
E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

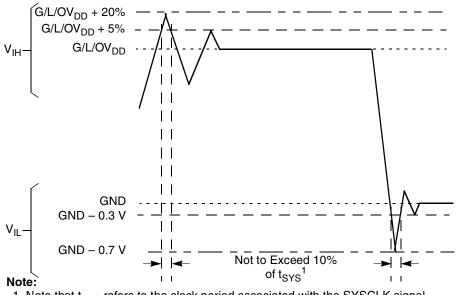
Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	667MHz
Co-Processors/DSP	-
RAM Controllers	DDR, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	-
Voltage - I/O	2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8541pxalf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



- 1000 Mbps IEEE 802.3z TBI
- 10/100/1000 Mbps RGMII/RTBI
- Full- and half-duplex support
- Buffer descriptors are backwards compatible with MPC8260 and MPC860T 10/100 programming models
- 9.6-Kbyte jumbo frame support
- RMON statistics support
- 2-Kbyte internal transmit and receive FIFOs
- MII management interface for control and status
- Programmable CRC generation and checking
- OCeaN switch fabric
 - Three-port crossbar packet switch
 - Reorders packets from a source based on priorities
 - Reorders packets to bypass blocked packets
 - Implements starvation avoidance algorithms
 - Supports packets with payloads of up to 256 bytes
- Integrated DMA controller
 - Four-channel controller
 - All channels accessible by both local and remote masters
 - Extended DMA functions (advanced chaining and striding capability)
 - Support for scatter and gather transfers
 - Misaligned transfer capability
 - Interrupt on completed segment, link, list, and error
 - Supports transfers to or from any local memory or I/O port
 - Selectable hardware-enforced coherency (snoop/no-snoop)
 - Ability to start and flow control each DMA channel from external 3-pin interface
 - Ability to launch DMA from single write transaction
- PCI Controllers
 - PCI 2.2 compatible
 - One 64-bit or two 32-bit PCI ports supported at 16 to 66 MHz
 - Host and agent mode support, 64-bit PCI port can be host or agent, if two 32-bit ports, only one can be an agent
 - 64-bit dual address cycle (DAC) support
 - Supports PCI-to-memory and memory-to-PCI streaming
 - Memory prefetching of PCI read accesses
 - Supports posting of processor-to-PCI and PCI-to-memory writes
 - PCI 3.3-V compatible

Electrical Characteristics

Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8541E.

1. Note that t_{SYS} refers to the clock period associated with the SYSCLK signal.

Figure 2. Overshoot/Undershoot Voltage for GV_{DD}/OV_{DD}/LV_{DD}

The MPC8541E core voltage must always be provided at nominal 1.2 V (see Table 2 for actual recommended core voltage). Voltage to the processor interface I/Os are provided through separate sets of supply pins and must be provided at the voltages shown in Table 2. The input voltage threshold scales with respect to the associated I/O supply voltage. OV_{DD} and LV_{DD} based receivers are simple CMOS I/O circuits and satisfy appropriate LVCMOS type specifications. The DDR SDRAM interface uses a single-ended differential receiver referenced the externally supplied MV_{REF} signal (nominally set to $GV_{DD}/2$) as is appropriate for the SSTL2 electrical signaling standard.

Power Characteristics

3 Power Characteristics

The estimated typical power dissipation for this family of PowerQUICC III devices is shown in Table 4.

CCB Frequency (MHz)	Core Frequency (MHz)	V _{DD}	Typical Power ⁽³⁾⁽⁴⁾ (W)	Maximum Power ⁽⁵⁾ (W)
200	400	1.2	4.4	6.1
	500	1.2	4.7	6.5
	600	1.2	5.0	6.8
267	533	1.2	4.9	6.7
	667	1.2	5.4	7.2
	800	1.2	5.8	8.6
333	667	1.2	5.5	7.4
	833	1.2	6.0	8.8
	1000 ⁽⁶⁾	1.3	9.0	12.2

Table 4. Power Dissipation^{(1) (2)}

Notes:

1. The values do not include I/O supply power (OV_DD, LV_DD, GV_DD) or AV_DD.

2. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Any customer design must take these considerations into account to ensure the maximum 105 degrees junction temperature is not exceeded on this device.

