E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	640 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s103f3p6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The STM8S103F2/x3 access line 8-bit microcontrollers offer 8 Kbyte Flash program memory, plus integrated true data EEPROM. The STM8S microcontroller family reference manual (RM0016) refers to devices in this family as low-density. They provide the following benefits: performance, robustness, and reduced system cost.

Device performance and robustness are ensured by advanced core and peripherals made in a state-of-the art technology, a 16 MHz clock frequency, robust I/Os, independent watchdogs with separate clock source, and a clock security system.

The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k write/erase cycles and a high system integration level with internal clock oscillators, watchdog and brown-out reset.

Full documentation is offered as well as a wide choice of development tools.

Device STM8S103K3		STM8S103F3	STM8S103F2	
Pin count	32	20	20	
Maximum number of GPIOs (I/Os)	28	16	16	
Ext. interrupt pins	27	16	16	
Timer CAPCOM channels	7	7	7	
Timer complementary outputs	3	2	2	
A/D converter channels	4	5	5	
High sink I/Os	21	12	12	
Low density Flash program memory (bytes)	8K	8K	4K	
Data EEPROM (bytes)	640 ⁽¹⁾	640 ⁽¹⁾	640 ⁽¹⁾	
RAM (bytes)	1K	1K	1K	
Peripheral set	Multipurpose timer (TIM1), SPI, I2C, UART window WDG, independent WDG, ADC, PWM timer (TIM2), 8-bit timer (TIM4)			

Table 1. STM8S103F2/x3 access line features

1. No read-while-write (RWW) capability.

4 **Product overview**

The following section provides an overview of the basic features of the device functional modules and peripherals.

For more detailed information please refer to the corresponding family reference manual (RM0016).

4.1 Central processing unit STM8

The 8-bit STM8 core is designed for code efficiency and performance.

It contains 6 internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing and 80 instructions.

Architecture and registers

- Harvard architecture,
- 3-stage pipeline,
- 32-bit wide program memory bus single cycle fetching for most instructions,
- X and Y 16-bit index registers enabling indexed addressing modes with or without offset and read-modify-write type data manipulations,
- 8-bit accumulator,
- 24-bit program counter 16-Mbyte linear memory space,
- 16-bit stack pointer access to a 64 K-level stack,
- 8-bit condition code register 7 condition flags for the result of the last instruction.

Addressing

- 20 addressing modes,
- Indexed indirect addressing mode for look-up tables located anywhere in the address space,
- Stack pointer relative addressing mode for local variables and parameter passing.

Instruction set

- 80 instructions with 2-byte average instruction size,
- Standard data movement and logic/arithmetic functions,
- 8-bit by 8-bit multiplication,
- 16-bit by 8-bit and 16-bit by 16-bit division,
- Bit manipulation,
- Data transfer between stack and accumulator (push/pop) with direct stack access,
- Data transfer using the X and Y registers or direct memory-to-memory transfers.

5.1 STM8S103K3 UFQFPN32/LQFP32/SDIP32 pinout and pin description

Figure 3. STM8S103K3 UFQFPN32/LQFP32 pinout

1. (HS) high sink capability.

2. (T) True open drain (P-buffer and protection diode to V_{DD} not implemented).

3. [] alternate function remapping option (if the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function).

5.2 STM8S103F2/F3 TSSOP20/SO20/UFQFPN20 pinout and pin description

5.2.1 STM8S103F2/F3 TSSOP20/SO20 pinout

1. HS high sink capability.

2. (T) True open drain (P-buffer and protection diode to VDD not implemented).

