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Electrical Characteristics

— Selectable hardware-enforced coherency

— Selectable clock source (SYSCLK or independent PCI_CLK)

• Power management

— Fully static 1.2-V CMOS design with 3.3- and 2.5-V I/O

— Supports power save modes: doze, nap, and sleep

— Employs dynamic power management

— Selectable clock source (sysclk or independent PCI_CLK)

• System performance monitor 

— Supports eight 32-bit counters that count the occurrence of selected events

— Ability to count up to 512 counter specific events

— Supports 64 reference events that can be counted on any of the 8 counters

— Supports duration and quantity threshold counting 

— Burstiness feature that permits counting of burst events with a programmable time between 
bursts

— Triggering and chaining capability

— Ability to generate an interrupt on overflow

• System access port

— Uses JTAG interface and a TAP controller to access entire system memory map

— Supports 32-bit accesses to configuration registers

— Supports cache-line burst accesses to main memory

— Supports large block (4-Kbyte) uploads and downloads

— Supports continuous bit streaming of entire block for fast upload and download

• IEEE Std 1149.1™-compatible, JTAG boundary scan

• 783 FC-PBGA package

2 Electrical Characteristics
This section provides the AC and DC electrical specifications and thermal characteristics for the 
MPC8541E. The MPC8541E is currently targeted to these specifications. Some of these specifications are 
independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer 
design specifications.

2.1 Overall DC Electrical Characteristics
This section covers the ratings, conditions, and other characteristics.
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3 Power Characteristics
The estimated typical power dissipation for this family of PowerQUICC III devices is shown in Table 4.

Table 4.  Power Dissipation(1) (2)

Notes:
1. 

2. 

CCB Frequency (MHz) Core Frequency (MHz) VDD Typical Power(3)(4) (W)

3. 

4. 

Maximum Power(5) (W)

5. 

200 400 1.2 4.4 6.1

500 1.2 4.7 6.5

600 1.2 5.0 6.8

267 533 1.2 4.9 6.7

667 1.2 5.4 7.2

800 1.2 5.8 8.6

333 667 1.2 5.5 7.4

833 1.2 6.0 8.8

1000(6)

6. 

1.3 9.0 12.2

Notes:
1. The values do not include I/O supply power (OVDD, LVDD, GVDD) or AVDD.

2. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) 
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal 
resistance. Any customer design must take these considerations into account to ensure the maximum 105 degrees junction 
temperature is not exceeded on this device.

3. Typical power is based on a nominal voltage of VDD = 1.2V, a nominal process, a junction temperature of Tj = 105° C, and a 
Dhrystone 2.1 benchmark application.

4. Thermal solutions likely need to design to a value higher than Typical Power based on the end application, TA target, and I/O 
power

5. Maximum power is based on a nominal voltage of VDD = 1.2V, worst case process, a junction temperature of Tj = 105° C, and 
an artificial smoke test.

6. The nominal recommended VDD = 1.3V for this speed grade.
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DDR SDRAM

MCS(n) output hold with respect to MCK
333 MHz
266 MHz
200 MHz

tDDKHCX
2.0 
2.65
3.8

— ns 4

MCK to MDQS
333 MHz
266 MHz
200 MHz

tDDKHMH
–0.9
–1.1
–1.2

0.3
0.5
0.6

ns 5

MDQ/MECC/MDM output setup with respect to 
MDQS

333 MHz
266 MHz
200 MHz

tDDKHDS,
tDDKLDS

900
900
1200

— ps 6

MDQ/MECC/MDM output hold with respect to 
MDQS

333 MHz
266 MHz
200 MHz

tDDKHDX,
tDDKLDX

900
900
1200

— ps 6

MDQS preamble start tDDKHMP –0.5 × tMCK – 0.9 –0.5 × tMCK +0.3 ns 7

MDQS epilogue end tDDKLME –0.9 0.3 ns 7

Notes:
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for 

inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing 
(DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, 
tDDKHAS symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes from the high (H) state until 
outputs (A) are setup (S) or output valid time. Also, tDDKLDX symbolizes DDR timing (DD) for the time tMCK memory clock 
reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.

