
b	0.190	-	0.300	0.0075	-	0.0118	
С	0.090	-	0.200	0.0035	-	0.0079	
D ⁽²⁾	6.400	6.500	6.600	0.2520	0.2559	0.2598	
E	6.200	6.400	6.600	0.2441	0.2520	0.2598	
E1 ⁽³⁾	4.300	4.400	4.500	0.1693	0.1732	0.1772	
е	-	0.650	-	-	0.0256	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0.0°	-	8.0°	0.0°	-	8.0°	
ааа	-	-	0.100	-	-	0.0039	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15mm per side.

11.6 SO20 package information

Table 57. SO20 mechanical data

Dim.	mm				inches ⁽¹⁾	
Dini.	Min	Тур	Max	Min	Тур	Max
A	2.350	-	2.650	0.0925	-	0.1043
A1	0.100	-	0.300	0.0039	-	0.0118
В	0.330	-	0.510	0.013	-	0.0201
С	0.230	-	0.320	0.0091	-	0.0126
D	12.600	-	13.000	0.4961	-	0.5118
E	7.400	-	7.600	0.2913	-	0.2992
е	-	1.270	-	-	0.0500	-
Н	10.000	-	10.650	0.3937	-	0.4193
h	0.250	-	0.750	0.0098	-	0.0295
L	0.400	-	1.270	0.0157	-	0.0500
k	0.0°	-	8.0°	0.0°	-	8.0°
ddd	-	-	0.100	-	-	0.0039

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

AFR0	Reserved
AFR1 (check only one option)	 [] 1: Port A3 alternate function = SPI_NSS and port D2 alternate function = TIM2_CH3 [] 0: Remapping option inactive. Default alternate functions used. Refer to pinout description
AFR2	Reserved
AFR3	Reserved
AFR4	Reserved
AFR5 (check only one option)	[] 0: Remapping option inactive. Default alternate functions used. Refer to pinout description[] 1: Port D0 alternate function = CLK_CCO
AFR6 (check only one option)	 [] 0: Remapping option inactive. Default alternate functions used. Refer to pinout description [] 1: Port D7 alternate function = TIM1_CH4
AFR7	Reserved

OPT3 watchdog

WWDG_HALT	[] 0: No reset generated on halt if WWDG active[
(check only one option)	[] 1: Reset generated on halt if WWDG active
WWDG_HW	[] 0: WWDG activated by software
(check only one option)	[] 1: WWDG activated by hardware
IWDG_HW	[] 0: IWDG activated by software
(check only one option)	[] 1: IWDG activated by hardware
LSI_EN	[] 0: LSI clock is not available as CPU clock source
(check only one option)	[] 1: LSI clock is available as CPU clock source
HSITRIM	[] 0: 3-bit trimming supported in CLK_HSITRIMR register
(check only one option)	[] 1: 4-bit trimming supported in CLK_HSITRIMR register

OPT4 watchdog

PRSC (check only one option)	[] for 16 MHz to 128 kHz prescaler [] for 8 MHz to 128 kHz prescaler [] for 4 MHz to 128 kHz prescaler
CKAWUSEL	[] LSI clock source selected for AWU
(check only one option)	[] HSE clock with prescaler selected as clock source for AWU
EXTCLK	[] External crystal connected to OSCIN/OSCOUT
(check only one option)	[] External signal on OSCIN

OPT5 crystal oscillator stabilization HSECNT (check only one option)

- [] 2048 HSE cycles
- [] 128 HSE cycles
- [] 8 HSE cycles
- [] 0.5 HSE cycles

OTP6 is reserved

Comments:	
Supply operating range in the application:	
Notes:	
Date:	
Signature:	