3. [] alternate function remapping option (If the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function)

6.2 Register map

6.2.1 I/O port hardware register map

Table 7. I/O port hardware register map

Address	Block	Register label	Register name	Reset status
0x00 5000		PA_ODR	Port A data output latch register	0x00
0x00 5001		PA_IDR	Port A input pin value register	0xXX ⁽¹⁾
0x00 5002	Port A	PA_DDR	Port A data direction register	0x00
0x00 5003		PA_CR1	Port A control register 1	0x00
0x00 5004		PA_CR2	Port A control register 2	0x00
0x00 5005		PB_ODR	Port B data output latch register	0x00
0x00 5006		PB_IDR	Port B input pin value register	0xXX ⁽¹⁾
0x00 5007	Port B	PB_DDR	Port B data direction register	0x00
0x00 5008		PB_CR1	Port B control register 1	0x00
0x00 5009		PB_CR2	Port B control register 2	0x00
0x00 500A		PC_ODR	Port C data output latch register	0x00
0x00 500B		PB_IDR	Port C input pin value register	0xXX ⁽¹⁾
0x00 500C	Port C	PC_DDR	Port C data direction register	0x00
0x00 500D		PC_CR1	Port C control register 1	0x00
0x00 500E		PC_CR2	Port C control register 2	0x00
0x00 500F		PD_ODR	Port D data output latch register	0x00
0x00 5010		PD_IDR	Port D input pin value register	0xXX ⁽¹⁾
0x00 5011	Port D	PD_DDR	Port D data direction register	0x00
0x00 5012		PD_CR1	Port D control register 1	0x02
0x00 5013		PD_CR2	Port D control register 2	0x00
0x00 5014		PE_ODR	Port E data output latch register	0x00
0x00 5015		PE_IDR	Port E input pin value register	0xXX ⁽¹⁾
0x00 5016	Port E	PE_DDR	Port E data direction register	0x00
0x00 5017		PE_CR1	Port E control register 1	0x00
0x00 5018		PE_CR2	Port E control register 2	0x00
0x00 5019		PF_ODR	Port F data output latch register	0x00
0x00 501A		PF_IDR	Port F input pin value register	0xXX ⁽¹⁾
0x00 501B	Port F	PF_DDR	Port F data direction register	0x00
0x00 501C		PF_CR1	Port F control register 1	0x00
0x00 501D		PF_CR2	Port F control register 2	0x00

1. Depends on the external circuitry.

Address	Block	Register label	Register name	Reset status
0x00 5250		TIM1_CR1	TIM1 control register 1	0x00
0x00 5251		TIM1_CR2	TIM1 control register 2	0x00
0x00 5252		TIM1_SMCR	TIM1 slave mode control register	0x00
0x00 5253		TIM1_ETR	TIM1 external trigger register	0x00
0x00 5254		TIM1_IER	TIM1 interrupt enable register	0x00
0x00 5255		TIM1_SR1	TIM1 status register 1	0x00
0x00 5256		TIM1_SR2	TIM1 status register 2	0x00
0x00 5257		TIM1_EGR	TIM1 event generation register	0x00
0x00 5258		TIM1_CCMR1	TIM1 capture/compare mode register 1	0x00
0x00 5259		TIM1_CCMR2	TIM1 capture/compare mode register 2	0x00
0x00 525A		TIM1_CCMR3	TIM1 capture/compare mode register 3	0x00
0x00 525B		TIM1_CCMR4	TIM1 capture/compare mode register 4	0x00
0x00 525C	TIN / 1	TIM1_CCER1	TIM1 capture/compare enable register 1	0x00
0x00 525D		TIM1_CCER2	TIM1 capture/compare enable register 2	0x00
0x00 525E		TIM1_CNTRH	TIM1 counter high	0x00
0x00 525F		TIM1_CNTRL	TIM1 counter low	0x00
0x00 5260		TIM1_PSCRH	TIM1 prescaler register high	0x00
0x00 5261		TIM1_PSCRL	TIM1 prescaler register low	0x00
0x00 5262		TIM1_ARRH	TIM1 auto-reload register high	0xFF
0x00 5263		TIM1_ARRL	TIM1 auto-reload register low	0xFF
0x00 5264		TIM1_RCR	TIM1 repetition counter register	0x00
0x00 5265		TIM1_CCR1H	TIM1 capture/compare register 1 high	0x00
0x00 5266		TIM1_CCR1L	TIM1 capture/compare register 1 low	0x00
0x00 5267		TIM1_CCR2H	TIM1 capture/compare register 2 high	0x00
0x00 5268		TIM1_CCR2L	TIM1 capture/compare register 2 low	0x00
0x00 5269		TIM1_CCR3H	TIM1 capture/compare register 3 high	0x00