2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.
3. In the source synchronous mode, MCK/MCK can be shifted in 1/4 applied cycle increments through the Clock Control 

Register. For the skew measurements referenced for tAOSKEW it is assumed that the clock adjustment is set to align the 
address/command valid with the rising edge of MCK.

4. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS. For the 
ADDR/CMD setup and hold specifications, it is assumed that the Clock Control register is set to adjust the memory clocks 
by 1/2 applied cycle. The MCSx pins are separated from the ADDR/CMD (address and command) bus in the HW spec. This 
was separated because the MCSx pins typically have different loadings than the rest of the address and command bus, 
even though they have the same timings.

5. Note that tDDKHMH follows the symbol conventions described in note 1. For example, tDDKHMH describes the DDR timing 
(DD) from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). In the source synchronous mode, 
MDQS can launch later than MCK by 0.3 ns at the maximum. However, MCK may launch later than MDQS by as much as 
0.9 ns. tDDKHMH can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. In source 
synchronous mode, this typically is set to the same delay as the clock adjust in the CLK_CNTL register. The timing 
parameters listed in the table assume that these two parameters have been set to the same adjustment value. See the 
MPC8555E PowerQUICC™ III Integrated Communications Processor Reference Manual for a description and 
understanding of the timing modifications enabled by use of these bits. 

6. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC 
(MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the MPC8541E.

7. All outputs are referenced to the rising edge of MCK(n) at the pins of the MPC8541E. Note that tDDKHMP follows the symbol 
conventions described in note 1.

Table 14. DDR SDRAM Output AC Timing Specifications for Source Synchronous Mode (continued)
At recommended operating conditions with GVDD of 2.5 V ± 5%.

Parameter Symbol 1 Min Max Unit Notes
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DUART

Figure 6 provides the AC test load for the DDR bus.

Figure 6. DDR AC Test Load

7 DUART
This section describes the DC and AC electrical specifications for the DUART interface of the 
MPC8541E.

7.1 DUART DC Electrical Characteristics
Table 16 provides the DC electrical characteristics for the DUART interface of the MPC8541E.

Table 15. DDR SDRAM Measurement Conditions

Symbol DDR Unit Notes

VTH MVREF ± 0.31 V V 1

VOUT 0.5 × GVDD V 2

Notes:
1. Data input threshold measurement point.
2. Data output measurement point.

Table 16. DUART DC Electrical Characteristics  

Parameter Symbol Test Condition Min Max Unit

High-level input voltage VIH VOUT ≥ VOH (min) or 2 OVDD + 0.3 V

Low-level input voltage VIL VOUT ≤ VOL (max) –0.3 0.8 V

Input current IIN VIN 1 = 0 V or VIN = VDD — ±5 μA

High-level output voltage VOH OVDD = min, 
IOH = –100 μA

OVDD – 0.2 — V

Low-level output voltage VOL OVDD = min, IOL = 100 μA — 0.2 V

Note:
1. Note that the symbol VIN, in this case, represents the OVIN symbol referenced in Table 1 and Table 2.

Output Z0 = 50 Ω GVDD/2
RL = 50 Ω
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Ethernet: Three-Speed, MII Management

Figure 14 shows the RBMII and RTBI AC timing and multiplexing diagrams.

Figure 14. RGMII and RTBI AC Timing and Multiplexing Diagrams

8.3 Ethernet Management Interface Electrical Characteristics
The electrical characteristics specified here apply to MII management interface signals MDIO 
(management data input/output) and MDC (management data clock). The electrical characteristics for 
GMII, RGMII, TBI and RTBI are specified in Section 8.1, “Three-Speed Ethernet Controller (TSEC) 
(10/100/1000 Mbps)—GMII/MII/TBI/RGMII/RTBI Electrical Characteristics.”

8.3.1 MII Management DC Electrical Characteristics
The MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics 
for MDIO and MDC are provided in Table 27.