15 Revision history

Date	Revision	Changes
02-Mar-2009	1	Initial release.
10-Apr-2009	2	Added Table 2: Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers. Updated Section 4.8: Auto wakeup counter. Modified the description of PB4 and PB5 (removed X in PP column) and added footnote concerning HS I/Os in Section 5.1: STM8S103K3 UFQFPN32/LQFP32/SDIP32 pinout and pin description and Section 5.2: STM8S103F2/F3 TSSOP20/SO20/UFQFPN20 pinout and pin description. Removed TIM3 and UART from Table 10: Interrupt mapping. Updated VCAP specifications in Section 10.3.1: VCAP external capacitor Corrected the block size in Table 37: Flash program memory/data EEPROM memoryt Updated Section 10: Electrical characteristics. Updated Section 12: Thermal characteristics.
10-Jun-1999	3	Document status changed from "preliminary data" to "datasheet". Replaced WFQFPN20 package with UFQFPN package. Replaced 'VFQFN' with 'VFQFPN'. Added bullet point on the unique identifier to <i>Features</i> . Updated <i>Section 4.8: Auto wakeup counter</i> . Updated wpu and PP status of PB5/12C_SDA and PB4/12C_SCL pins in <i>Section 5.1: STM8S103K3 UFQFPN32/LQFP32/SDIP32</i> pinout and pin description and Section 5.2: STM8S103F2/F3 TSSOP20/SO20/UFQFPN20 pinout and pin description. Removed Table 7: Pin-to-pin comparison of pin 7 to 12 in 32-pin access line devices. Updated section 6.1: Memory map. Updated reset status of port D CR1 register in Table 7: I/O port hardware register map. Updated alternate function remapping descriptions in Table 13: STM8S103K3 alternate function remapping bits for 32-pin devices and Table 14: STM8S103Fx alternate function remapping bits for 20- pin devices. Added Section 9: Unique ID. Updated the caption of Figure 20: Typical HSI frequency variation vs V _{DD} @ 4 temperatures. Updated Table 43: SPI characteristics and added TBD occurrences. Added max values to Table 46: ADC accuracy with R _{AIN} < 10 kQ V _{DD} = 5 V and Table 47: ADC accuracy with R _{AIN} < 10 kQ V _{DD} = 5 V and Table 47: ADC accuracy with R _{AIN} < 10 kQ V _{DD} = 5 V and Table 47: ADC accuracy with R _{AIN} < 10 kQ V _{DD} =

Table 59.	Document	revision	history
-----------	----------	----------	---------

Date	Revision	Changes
04-Apr-2012	8	Updated notes related to V_{CAP} in <i>Table 19: General operating conditions</i> . Added values of t_R/t_F for 50 pF load capacitance, and updated note in <i>Table 38: I/O static characteristics</i> . Updated typical and maximum values of R_{PU} in <i>Table 38: I/O static characteristics</i> and <i>Table 42: NRST pin characteristics</i> . Changed SCK input to SCK output in <i>Section 10.3.8: SPI serial peripheral interface</i> Modified <i>Figure 51: UFQFPN20 - 20-lead, 3x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline</i> to add package top view.
26-Jun-2012	9	Added Section 11.4: SDIP32 package information.
04-Feb-2015	10	Updated Section 11.5: TSSOP20 package information and Section 11.3: UFQFPN20 package information.
10-Mar-2015	11	 Updated: <i>Table 34: HSI oscillator characteristics</i>: corrected HSI oscillator accuracy (factory calibrated) for V_{DD} = 5 V and T_A = 25 °C. <i>Table 38: I/O static characteristics</i>: corrected the max. value for T_R/T_F, Fast I/Os, Load = 50 pF. Added: <i>Figure 23: Typical pull-up current vs V_{DD}</i> @ 4 temperatures, the rows for T_R/T_F, Fast I/Os, Load = 20 pF in <i>Table 38: I/O static characteristics</i>, <i>Figure 47: LQFP32 marking example (package top view)</i>, <i>Figure 50: UFQFPN32 marking example (package top view)</i>, <i>Figure 53: UFQFPN20 marking example (package top view)</i>, <i>Figure 55: SDIP32 marking example (package top view)</i>, <i>Figure 58: TSSOP20 marking example (package top view)</i>.
26-Mar-2015	12	Corrected the values for "b" dimensions in <i>Table 53: UFQFPN32 - 32-</i> <i>pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package</i> <i>mechanical data.</i>

Table 59. Document revision history