Table 8. General hardware register map (continued)

Address	Block	Register label	Register name	Reset status
0x00 5400		ADC_CSR	ADC control/status register	0x00
0x00 5401		ADC_CR1	ADC configuration register 1	0x00
0x00 5402		ADC_CR2	ADC configuration register 2	0x00
0x00 5403		ADC_CR3	ADC configuration register 3	0x00
0x00 5404		ADC_DRH	ADC data register high	0xXX
0x00 5405		ADC_DRL	ADC data register low	0xXX
0x00 5406		ADC_TDRH	ADC Schmitt trigger disable register high	0x00
0x00 5407		ADC_TDRL	ADC Schmitt trigger disable register low	0x00
0x00 5408		ADC_HTRH	ADC high threshold register high	0x03
0x00 5409	cont'd	ADC_HTRL	ADC high threshold register low	0xFF
0x00 540A		ADC_LTRH	ADC low threshold register high	0x00
0x00 540B		ADC_LTRL	ADC low threshold register low	0x00
0x00 540C		ADC_AWSRH	ADC analog watchdog status register high	0x00
0x00 540D		ADC_AWSRL	ADC analog watchdog status register low	0x00
0x00 540E		ADC _AWCRH	ADC analog watchdog control register high	0x00
0x00 540F		ADC_AWCRL	ADC analog watchdog control register low	0x00
0x00 5410 to 0x00 57FF	Reserved area (1008 byte)			

Table 8. General hardware register map (continued)

1. Depends on the previous reset source.

2. Write-only register.

IRQ no.	Source block	Description	Wakeup from halt mode	Wakeup from active-halt mode	Vector address	
21	Reserved	-	-	-	0x00 805C	
22	ADC1	ADC1 end of conversion/analog watchdog interrupt	-	-	0x00 8060	
23	TIM4	TIM4 update/ overflow	-	-	0x00 8064	
24	Flash	EOP/WR_PG_DIS	-	-	0x00 8068	
Reserved					0x00 806C to 0x00 807C	

Table 10. Interrupt mapping (continued)

1. Except PA1.

Total current consumption in halt mode

Symbol	Parameter	Conditions	Тур	Max at 85 °C ⁽¹⁾	Max at 85 °C ⁽¹⁾	Unit
1	Supply current in halt	Flash in operating mode, HSI clock after wakeup	63	75	105	uА
I _{DD(H)} mo	mode	Flash in power-down mode, HSI clock after wakeup	6.0	20	55	μΑ

Table 27	. Total current consum	ption in halt mod	le at $V_{nn} = 5 V$

1. Guaranteed by characterization results.

	Table 20. Total current consumption in nait mode at $v_{DD} = 5.5$ v					
Symbol	Parameter	Conditions	Тур	Max at 85 °C ⁽¹⁾	Max at 85 °C ⁽¹⁾	Unit
	Supply current in halt	Flash in operating mode, HSI clock after wakeup	60	75	100	ıιΔ
^{IDD(H)} mode	mode	Flash in power-down mode, HSI clock after wakeup	4.5	17	30	μΛ