Table 27. MII Management DC Electrical Characteristics

Parameter Symbol Conditions Min Max Unit

Supply voltage (3.3 V) OVDD — 3.13 3.47 V

Output high voltage VOH IOH = –1.0 mA LVDD = Min 2.10 LVDD + 0.3 V

Output low voltage VOL IOL = 1.0 mA LVDD = Min GND 0.50 V

Input high voltage VIH — 1.70 — V

Input low voltage VIL — — 0.90 V

GTX_CLK

tRGT
tRGTH

tSKRGT

TX_CTL

TXD[8:5]
TXD[7:4]

TXD[9]
TXERR

TXD[4]
TXEN

TXD[3:0]

(At Transmitter)

TXD[8:5][3:0]
TXD[7:4][3:0]

TX_CLK
(At PHY)

RX_CTL

RXD[8:5]
RXD[7:4]

RXD[9]
RXERR

RXD[4]
RXDV

RXD[3:0]
RXD[8:5][3:0]
RXD[7:4][3:0]

RX_CLK
(At PHY)

tSKRGT

tSKRGT

tSKRGT
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Local Bus

Figure 15 shows the MII management AC timing diagram.

Figure 15. MII Management Interface Timing Diagram

9 Local Bus
This section describes the DC and AC electrical specifications for the local bus interface of the 
MPC8541E.

9.1 Local Bus DC Electrical Characteristics
Table 29 provides the DC electrical characteristics for the local bus interface.

Table 29. Local Bus DC Electrical Characteristics 

Parameter Symbol Test Condition Min Max Unit

High-level input voltage VIH VOUT ≥ VOH (min) or 2 OVDD + 0.3 V

Low-level input voltage VIL VOUT ≤ VOL (max) –0.3 0.8 V

Input current IIN VIN 
1 = 0 V or VIN = VDD — ±5 μA

High-level output voltage VOH OVDD = min, 
IOH = –2mA

OVDD –0.2 — V

Low-level output voltage VOL OVDD = min, IOL = 2mA — 0.2 V

Note:
1. Note that the symbol VIN, in this case, represents the OVIN symbol referenced in Table 1 and Table 2.

MDC

tMDDXKH

tMDC

tMDCH

tMDCR

tMDCF

tMDDVKH

tMDKHDX

MDIO

MDIO

(Input)

(Output)
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Local Bus

Table 31 describes the general timing parameters of the local bus interface of the MPC8541E with the DLL 
bypassed.

Local bus clock to output high impedance for 
LAD/LDP

LWE[0:1] = 00 tLBKHOZ2 — 2.8 ns 5, 9

LWE[0:1] = 11 (default) 4.2

Notes:
1. The symbols used for timing specifications herein follow the pattern of t(First two letters of functional block)(signal)(state) 

(reference)(state) for inputs and t(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tLBIXKH1 
symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the tLBK clock reference (K) goes 
high (H), in this case for clock one(1). Also, tLBKHOX symbolizes local bus timing (LB) for the tLBK clock reference (K) to go 
high (H), with respect to the output (O) going invalid (X) or output hold time. 

2. All timings are in reference to LSYNC_IN for DLL enabled mode.
3. All signals are measured from OVDD/2 of the rising edge of LSYNC_IN for DLL enabled to 0.4 × OVDD of the signal in 

question for 3.3-V signaling levels.
4. Input timings are measured at the pin.
5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered 

through the component pin is less than or equal to the leakage current specification.
6. The value of tLBOTOT is defined as the sum of 1/2 or 1 ccb_clk cycle as programmed by LBCR[AHD], and the number of 

local bus buffer delays used as programmed at power-on reset with configuration pins LWE[0:1].
7. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between 

complementary signals at OVDD/2.
8. Guaranteed by characterization.
9. Guaranteed by design.