3. Typical power is based on a nominal voltage of V_{DD} = 1.2V, a nominal process, a junction temperature of T_j = 105° C, and a Dhrystone 2.1 benchmark application.

- 4. Thermal solutions likely need to design to a value higher than Typical Power based on the end application, T_A target, and I/O power
- 5. Maximum power is based on a nominal voltage of V_{DD} = 1.2V, worst case process, a junction temperature of T_j = 105° C, and an artificial smoke test.

6. The nominal recommended V_{DD} = 1.3V for this speed grade.

Notes:

- 1.
- 2.
- -.
- 3.
- 4.
- 5.
- 6.

	\wedge	

Interface	Parameters	GV _{DD} (2.5 V)	OV _{DD} (3.3 V)	LV _{DD} (3.3 V)	LV _{DD} (2.5 V)	Unit	Comments
DDR I/O	CCB = 200 MHz	0.46	—	—	—	W	—
	CCB = 266 MHz	0.59	—	—	_	W	_
	CCB = 300 MHz	0.66	—	—	_	W	_
	CCB = 333 MHz	0.73	—	—	_	W	_
PCI I/O	64b, 66 MHz	_	0.14	—	—	W	—
	64b, 33 MHz	_	0.08	—	—	W	—
	32b, 66 MHz	_	0.07	—	—	W	Multiply by 2 if using two 32b ports
	32b, 33 MHz	_	0.04	—	—	W	
Local Bus I/O	32b, 167 MHz	_	0.30	—	—	W	—
	32b, 133 MHz	_	0.24	—	—	W	—
	32b, 83 MHz	_	0.16	—	—	W	—
	32b, 66 MHz	_	0.13	—	—	W	—
	32b, 33 MHz	—	0.07	—	—	W	—
TSEC I/O	MII	—	—	0.01	—	W	Multiply by number of interfaces
	GMII or TBI	—	—	0.07	—	W	used.
	RGMII or RTBI	—	—	—	0.04	W	
CPM - FCC	MII	—	0.015	—	_	W	_
	RMII	—	0.013	—	—	W	—
	HDLC 16 Mbps	—	0.009	—	—	W	—

Table 5. Typical I/O Power Dissipation

Figure 6 provides the AC test load for the DDR bus.

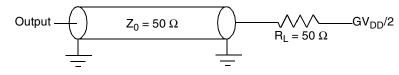


Figure 6. DDR AC Test Load

Table 15. DDR SDRAM Measurement Conditions

Symbol	DDR	Unit	Notes
V _{TH}	MV _{REF} ± 0.31 V	V	1
V _{OUT}	$0.5 imes GV_{DD}$	V	2

Notes:

1. Data input threshold measurement point.

2. Data output measurement point.

7 DUART

This section describes the DC and AC electrical specifications for the DUART interface of the MPC8541E.

7.1 DUART DC Electrical Characteristics

Table 16 provides the DC electrical characteristics for the DUART interface of the MPC8541E.

Table 16. DUART DC Electrical Characteristics

Parameter	Symbol	Test Condition	Min	Мах	Unit
High-level input voltage	V _{IH}	$V_{OUT} \ge V_{OH}$ (min) or	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	$V_{OUT} \le V_{OL}$ (max)	-0.3	0.8	V
Input current	I _{IN}	V_{IN} ¹ = 0 V or V_{IN} = V_{DD}	_	±5	μA
High-level output voltage	V _{OH}	$OV_{DD} = min,$ $I_{OH} = -100 \ \mu A$	OV _{DD} - 0.2	—	V
Low-level output voltage	V _{OL}	OV_{DD} = min, I_{OL} = 100 μ A	_	0.2	V

Note:

1. Note that the symbol V_{IN} , in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

7.2 DUART AC Electrical Specifications

Table 17 provides the AC timing parameters for the DUART interface of the MPC8541E.

Parameter	Value	Unit	Notes
Minimum baud rate	f _{CCB_CLK} / 1048576	baud	3
Maximum baud rate	f _{CCB_CLK} / 16	baud	1, 3
Oversample rate	16	—	2, 3

Table 17. DUART AC Timing Specifications

Notes:

1. Actual attainable baud rate is limited by the latency of interrupt processing.

- The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample.
- 3. Guaranteed by design.