Table 28. Total current consumption in halt mode at V_{DD} = 3.3 V

1. Guaranteed by characterization results.

Low power mode wakeup times

Table 29. Wakeup times

Symbol	Parameter		Conditions			Max ⁽¹⁾	Unit
t _{WU(WFI)}	Wakeup time from wait mode to run mode ⁽²⁾	0 to 16 MHz			-	See note ⁽³⁾	
t _{WU(WFI)}	Wakeup time from run mode ⁽²⁾	f _{CPU} = f _{MASTER} =	= 16 MHz		0.56	-	
t _{WU(AH)}	Wakeup time active halt mode to run mode ⁽²⁾	MVR voltage regulator on ⁽⁴⁾	Flash in operating mode ⁽⁵⁾	HSI (after wakeup)	1 ⁽⁶⁾	2 ⁽⁶⁾	
t _{WU(AH)}	Wakeup time active halt mode to run mode ⁽²⁾	MVR voltage regulator off ⁽⁴⁾	Flash in operating mode ⁽⁵⁾	HSI (after wakeup)	3(6)	-	
t _{WU(AH)}	Wakeup time active halt mode to run mode ⁽²⁾	MVR voltage regulator off ⁽⁴⁾	Flash in operating mode ⁽⁵⁾	HSI (after wakeup)	48 ⁽⁶⁾	-	μs
t _{WU(AH)}	Wakeup time active halt mode to run mode ⁽²⁾	MVR voltage regulator off ⁽⁴⁾	Flash in power-down mode ⁽⁵⁾	HSI (after wakeup)	50 ⁽⁶⁾	-	
t _{WU(H)}	Wakeup time from halt mode to run mode ⁽²⁾	Flash in operating mode ⁽⁵⁾		52	-		
t _{WU(H)}	Wakeup time from halt mode to run mode ⁽²⁾	Flash in power-	down mode ⁽⁵⁾		54	-	

1. Guaranteed by characterization results.

Electrical characteristics

- 2. Measured from interrupt event to interrupt vector fetch
- 3. $t_{WU(WFI)} = 2 \times 1/f_{master} + 67 \times 1/f_{CPU}$
- 4. Configured by the REGAH bit in the CLK_ICKR register.
- 5. Configured by the AHALT bit in the FLASH_CR1 register.
- 6. Plus 1 LSI clock depending on synchronization.

Total current consumption and timing in forced reset state

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
	Supply current in reset	V _{DD} = 5 V	400	-	ıιΔ
DD(R)	state ⁽²⁾	V _{DD} = 3.3 V	300	-	μΛ
t _{RESETBL}	Reset pin release to vector fetch	-	-	150	μs

Table 30. Total current consumption and timing in forced reset state

1. Guaranteed by design.

2. Characterized with all I/Os tied to V_{SS}.

Current consumption of on-chip peripherals

Subject to general operating conditions for V_{DD} and T_A .

HSI internal RC/f_{CPU}= f_{MASTER} = 16 MHz, V_{DD} = 5 V

Table 31.	Peripheral	current	consumption
-----------	------------	---------	-------------

Symbol	Parameter	Тур	Unit
I _{DD(TIM1)}	TIM1 supply current ⁽¹⁾	210	
I _{DD(TIM2)}	TIM2 supply current ⁽¹⁾	130	
I _{DD(TIM4)}	TIM4 supply current ⁽¹⁾	50	
I _{DD(UART1)}	UART1 supply current ⁽²⁾	120	
I _{DD(SPI)}	SPI supply current ⁽²⁾	45	μΑ
I _{DD(I2C)}	I2C supply current ⁽²⁾	65	
I _{DD(ADC1)}	ADC1 supply current when converting ⁽³⁾	1000	

 Data based on a differential I_{DD} measurement between reset configuration and timer counter running at 16 MHz. No IC/OC programmed (no I/O pads toggling). Not tested in production.

 Data based on a differential IDD measurement between the on-chip peripheral when kept under reset and not clocked and the on-chip peripheral when clocked and not kept under reset. No I/O pads toggling. Not tested in production.

3. Data based on a differential IDD measurement between reset configuration and continuous A/D conversions. Not tested in production.

Current consumption curves

The following figures show typical current consumption measured with code executing in RAM.