Table 31. Local Bus General Timing Parameters—DLL Bypassed

Parameter Configuration 7 Symbol 1 Min Max Unit Notes

Local bus cycle time — tLBK 6.0 — ns 2

Internal launch/capture clock to LCLK delay — tLBKHKT 1.8 3.4 ns 8

LCLK[n] skew to LCLK[m] or LSYNC_OUT — tLBKSKEW — 150 ps 7, 9

Input setup to local bus clock (except 
LUPWAIT)

— tLBIVKH1 5.2 — ns 3, 4

LUPWAIT input setup to local bus clock — tLBIVKH2 5.1 — ns 3, 4

Input hold from local bus clock (except 
LUPWAIT)

— tLBIXKH1 –1.3 — ns 3, 4

LUPWAIT input hold from local bus clock — tLBIXKH2 –0.8 — ns 3, 4

LALE output transition to LAD/LDP output 
transition (LATCH hold time)

— tLBOTOT 1.5 — ns 6

Local bus clock to output valid (except 
LAD/LDP and LALE)

LWE[0:1] = 00 tLBKLOV1 — 0.5 ns 3

LWE[0:1] = 11 (default) 2.0

Local bus clock to data valid for LAD/LDP LWE[0:1] = 00 tLBKLOV2 — 0.7 ns 3

LWE[0:1] = 11 (default) 2.2

Table 30. Local Bus General Timing Parameters—DLL Enabled (continued)

Parameter Configuration 7 Symbol 1 Min Max Unit Notes
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Notes:
1. The symbols used for timing specifications herein follow the pattern of t(First two letters of functional block)(signal)(state) (reference)(state) 

for inputs and t(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tLBIXKH1 symbolizes local bus 
timing (LB) for the input (I) to go invalid (X) with respect to the time the tLBK clock reference (K) goes high (H), in this case for 
clock one(1). Also, tLBKHOX symbolizes local bus timing (LB) for the tLBK clock reference (K) to go high (H), with respect to the 
output (O) going invalid (X) or output hold time. 

2. All timings are in reference to LSYNC_IN for DLL enabled mode.
3. All signals are measured from OVDD/2 of the rising edge of local bus clock for DLL bypass mode to 0.4 × OVDD of the signal 

in question for 3.3-V signaling levels.
4. Input timings are measured at the pin.
5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered 

through the component pin is less than or equal to the leakage current specification.
6. The value of tLBOTOT is defined as the sum of 1/2 or 1 ccb_clk cycle as programmed by LBCR[AHD], and the number of local 

bus buffer delays used as programmed at power-on reset with configuration pins LWE[0:1].
7. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between 

complementary signals at OVDD/2.
8. Guaranteed by characterization.
9. Guaranteed by design.

Figure 16 provides the AC test load for the local bus.

Figure 16. Local Bus C Test Load

Local bus clock to address valid for LAD LWE[0:1] = 00 tLBKLOV3 — 0.8 ns 3

LWE[0:1] = 11 (default) 2.3

Output hold from local bus clock (except 
LAD/LDP and LALE)

LWE[0:1] = 00 tLBKLOX1 –2.7 — ns 3

LWE[0:1] = 11 (default) –1.8

Output hold from local bus clock for LAD/LDP LWE[0:1] = 00 tLBKLOX2 –2.7 — ns 3

LWE[0:1] = 11 (default) –1.8

Local bus clock to output high Impedance 
(except LAD/LDP and LALE)

LWE[0:1] = 00 tLBKLOZ1 — 1.0 ns 5

LWE[0:1] = 11 (default) 2.4

Local bus clock to output high impedance for 
LAD/LDP

LWE[0:1] = 00 tLBKLOZ2 — 1.0 ns 5

LWE[0:1] = 11 (default) 2.4

Table 31. Local Bus General Timing Parameters—DLL Bypassed (continued)

Parameter Configuration 7 Symbol 1 Min Max Unit Notes

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω
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Figure 22. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 or 8 (DLL Bypass Mode)

Internal launch/capture clock

UPM Mode Input Signal:
LUPWAIT

T1

T3

UPM Mode Output Signals:
LCS[0:7]/LBS[0:3]/LGPL[0:5]

GPCM Mode Output Signals:
LCS[0:7]/LWE

T2

T4

Input Signals:
LAD[0:31]/LDP[0:3]
(DLL Bypass Mode)

LCLK

tLBKLOV1

tLBKLOZ1

tLBKLOX1

tLBIVKH2
tLBIXKH2

tLBIVKH1
tLBIXKH1

tLBKHKT
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Figure 23 provides the AC test load for the CPM.