8 Ethernet: Three-Speed, MII Management

This section provides the AC and DC electrical characteristics for three-speed, 10/100/1000, and MII management.

8.1 Three-Speed Ethernet Controller (TSEC) (10/100/1000 Mbps)—GMII/MII/TBI/RGMII/RTBI Electrical Characteristics

The electrical characteristics specified here apply to all GMII (gigabit media independent interface), the MII (media independent interface), TBI (ten-bit interface), RGMII (reduced gigabit media independent interface), and RTBI (reduced ten-bit interface) signals except MDIO (management data input/output) and MDC (management data clock). The RGMII and RTBI interfaces are defined for 2.5 V, while the GMII and TBI interfaces can be operated at 3.3 V or 2.5 V. Whether the GMII, MII, or TBI interface is operated at 3.3 or 2.5 V, the timing is compliant with the IEEE 802.3 standard. The RGMII and RTBI interfaces follow the Hewlett-Packard reduced pin-count interface for Gigabit Ethernet Physical Layer Device Specification Version 1.2a (9/22/2000). The electrical characteristics for MDIO and MDC are specified in Section 8.3, "Ethernet Management Interface Electrical Characteristics."

8.1.1 TSEC DC Electrical Characteristics

All GMII, MII, TBI, RGMII, and RTBI drivers and receivers comply with the DC parametric attributes specified in Table 18 and Table 19. The potential applied to the input of a GMII, MII, TBI, RGMII, or RTBI receiver may exceed the potential of the receiver's power supply (for example, a GMII driver powered from a 3.6-V supply driving V_{OH} into a GMII receiver powered from a 2.5-V supply). Tolerance for dissimilar GMII driver and receiver supply potentials is implicit in these specifications. The RGMII and RTBI signals are based on a 2.5-V CMOS interface voltage as defined by JEDEC EIA/JESD8-5.

Ethernet: Three-Speed, MII Management

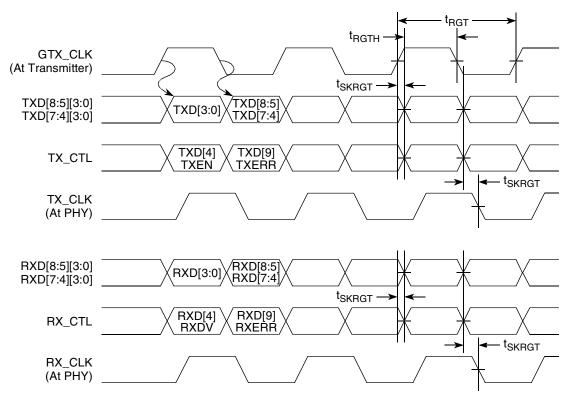


Figure 14. RGMII and RTBI AC Timing and Multiplexing Diagrams

8.3 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to MII management interface signals MDIO (management data input/output) and MDC (management data clock). The electrical characteristics for GMII, RGMII, TBI and RTBI are specified in Section 8.1, "Three-Speed Ethernet Controller (TSEC) (10/100/1000 Mbps)—GMII/MII/TBI/RGMII/RTBI Electrical Characteristics."

8.3.1 MII Management DC Electrical Characteristics

The MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in Table 27.

Parameter	Symbol	Conditions		Min	Мах	Unit
Supply voltage (3.3 V)	OV _{DD}	—		3.13	3.47	V
Output high voltage	V _{OH}	$I_{OH} = -1.0 \text{ mA}$ $LV_{DD} = Min$		2.10	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA LV _{DD} = Min		GND	0.50	V
Input high voltage	V _{IH}	_		1.70	_	V
Input low voltage	V _{IL}	-	_		0.90	V

Local Bus

Figure 15 shows the MII management AC timing diagram.

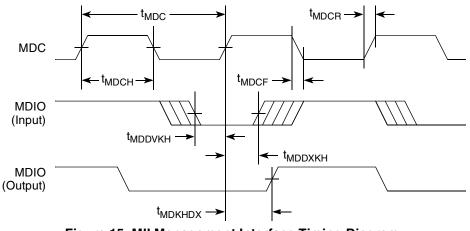


Figure 15. MII Management Interface Timing Diagram

9 Local Bus

This section describes the DC and AC electrical specifications for the local bus interface of the MPC8541E.

