

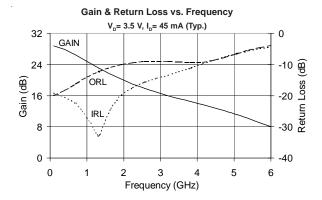
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1823-e-sl



Product Description

The SGA-4563 is a high performance SiGe HBT MMIC Amplifier. A Darlington configuration featuring 1 micron emitters provides high F_T and excellent thermal perfomance. The heterojunction increases breakdown voltage and minimizes leakage current between junctions. Cancellation of emitter junction nonlinearities results in higher suppression of intermodulation products. Only 2 DC-blocking capacitors, a bias resistor and an optional RF choke are required for operation.

The matte tin finish on Sirenza's lead-free package utilizes a post annealing process to mitigate tin whisker formation and is RoHS compliant per EU Directive 2002/95. This package is also manufactured with green molding compounds that contain no antimony trioxide nor halogenated fire retardants.

blocking capacitors, a bias resistor and an optional RF choke are required for operation.

SGA-4563

SGA-4563Z

DC-2500 MHz, Cascadable **SiGe HBT MMIC Amplifier**

Product Features

- Now available in Lead Free, RoHS Compliant, & Green Packaging
- High Gain: 20.2 dB at 1950 MHz
- Cascadable 50 Ohm
- Operates From Single Supply
- Low Thermal Resistance Package

Applications

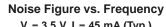
- PA Driver Amplifier
- Cellular, PCS, GSM, UMTS

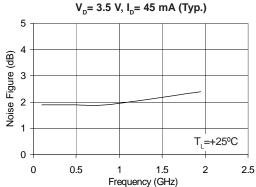
 $Z_s = Z_l = 50 \text{ Ohms}$

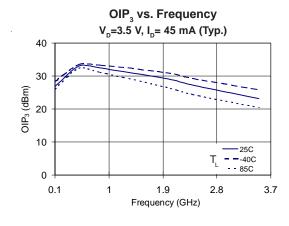
- IF Amplifier
- · Wireless Data, Satellite

Symbol	Parameter	Units	Frequency	Min.	Тур.	Max.
G	Small Signal Gain		850 MHz 1950 MHz 2400 Mhz		25.6 20.2 18.6	
P_{1dB}	P _{1dB} Output Power at 1dB Compression		850 MHz 1950 MHz		15.0 12.8	
OIP ₃ Output Third Order Intercept Point		dBm	850 MHz 1950 MHz		27.1 26.2	
Bandwidth	Determined by Return Loss (>10dB)	MHz			2500	
IRL	Input Return Loss	dB	1950 MHz		19.9	
ORL	ORL Output Return Loss		1950 MHz		10.1	
NF	Noise Figure	dB	1950 MHz		2.4	
V_{D}	Device Operating Voltage	V			3.6	
I _D	I _D Device Operating Current			41	45	49
R _{TH} , j-I	Thermal Resistance (junction to lead)	°C/W			255	
Test Conditions: $V_s = 8 \text{ V}$ $I_D = 45 \text{ mA Typ.}$ OIP ₃ Tone Spacing = 1 MHz, Pout per tone = -10					= -10 dBr	

The information provided herein is believed to be reliable at press time. Sirenza Microdevices assumes no responsibility for inaccuracies or omissions. Sirenza Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Sirenza Microdevices does not authorize or warrant any Sirenza Microdevices product for use in life-support devices and/or systems. Copyright 2001 Sirenza Microdevices, Inc.. All worldwide rights Phone: (800) SMI-MMIC

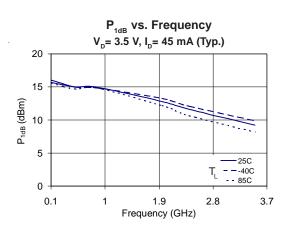

R_{BIAS} = 100 Ohms




Typical RF Performance at Key Operating Frequencies

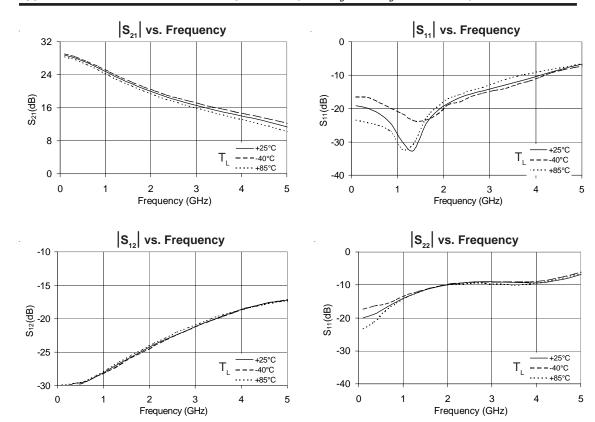
			Frequency (MHz)					
Symbol	Parameter	Unit	100	500	850	1950	2400	3500
G	Small Signal Gain	dB	28.7	27.4	25.6	20.2	18.6	15.3
OIP ₃	Output Third Order Intercept Point	dBm	27.0	26.2	27.1	26.2	25.3	
P_{1dB}	Output Power at 1dB Compression	dBm	15.7	15.0	15.0	12.8	11.6	
IRL	Input Return Loss	dB	19.2	20.7	24.5	19.9	16.5	12.4
ORL	Output Return Loss	dB	20.0	17.7	15.0	10.1	9.3	9.3
S ₁₂	Reverse Isolation	dB	30.5	29.7	28.7	24.5	23.0	19.9
NF	Noise Figure	dB	1.9	1.9	1.9	2.4		