Figure 23. CPM AC Test Load

PIO inputs—input hold time tPIIXKH 1 ns

COL width high (FCC) tFCCH 1.5 CLK

Notes:
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings 

are measured at the pin.
2. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) 

(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tFIIVKH 
symbolizes the FCC inputs internal timing (FI) with respect to the time the input signals (I) reaching the valid state (V) 
relative to the reference clock tFCC (K) going to the high (H) state or setup time. 

3. PIO and TIMER inputs and outputs are asynchronous to SYSCLK or any other externally visible clock. PIO/TIMER inputs 
are internally synchronized to the CPM internal clock. PIO/TIMER outputs should be treated as asynchronous.

Table 34.  CPM Output AC Timing Specifications 1

Characteristic Symbol 2 Min Max Unit

FCC outputs—internal clock (NMSI) delay tFIKHOX 1 5.5 ns

FCC outputs—external clock (NMSI) delay tFEKHOX 2 8 ns

SPI outputs—internal clock (NMSI) delay tNIKHOX 0.5 10 ns

SPI outputs—external clock (NMSI) delay tNEKHOX 2 8 ns

PIO outputs delay tPIKHOX 1 11 ns

Notes:
1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings 

are measured at the pin.
2. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for 

inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tFIKHOX symbolizes the FCC 
inputs internal timing (FI) for the time tFCC memory clock reference (K) goes from the high state (H) until outputs (O) are 
invalid (X). 

Table 33. CPM Input AC Timing Specifications 1 (continued)

Characteristic Symbol 2 Min3 Unit

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω
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10.3 CPM I2C AC Specification

Figure 30. CPM I2C Bus Timing Diagram

Table 35. I2C Timing

Characteristic Expression
All Frequencies

Unit
Min Max

SCL clock frequency (slave) fSCL 0 FMAX
(1)

Notes:
1.    FMAX = BRGCLK/(min_divider*prescale. Where prescaler=25-I2MODE[PDIV]; and min_divider=12 if digital filter disabled 
and 18 if enabled.

      Example #1: if I2MODE[PDIV]=11 (prescaler=4) and I2MODE[FLT]=0 (digital filter disabled) then FMAX=BRGCLK/48
      Example #2: if I2MODE[PDIV]=00 (prescaler=32) and I2MODE[FLT]=1 (digital filter enabled) then FMAX=BRGCLK/576

Hz

SCL clock frequency (master) fSCL BRGCLK/16512 BRGCLK/48 Hz

Bus free time between transmissions tSDHDL 1/(2.2 * fSCL) — s

Low period of SCL tSCLCH 1/(2.2 * fSCL) — s

High period of SCL tSCHCL 1/(2.2 * fSCL) — s

Start condition setup time2 tSCHDL 2/(divider * fSCL) (2)

2.  divider = fSCL/prescaler. 
      In master mode: divider=BRGCLK/(fSCL*prescaler)=2*(I2BRG[DIV]+3)
      In slave mode:   divider=BRGCLK/(fSCL*prescaler)

s

Start condition hold time2 tSDLCL 3/(divider * fSCL) — s

Data hold time 2 tSCLDX 2/(divider * fSCL) — s

Data setup time2 tSDVCH 3/(divider * fSCL) — s

SDA/SCL rise time tSRISE — 1/(10 * fSCL) s

SDA/SCL fall time tSFALL — 1/(33 * fSCL) s

Stop condition setup time tSCHDH 2/(divider * fSCL) — s

SCL

SDA

tSDHDL tSCLCH tSCHCL

tSCHDL

tSDLCL

tSCLDX tSDVCH

tSRISE tSFALL tSCHDH
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Figure 31 provides the AC test load for TDO and the boundary-scan outputs of the MPC8541E.