9.1 Local Bus DC Electrical Characteristics

Table 29 provides the DC electrical characteristics for the local bus interface.

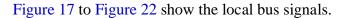

Parameter	Symbol	Test Condition	Min	Мах	Unit
High-level input voltage	V _{IH}	$V_{OUT} \ge V_{OH}$ (min) or	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	V _{OUT} ≤ V _{OL} (max)	-0.3	0.8	V
Input current	I _{IN}	V_{IN} ¹ = 0 V or V_{IN} = V_{DD}	—	±5	μA
High-level output voltage	V _{OH}	$OV_{DD} = min,$ $I_{OH} = -2mA$	OV _{DD} -0.2	_	V
Low-level output voltage	V _{OL}	OV _{DD} = min, I _{OL} = 2mA	_	0.2	V

Table 29. Local Bus DC Electrical Characteristics

Note:

1. Note that the symbol V_{IN} , in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

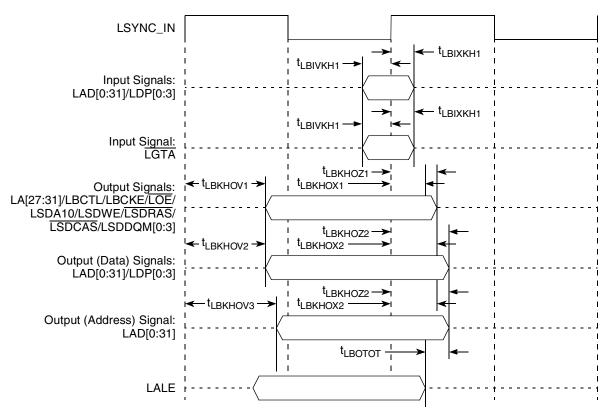


Figure 17. Local Bus Signals, Nonspecial Signals Only (DLL Enabled)

Local Bus

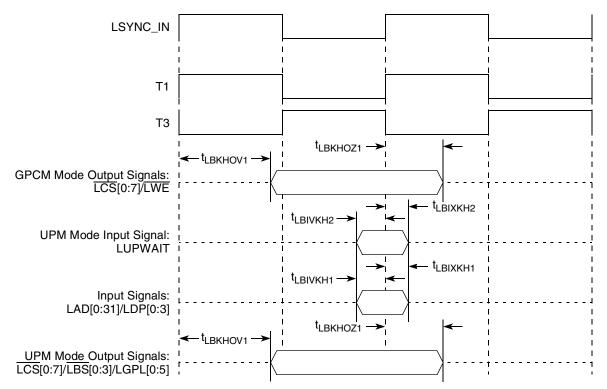


Figure 19. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Enabled)

СРМ

10 CPM

This section describes the DC and AC electrical specifications for the CPM of the MPC8541E.

10.1 CPM DC Electrical Characteristics

Table 32 provides the DC electrical characteristics for the CPM.

Characteristic	Symbol	Condition	Min	Max	Unit	Notes
Input high voltage	V _{IH}		2.0	3.465	V	1
Input low voltage	V _{IL}		GND	0.8	V	1, 2
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	_	V	1
Output low voltage	V _{OL}	l _{OL} = 8.0 mA	_	0.5	V	1
Output high voltage	V _{OH}	I _{OH} = -2.0 mA	2.4	_	V	1
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V	1

 Table 32. CPM DC Electrical Characteristics

10.2 CPM AC Timing Specifications

Table 33 and Table 34 provide the CPM input and output AC timing specifications, respectively.

NOTE: Rise/Fall Time on CPM Input Pins

It is recommended that the rise/fall time on CPM input pins should not exceed 5 ns. This should be enforced especially on clock signals. Rise time refers to signal transitions from 10% to 90% of VCC; fall time refers to transitions from 90% to 10% of VCC.