Test Conditions: $V_s = 8 \text{ V}$ $I_D = 45 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1 MHz, Pout per tone = -10 dBm $Z_s = Z_L = 50 \text{ Ohms}$

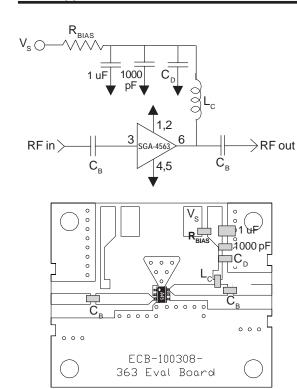


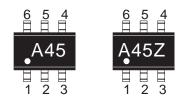
Absolute Maximum Ratings

Parameter	Absolute Limit
Max. Device Current (I _D)	90 mA
Max. Device Voltage (V _D)	6 V
Max. RF Input Power	+18 dBm
Max. Junction Temp. (T _J)	+150°C
Operating Temp. Range (T _L)	-40°C to +85°C
Max. Storage Temp.	+150°C


Operation of this device beyond any one of these limits may cause permanent damage. For reliable continous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

Bias conditions should also satisfy the following expression: $I_{_D}V_{_D}<(T_{_J}-T_{_L})\ /\ R_{_{TH}},\ j\text{-}I$


Typical RF Performance Over Temperature (Bias: $V_D = 3.5 \text{ V}$, $I_D = 45 \text{ mA}$ (Typ.))


NOTE: Full S-parameter data available at www.sirenza.com

Basic Application Circuit

Part Identification Marking

Application Circuit Element Values

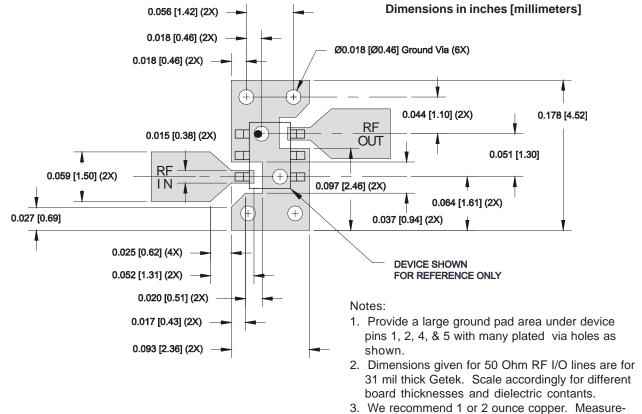
Reference		Frequency (Mhz)					
Designator	500	850	1950	2400	3500		
C _B	220 pF	100 pF	68 pF	56 pF	39 pF		
C _D	100 pF	68 pF	22 pF	22 pF	15 pF		
L _c	68 nH	33 nH	22 nH	18 nH	15 nH		

Recommended Bias Resistor Values for I_p =45mA R_{BIAS} =(V_S - V_D) / I_D				
Supply Voltage(V _s)	6 V	8 V	10 V	12 V
R _{BIAS} 51 Ω 100 Ω 150 Ω 180 Ω				
Note: R _{BIAS} provides DC bias stability over temperature.				

Mounting Instructions

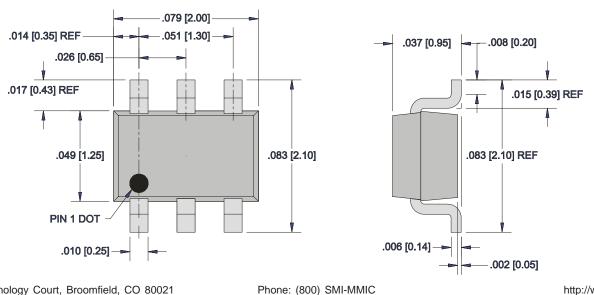
- Use a large ground pad area near device pins 1, 2,
 4, and 5 with many plated through-holes as shown.
- We recommend 1 or 2 ounce copper. Measurements for this data sheet were made on a 31 mil thick FR-4 board with 1 ounce copper on both sides.

Pin#	Function	Description
3	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.
1, 2, 4, 5	GND	Connection to ground. Use via holes for best performance to reduce lead inductance as close to ground leads as possible.
6	RF OUT/ BIAS	RF output and bias pin. DC voltage is present on this pin, therefore a DC blocking capacitor is necessary for proper operation.


Part Number Ordering Information

Part Number	Reel Size	Devices/Reel
SGA-4563	7"	3000
SGA-4563Z	7"	3000

SOT-363 PCB Pad Layout


ments for this data sheet were made on a 31 mil thick Getek with 1 ounce copper on both sides.

SOT-363 Nominal Package Dimensions

Dimensions in inches [millimeters]

A link to the SOT-363 package outline drawing with full dimensions and tolerances may be found on the product web page at www.sirenza.com.