Figure 31. AC Test Load for the JTAG Interface

Figure 32 provides the JTAG clock input timing diagram.

Figure 32. JTAG Clock Input Timing Diagram

Figure 33 provides the TRST timing diagram.

Figure 33. TRST Timing Diagram

Figure 34 provides the boundary-scan timing diagram.

Figure 34. Boundary-Scan Timing Diagram

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω

JTAG

tJTKHKL tJTGR

External Clock VMVMVM

tJTG tJTGF

VM = Midpoint Voltage (OVDD/2)

TRST

VM = Midpoint Voltage (OVDD/2)

VM VM

tTRST

VM = Midpoint Voltage (OVDD/2)

VM VM

tJTDVKH
tJTDXKH

Boundary
Data Outputs

Boundary
Data Outputs

JTAG
External Clock

Boundary
Data Inputs

Output Data Valid

tJTKLDX

tJTKLDZ

tJTKLDV

Input
Data Valid

Output Data Valid
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Figure 16 provides the AC test load for the I2C.

Figure 36. I2C AC Test Load

Figure 37 shows the AC timing diagram for the I2C bus.

Figure 37. I2C Bus AC Timing Diagram

13 PCI
This section describes the DC and AC electrical specifications for the PCI bus of the MPC8541E. 

13.1 PCI DC Electrical Characteristics
Table 41 provides the DC electrical characteristics for the PCI interface of the MPC8541E.

Table 41. PCI DC Electrical Characteristics 1

Parameter Symbol Test Condition Min Max Unit

High-level input voltage VIH VOUT ≥ VOH (min) or 2 OVDD + 0.3 V

Low-level input voltage VIL VOUT ≤ VOL (max) –0.3 0.8 V

Input current IIN VIN 2 = 0 V or VIN = VDD — ±5 μA

High-level output voltage VOH OVDD = min,
IOH = –100 μA

OVDD – 0.2 — V

Low-level output voltage VOL OVDD = min, 
IOL = 100 μA

— 0.2 V

Notes:
1. Ranges listed do not meet the full range of the DC specifications of the PCI 2.2 Local Bus Specifications.
2. Note that the symbol VIN, in this case, represents the OVIN symbol referenced in Table 1 and Table 2.

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω

SrS

SDA

SCL

tI2CF

tI2SXKL

tI2CL

tI2CH
tI2DXKL

tI2DVKH

tI2SXKL

tI2SVKH

tI2KHKL

tI2PVKH

tI2CR

tI2CF

P S
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15.3 e500 Core PLL Ratio
Table 47 describes the clock ratio between the e500 core complex bus (CCB) and the e500 core clock. This 
ratio is determined by the binary value of LALE and LGPL2 at power up, as shown in Table 47.

15.4 Frequency Options
Table 48 shows the expected frequency values for the platform frequency when using a CCB to SYSCLK 
ratio in comparison to the memory bus speed.

Table 47. e500 Core to CCB Ratio

Binary Value of LALE, LGPL2 Signals Ratio Description

00 2:1 e500 core:CCB

01 5:2 e500 core:CCB

10 3:1 e500 core:CCB

11 7:2 e500 core:CCB

Table 48. Frequency Options with Respect to Memory Bus Speeds

CCB to SYSCLK 
Ratio

SYSCLK (MHz)

17 25 33 42 67 83 100 111 133

Platform/CCB Frequency (MHz)

2 200 222 267 

3 200 250 300 333 

4 267 333 

5 208 333 

6 200 250 

8 200 267 333 

9 225 300 

10 250 333 

12 200 300

16 267 
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Chanhassen, MN 55317
Internet: www.bergquistcompany.com

Thermagon Inc. 888-246-9050
4707 Detroit Ave.
Cleveland, OH 44102
Internet: www.thermagon.com

16.2.4 Heat Sink Selection Examples
The following section provides a heat sink selection example using one of the commercially available heat 
sinks.