Characteristic	Symbol ²	Min ³	Unit
FCC inputs—internal clock (NMSI) input setup time	t _{FIIVKH}	6	ns
FCC inputs—internal clock (NMSI) hold time	t _{FIIXKH}	0	ns
FCC inputs—external clock (NMSI) input setup time	t _{FEIVKH}	2.5	ns
FCC inputs—external clock (NMSI) hold time	t _{FEIXKH} b	2	ns
SPI inputs—internal clock (NMSI) input setup time	t _{NIIVKH}	6	ns
SPI inputs—internal clock (NMSI) input hold time	t _{NIIXKH}	0	ns
SPI inputs—external clock (NMSI) input setup time	t _{NEIVKH}	4	ns
SPI inputs—external clock (NMSI) input hold time	t _{NEIXKH}	2	ns
PIO inputs—input setup time	t _{PIIVKH}	8	ns

Table 33. CPM Input AC Timing Specifications ¹

Table 33. CPM Input AC Timing Specifications ¹ (continued)

Notes:

- 1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.
- 2. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{FIIVKH} symbolizes the FCC inputs internal timing (FI) with respect to the time the input signals (I) reaching the valid state (V) relative to the reference clock t_{FCC} (K) going to the high (H) state or setup time.
- 3. PIO and TIMER inputs and outputs are asynchronous to SYSCLK or any other externally visible clock. PIO/TIMER inputs are internally synchronized to the CPM internal clock. PIO/TIMER outputs should be treated as asynchronous.

Characteristic	Symbol ²	Min	Max	Unit
FCC outputs—internal clock (NMSI) delay	t _{FIKHOX}	1	5.5	ns
FCC outputs—external clock (NMSI) delay	t _{FEKHOX}	2	8	ns
SPI outputs—internal clock (NMSI) delay	t _{NIKHOX}	0.5	10	ns
SPI outputs—external clock (NMSI) delay	t _{NEKHOX}	2	8	ns
PIO outputs delay	t _{PIKHOX}	1	11	ns

Table 34. CPM Output AC Timing Specifications ¹

Notes:

- 1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.
- The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{FIKHOX} symbolizes the FCC inputs internal timing (FI) for the time t_{FCC} memory clock reference (K) goes from the high state (H) until outputs (O) are invalid (X).

Figure 23 provides the AC test load for the CPM.

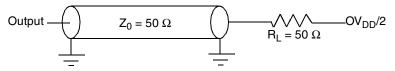


Figure 23. CPM AC Test Load

MPC8541E PowerQUICC™ III Integrated Communications Processor Hardware Specification, Rev. 4.2

СРМ

СРМ

Figure 24 through Figure 29 represent the AC timing from Table 33 and Table 34. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

Figure 24 shows the FCC internal clock.

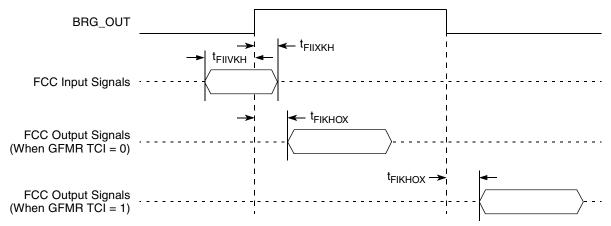


Figure 24. FCC Internal AC Timing Clock Diagram

Figure 25 shows the FCC external clock.

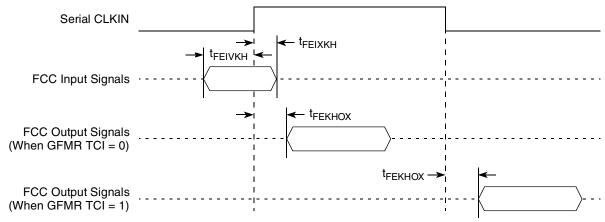


Figure 25. FCC External AC Timing Clock Diagram

Figure 26 shows Ethernet collision timing on FCCs.

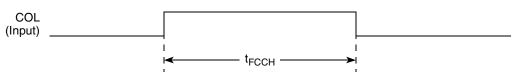


Figure 26. Ethernet Collision AC Timing Diagram (FCC)

The following two tables are examples of I2C AC parameters at I2C clock value of 100k and 400k respectively.