Figure 16. Typ $I_{DD(WFI)}$ vs. f_{CPU} HSE external clock, V_{DD} = 5 V

10.3.10 10-bit ADC characteristics

Subject to general operating conditions for $V_{\text{DD}},\,f_{\text{MASTER}},$ and T_{A} unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f	ADC clock frequency	V_{DD} = 2.95 to 5.5 V	1	-	4	N 41 1-	
'ADC	ADC clock frequency	V _{DD} = 4.5 to 5.5 V	1	-	6		
V _{AIN}	Conversion voltage range ⁽¹⁾	-	V_{SS}	-	V _{DD}	V	
C _{ADC}	Internal sample and hold capacitor	-	-	3	-	pF	
$t_{-}(1)$	Minimum sampling time	f _{ADC} = 4 MHz	-	0.75	-	116	
'S		f _{ADC} = 6 MHz	-	0.5	-	μο	
t _{STAB}	Wakeup time from standby	-	-	7.0	-	μs	
	Minimum total conversion time	f _{ADC} = 4 MHz	3.5			μs	
t _{CONV}	(including sampling time, 10-	f _{ADC} = 6 MHz		2.33		μs	
	DIT RESOLUTION)	-	14			1/f _{ADC}	

Table 45.	ADC	characteristics
-----------	-----	-----------------

 During the sample time, the sampling capacitance, C_{AIN} (3 pF max), can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_S. After the end of the sample time t_S, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_S depend on programming.

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
	Total upadiustod orror ⁽²⁾	f _{ADC} = 2 MHz	1.6	3.5	
ILTI		f _{ADC} = 4 MHz	1.9	4	
	Offset $\operatorname{orror}^{(2)}$	f _{ADC} = 2 MHz	1	2.5	
I⊏0I		f _{ADC} = 4 MHz	1.5	2.5	
	Gain error ⁽²⁾	f _{ADC} = 2 MHz	1.3	3	
I⊏GI		f _{ADC} = 4 MHz	2	3	LOD
	Differential linearity error ⁽²⁾	f _{ADC} = 2 MHz	0.7	1.0	
I⊏DI		f _{ADC} = 4 MHz	0.7	1.5	
E _L	Integral linearity error ⁽²⁾	f _{ADC} = 2 MHz	0.6	1.5	
		f _{ADC} = 4 MHz	0.8	2	

1. Guaranteed by characterization results.

ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another 2. analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 10.3.6 does not affect the ADC accuracy.

- 1. Example of an actual transfer curve
- The ideal transfer curve 2.
- End point correlation line 3.

 E_T = Total unadjusted error: maximum deviation between the actual and the ideal transfer curves. E_O = Offset error: deviation between the first actual transition and the first ideal one. E_G = Gain error: deviation between the last ideal transition and the last actual one.

 $E_{D} = Differential linearity error: maximum deviation between any actual steps and the ideal one.$ $<math>E_{L} = Integral linearity error: maximum deviation between any actual transition and the end point correlation$ line.

Electromagnetic interference (EMI)

Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm IEC 61967-2 which specifies the board and the loading of each pin.

Symbol Param			Conditions					
	Parameter		Monitored	Max f	Max f _{CPU} ⁽¹⁾			
		General conditions	frequency band	16 MHz/ 8 MHz	16 MHz/ 16 MHz			
S _{EMI} Pea EM		$V_{DD} = 5 V,$ $T_A = 25 °C,$ LQFP32 package. Conforming to	0.1 MHz to 30 MHz	5	5			
	Peak level		30 MHz to 130 MHz	4	5	dBµV		
			130 MHz to 1 GHz	5	5			
	EMI level	IEC 61967-2	EMI level	2.5	2.5	-		

Table	49.	EMI	data
-------	-----	-----	------

1. Guaranteed by characterization results.

Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD, DLU and LU) using specific measurement methods, the product is stressed to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts x (n+1) supply pin). One model can be simulated: Human body model. This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (Human body model)	$T_A = 25^{\circ}C$, conforming to JESD22-A114	А	4000	
V _{ESD(CDM)}	Electrostatic discharge voltage (Charge device model)	T _A = 25°C, conforming to SD22-C101 LQFP32 package	IV	1000	V

Table 50. ESD absolute maximum ratings

1. Guaranteed by characterization results

Static latch-up

Two complementary static tests are required on 10 parts to assess the latch-up performance.