16.2.4.1 Case 1 

For preliminary heat sink sizing, the die-junction temperature can be expressed as follows:

TJ = TI + TR + (θJC + θINT + θSA) × PD

where

TJ is the die-junction temperature

TI is the inlet cabinet ambient temperature

TR is the air temperature rise within the computer cabinet

θJC is the junction-to-case thermal resistance

θINT is the adhesive or interface material thermal resistance

θSA is the heat sink base-to-ambient thermal resistance

PD is the power dissipated by the device. See Table 4 and Table 5.

During operation the die-junction temperatures (TJ) should be maintained within the range specified in 
Table 2. The temperature of air cooling the component greatly depends on the ambient inlet air temperature 
and the air temperature rise within the electronic cabinet. An electronic cabinet inlet-air temperature (TA) 
may range from 30° to 40°C. The air temperature rise within a cabinet (TR) may be in the range of 5° to 
10°C. The thermal resistance of some thermal interface material (θINT) may be about 1°C/W. For the 
purposes of this example, the θJC value given in Table 49 that includes the thermal grease interface and is 
documented in note 4 is used. If a thermal pad is used, θINT must be added. 

Assuming a TI of 30°C, a TR of 5°C, a FC-PBGA package θJC = 0.96, and a power consumption (PD) of 
8.0 W, the following expression for TJ is obtained:

Die-junction temperature: TJ = 30°C + 5°C + (0.96°C/W + θSA) × 8.0 W

The heat sink-to-ambient thermal resistance (θSA) versus airflow velocity for a Thermalloy heat sink 
#2328B is shown in Figure 46.

Assuming an air velocity of 2 m/s, we have an effective θSA+ of about 3.3°C/W, thus 

TJ = 30°C + 5°C + (0.96°C/W + 3.3°C/W) × 8.0 W,

resulting in a die-junction temperature of approximately 69°C which is well within the maximum 
operating temperature of the component.
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When data is held high, SW1 is closed (SW2 is open) and RP is trimmed until the voltage at the pad equals 
OVDD/2. RP then becomes the resistance of the pull-up devices. RP and RN are designed to be close to each 
other in value. Then, Z0 = (RP + RN)/2.

Figure 50. Driver Impedance Measurement

The value of this resistance and the strength of the driver’s current source can be found by making two 
measurements. First, the output voltage is measured while driving logic 1 without an external differential 
termination resistor. The measured voltage is V1 = Rsource × Isource. Second, the output voltage is measured 
while driving logic 1 with an external precision differential termination resistor of value Rterm. The 
measured voltage is V2 = 1/(1/R1 + 1/R2)) × Isource. Solving for the output impedance gives Rsource = Rterm 
× (V1/V2 – 1). The drive current is then Isource = V1/Rsource.

Table 50 summarizes the signal impedance targets. The driver impedance are targeted at minimum VDD, 
nominal OVDD, 105°C.

Table 50. Impedance Characteristics

Impedance
Local Bus, Ethernet, DUART, Control, Configuration, Power 

Management PCI DDR DRAM Symbol Unit

RN 43 Target 25 Target 20 Target Z0 Ω

RP 43 Target 25 Target 20 Target Z0 Ω

Differential NA NA NA ZDIFF Ω

Note: Nominal supply voltages. See Table 1, Tj = 105°C.

OVDD

OGND

RP

RN

Pad
Data

SW1

SW2
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17.6 Configuration Pin Multiplexing
The MPC8541E provides the user with power-on configuration options which can be set through the use 
of external pull-up or pull-down resistors of 4.7 kΩ on certain output pins (see customer visible 
configuration pins). These pins are generally used as output only pins in normal operation. 