Characteristic	Expression	Frequenc	Unit	
Characteristic	Expression -	Min	Мах	
SCL clock frequency (slave)	f _{SCL}	—	100	kHz
SCL clock frequency (master)	f _{SCL}	_	100	kHz
Bus free time between transmissions	t _{SDHDL}	4.7	—	μs
Low period of SCL	t _{SCLCH}	4.7	_	μs
High period of SCL	t _{SCHCL}	4	—	μs
Start condition setup time	tSCHDL	2	—	μs
Start condition hold time	t _{SDLCL}	3	—	μs
Data hold time	t _{SCLDX}	2	—	μs
Data setup time	t _{SDVCH}	3	—	μs
SDA/SCL rise time	t _{SRISE}	—	1	μs
SDA/SCL fall time (master)	t _{SFALL}	—	303	ns
Stop condition setup time	t _{SCHDH}	2	—	μs

Table 36. CPM I2C Timing (f_{SCL}=100 kHz)

Table 37. CPM I2C Timing (f_{SCL}=400 kHz)

Characteristic	Expression	Frequenc	11	
Characteristic	Expression	Min	Мах	Unit
SCL clock frequency (slave)	f _{SCL}	—	400	kHz
SCL clock frequency (master)	f _{SCL}	—	400	kHz
Bus free time between transmissions	t _{SDHDL}	1.2	_	μs
Low period of SCL	t _{SCLCH}	1.2	—	μs
High period of SCL	t _{SCHCL}	1	—	μs
Start condition setup time	t _{SCHDL}	420	—	ns
Start condition hold time	t _{SDLCL}	630	—	ns
Data hold time	t _{SCLDX}	420	—	ns
Data setup time	t _{SDVCH}	630	—	ns
SDA/SCL rise time	t _{SRISE}	_	250	ns
SDA/SCL fall time	t _{SFALL}	_	75	ns
Stop condition setup time	t _{SCHDH}	420	—	ns

13.2 PCI AC Electrical Specifications

This section describes the general AC timing parameters of the PCI bus of the MPC8541E. Note that the SYSCLK signal is used as the PCI input clock. Table 42 provides the PCI AC timing specifications at 66 MHz.

NOTE

PCI Clock can be PCI1_CLK or SYSCLK based on POR config input.

NOTE

The input setup time does not meet the PCI specification.

Table 42. PCI AC Timing Specifications at 66 MHz

Parameter	Symbol ¹	Min	Max	Unit	Notes
Clock to output valid	^t PCKHOV	_	6.0	ns	2, 3
Output hold from Clock	t _{PCKHOX}	2.0	-	ns	2, 9
Clock to output high impedance	t _{PCKHOZ}	_	14	ns	2, 3, 10
Input setup to Clock	t _{PCIVKH}	3.3	_	ns	2, 4, 9
Input hold from Clock	t _{PCIXKH}	0	_	ns	2, 4, 9
REQ64 to HRESET ⁹ setup time	t _{PCRVRH}	$10 \times t_{SYS}$	_	clocks	5, 6, 10
HRESET to REQ64 hold time	t _{PCRHRX}	0	50	ns	6, 10
HRESET high to first FRAME assertion	t _{PCRHFV}	10	—	clocks	7, 10

Notes:

Note that the symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the SYSCLK clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the frame signal (F) going to the valid (V) state.

2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.

3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

4. Input timings are measured at the pin.

5. The timing parameter t_{SYS} indicates the minimum and maximum CLK cycle times for the various specified frequencies. The system clock period must be kept within the minimum and maximum defined ranges. For values see Section 15, "Clocking."

- 6. The setup and hold time is with respect to the rising edge of HRESET.
- 7. The timing parameter t_{PCRHFV} is a minimum of 10 clocks rather than the minimum of 5 clocks in the PCI 2.2 Local Bus Specifications.
- 8. The reset assertion timing requirement for $\overline{\text{HRESET}}$ is 100 $\mu\text{s}.$
- 9. Guaranteed by characterization.

10.Guaranteed by design.

Figure 16 provides the AC test load for PCI.