- A supply overvoltage (applied to each power supply pin), and
- A current injection (applied to each input, output and configurable I/O pin) are performed on each sample.

This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.

Symbol	Parameter	Conditions	Class ⁽¹⁾
		T _A = 25 °C	
LU	Static latch-up class	T _A = 85 °C	А
		T _A = 125 °C	

Table 51. Electrical sensitivities

1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B class strictly covers all the JEDEC criteria (international standard).

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
A3	-	0.152	-	-	0.0060	-
b	0.180	0.230	0.280	0.0071	0.0091	0.0110
D	4.900	5.000	5.100	0.1929	0.1969	0.2008
D1	3.400	3.500	3.600	0.1339	0.1378	0.1417
D2	3.400	3.500	3.600	0.1339	0.1378	0.1417
E	4.900	5.000	5.100	0.1929	0.1969	0.2008
E1	3.400	3.500	3.600	0.1339	0.1378	0.1417
E2	3.400	3.500	3.600	0.1339	0.1378	0.1417
е	-	0.500	-	-	0.0197	-
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
ddd	-	-	0.080	-	-	0.0031

Table 53. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flatpackage mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Section 11.7: UFQFPN recommended footprint shows the recommended footprints for UFQFPN with and without on-board emulation.

Dim	mm				inches ⁽¹⁾	
Dini.	Min	Тур	Мах	Min	Тур	Мах
eB	-	-	12.700	-	-	0.5000
L	2.540	3.048	3.810	0.1000	0.1200	0.1500

Table 55. SDIP32 package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 55. SDIP32 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 60. SO20 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

11.7 UFQFPN recommended footprint

Figure 61. UFQFPN recommended footprint for on-board emulation

12 Thermal characteristics

The maximum junction temperature (T_{Jmax}) of the device must never exceed the values specified in *Table 19: General operating conditions*, otherwise the functionality of the device cannot be guaranteed.

The maximum junction temperature T_{Jmax} , in degrees Celsius, may be calculated using the following equation:

$$T_{Jmax} = T_{Amax} + (P_{Dmax} \times \Theta_{JA})$$

Where:

- T_{Amax} is the maximum ambient temperature in °C
- Θ_{JA} is the package junction-to-ambient thermal resistance in ° C/W
- P_{Dmax} is the sum of P_{INTmax} and P_{I/Omax} (P_{Dmax} = P_{INTmax} + P_{I/Omax})
- P_{INTmax} is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.
- P_{I/Omax} represents the maximum power dissipation on output pins Where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{Omax}} = \Sigma (\mathsf{V}_{\mathsf{OL}} * \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) * \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL}/I_{OL} and V_{OH}/I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient TSSOP20 - 4.4mm	84	
	Thermal resistance junction-ambient SO20W (300 mils)	91	
Θ _{JA}	Thermal resistance junction-ambient UFQFPN20 - 3 x 3 mm	90	°C/W
	Thermal resistance junction-ambient LQFP32 - 7 x 7 mm	60	
	Thermal resistance junction-ambient UFQFPN32 - 5 x 5 mm	38	
	Thermal resistance junction-ambient SDIP32 - 400 mils	60	

Table 58	Thermal	characteristics ⁽	1))
----------	---------	------------------------------	----	---

1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment.

12.1 Reference document

JESD51-2 integrated circuits thermal test method environment conditions - natural convection (still air). Available from www.jedec.org.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

DocID15441 Rev 14