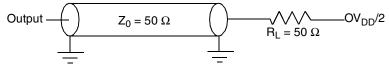


Figure 38. PCI AC Test Load

Table 43. MPC8541E Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
PCI2_GNT[1:4]	AD18, AE18, AE19, AD19	0	OV _{DD}	5, 9
PCI2_IDSEL	AC22	I	OV _{DD}	_
PCI2_IRDY	AD20	I/O	OV _{DD}	2
PCI2_PERR	AC20	I/O	OV _{DD}	2
PCI2_REQ[0]	AD21	I/O	OV _{DD}	_
PCI2_REQ[1:4]	AE21, AD22, AE22, AC23	I	OV _{DD}	—
PCI2_SERR	AE20	I/O	OV _{DD}	2,4
PCI2_STOP	AC21	I/O	OV _{DD}	2
PCI2_TRDY	AC19	I/O	OV _{DD}	2
	DDR SDRAM Memory Interface			1
MDQ[0:63]	M26, L27, L22, K24, M24, M23, K27, K26, K22, J28, F26, E27, J26, J23, H26, G26, C26, E25, C24, E23, D26, C25, A24, D23, B23, F22, J21, G21, G22, D22, H21, E21, N18, J18, D18, L17, M18, L18, C18, A18, K17, K16, C16, B16, G17, L16, A16, L15, G15, E15, C14, K13, C15, D15, E14, D14, D13, E13, D12, A11, F13, H13, A13, B12	I/O	GV _{DD}	_
MECC[0:7]	N20, M20, L19, E19, C21, A21, G19, A19	I/O	GV _{DD}	_
MDM[0:8]	L24, H28, F24, L21, E18, E16, G14, B13, M19	0	GV _{DD}	_
MDQS[0:8]	L26, J25, D25, A22, H18, F16, F14, C13, C20	I/O	GV _{DD}	_
MBA[0:1]	B18, B19	0	GV _{DD}	—
MA[0:14]	N19, B21, F21, K21, M21, C23, A23, B24, H23, G24, K19, B25, D27, J14, J13	0	GV _{DD}	—
MWE	D17	0	GV _{DD}	_
MRAS	F17	0	GV _{DD}	_
MCAS	J16	0	GV _{DD}	_
MCS[0:3]	H16, G16, J15, H15	0	GV _{DD}	_
MCKE[0:1]	E26, E28	0	GV _{DD}	11
MCK[0:5]	J20, H25, A15, D20, F28, K14	0	GV _{DD}	_
MCK[0:5]	F20, G27, B15, E20, F27, L14	0	GV _{DD}	_
MSYNC_IN	M28	I	GV _{DD}	22
MSYNC_OUT	N28	0	GV _{DD}	22
	Local Bus Controller Interface			
LA[27]	U18	0	OV _{DD}	5, 9

Package and Pin Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes
IRQ[0:7]	AA18, Y18, AB18, AG24, AA21, Y19, AA19, AG25	I	OV _{DD}	-
IRQ8	AB20	I	OV _{DD}	9
IRQ9/DMA_DREQ3	Y20	I	OV _{DD}	1
IRQ10/DMA_DACK3	AF26	I/O	OV _{DD}	1
IRQ11/DMA_DDONE3	AH24	I/O	OV _{DD}	1
IRQ_OUT	AB21	0	OV _{DD}	2, 4
	Ethernet Management Interface			
EC_MDC	F1	0	OV _{DD}	5, 9
EC_MDIO	E1	I/O	OV _{DD}	_
	Gigabit Reference Clock		1	
EC_GTX_CLK125	E2	I	LV _{DD}	-
	Three-Speed Ethernet Controller (Gigabit Ether	net 1)	1	
TSEC1_TXD[7:4]	A6, F7, D7, C7	0	LV _{DD}	
TSEC1_TXD[3:0]	B7, A7, G8, E8	0	LV _{DD}	9, 18
TSEC1_TX_EN	C8	0	LV _{DD}	11
TSEC1_TX_ER	B8	0	LV _{DD}	—
TSEC1_TX_CLK	C6	I	LV _{DD}	—
TSEC1_GTX_CLK	B6	0	LV _{DD}	—
TSEC1_CRS	C3	I	LV _{DD}	—
TSEC1_COL	G7	I	LV _{DD}	—
TSEC1_RXD[7:0]	D4, B4, D3, D5, B5, A5, F6, E6	I	LV _{DD}	—
TSEC1_RX_DV	D2	I	LV _{DD}	_
TSEC1_RX_ER	E5	I	LV _{DD}	
TSEC1_RX_CLK	D6	I	LV _{DD}	
	Three-Speed Ethernet Controller (Gigabit Ether	net 2)		•
TSEC2_TXD[7:4]	B10, A10, J10, K11	0	LV _{DD}	—
TSEC2_TXD[3:0]	J11, H11, G11, E11	0	LV _{DD}	5, 9, 18
TSEC2_TX_EN	B11	0	LV _{DD}	11
TSEC2_TX_ER	D11	0	LV _{DD}	—
TSEC2_TX_CLK	D10	Ι	LV _{DD}	—
TSEC2_GTX_CLK	C10	0	LV _{DD}	_

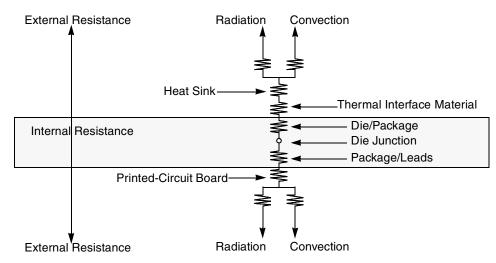
FC-PBGA Package Heat Sink Clip Thermal Interface Material

Printed-Circuit Board

Figure 42. Package Exploded Cross-Sectional View with Several Heat Sink Options

The system board designer can choose between several types of heat sinks to place on the MPC8541E. There are several commercially-available heat sinks from the following vendors:

Aavid Thermalloy 80 Commercial St. Concord, NH 03301 Internet: www.aavidthermalloy.com	603-224-9988
Alpha Novatech 473 Sapena Ct. #15 Santa Clara, CA 95054 Internet: www.alphanovatech.com	408-749-7601
International Electronic Research Corporation (IERC) 413 North Moss St. Burbank, CA 91502 Internet: www.ctscorp.com	818-842-7277
Millennium Electronics (MEI) Loroco Sites 671 East Brokaw Road San Jose, CA 95112 Internet: www.mei-millennium.com	408-436-8770
Tyco Electronics Chip Coolers™ P.O. Box 3668 Harrisburg, PA 17105-3668 Internet: www.chipcoolers.com	800-522-6752
Wakefield Engineering 33 Bridge St. Pelham, NH 03076 Internet: www.wakefield.com	603-635-5102



16.2.2 Internal Package Conduction Resistance

For the packaging technology, shown in Table 49, the intrinsic internal conduction thermal resistance paths are as follows:

- The die junction-to-case thermal resistance
- The die junction-to-board thermal resistance

Figure 44 depicts the primary heat transfer path for a package with an attached heat sink mounted to a printed-circuit board.

(Note the internal versus external package resistance)

Figure 44. Package with Heat Sink Mounted to a Printed-Circuit Board

The heat sink removes most of the heat from the device. Heat generated on the active side of the chip is conducted through the silicon and through the lid, then through the heat sink attach material (or thermal interface material), and finally to the heat sink. The junction-to-case thermal resistance is low enough that the heat sink attach material and heat sink thermal resistance are the dominant terms.

16.2.3 Thermal Interface Materials

A thermal interface material is required at the package-to-heat sink interface to minimize the thermal contact resistance. For those applications where the heat sink is attached by spring clip mechanism, Figure 45 shows the thermal performance of three thin-sheet thermal-interface materials (silicone, graphite/oil, floroether oil), a bare joint, and a joint with thermal grease as a function of contact pressure. As shown, the performance of these thermal interface materials improves with increasing contact pressure. The use of thermal grease significantly reduces the interface thermal resistance. The bare joint results in a thermal resistance approximately six times greater than the thermal grease joint.

Heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board (see Figure 41). Therefore, the synthetic grease offers the best thermal performance, especially at the low interface pressure.

When removing the heat sink for re-work, it is preferable to slide the heat sink off slowly until the thermal interface material loses its grip. If the support fixture around the package prevents sliding off the heat sink,

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 +1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. The described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM Corp. and used under license. IEEE 802.3 and 1149.1 are registered trademarks of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). This product is not endorsed or approved by the IEEE. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2008. All rights reserved.

Document Number: MPC8541EEC Rev. 4.2 1/2008