While HRESET is asserted however, these pins are treated as inputs. The value presented on these pins 
while HRESET is asserted, is latched when HRESET deasserts, at which time the input receiver is disabled 
and the I/O circuit takes on its normal function. Most of these sampled configuration pins are equipped 
with an on-chip gated resistor of approximately 20 kΩ. This value should permit the 4.7-kΩ resistor to pull 
the configuration pin to a valid logic low level. The pull-up resistor is enabled only during HRESET (and 
for platform/system clocks after HRESET deassertion to ensure capture of the reset value). When the input 
receiver is disabled the pull-up is also, thus allowing functional operation of the pin as an output with 
minimal signal quality or delay disruption. The default value for all configuration bits treated this way has 
been encoded such that a high voltage level puts the device into the default state and external resistors are 
needed only when non-default settings are required by the user.

Careful board layout with stubless connections to these pull-down resistors coupled with the large value 
of the pull-down resistor should minimize the disruption of signal quality or speed for output pins thus 
configured.

The platform PLL ratio and e500 PLL ratio configuration pins are not equipped with these default pull-up 
devices.

17.7 Pull-Up Resistor Requirements
The MPC8541E requires high resistance pull-up resistors (10 kΩ is recommended) on open drain type 
pins. 

Correct operation of the JTAG interface requires configuration of a group of system control pins as 
demonstrated in Figure 52. Care must be taken to ensure that these pins are maintained at a valid deasserted 
state under normal operating conditions as most have asynchronous behavior and spurious assertion give 
unpredictable results.

TSEC1_TXD[3:0] must not be pulled low during reset. Some PHY chips have internal pulldowns that 
could cause this to happen. If such PHY chips are used, then a pullup must be placed on these signals strong 
enough to restore these signals to a logical 1 during reset. 

Refer to the PCI 2.2 specification for all pull-ups required for PCI.

17.8 JTAG Configuration Signals
Boundary-scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the 
IEEE 1149.1 specification, but is provided on all processors that implement the Power Architecture. The 
device requires TRST to be asserted during reset conditions to ensure the JTAG boundary logic does not 
interfere with normal chip operation. While it is possible to force the TAP controller to the reset state using 
only the TCK and TMS signals, generally systems assert TRST during the power-on reset flow. Simply 
tying TRST to HRESET is not practical because the JTAG interface is also used for accessing the common 
on-chip processor (COP) function.
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Figure 52. JTAG Interface Connection

HRESET

From Target
Board Sources

COP_HRESET
13

COP_SRESET

SRESET

NC

11

COP_VDD_SENSE2
6

5

15

10 Ω

10 kΩ

10 kΩ

COP_CHKSTP_IN
CKSTP_IN8

COP_TMS

COP_TDO

COP_TDI

COP_TCK

TMS

TDO

TDI

9

1

3

4
COP_TRST

7

16

2

10

12

(if any)

C
O

P
 H

ea
de

r

14 3

Notes:

3. The KEY location (pin 14) is not physically present on the COP header.

10 kΩ

TRST1
10 kΩ

10 kΩ

10 kΩ

CKSTP_OUT
COP_CHKSTP_OUT

3

13

9

5

1

6

10

15

11

7

16

12

8

4

KEY
No pin

COP Connector
Physical Pinout

1 2

NC

SRESET 

 

2. Populate this with a 10 Ω resistor for short-circuit/current-limiting protection.

NC

OVDD

10 kΩ

10 kΩ HRESET1

 in order to fully control the processor as shown here.

4. Although pin 12 is defined as a No-Connect, some debug tools may use pin 12 as an additional GND pin for

1. The COP port and target board should be able to independently assert HRESET and TRST to the processor

improved signal integrity.

TCK

 4

5

5. This switch is included as a precaution for BSDL testing. The switch should be open during BSDL testing to avoid
accidentally asserting the TRST line. If BSDL testing is not being performed, this switch should be closed or removed.

10 kΩ

6

6. Asserting SRESET causes a machine check interrupt to the e500 core.
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19 Device Nomenclature
Ordering information for the parts fully covered by this specification document is provided in 
Section 19.1, “Nomenclature of Parts Fully Addressed by this Document.”

19.1 Nomenclature of Parts Fully Addressed by this Document
Table 52 provides the Freescale part numbering nomenclature for the MPC8541E. Note that the individual 
part numbers correspond to a maximum processor core frequency. For available frequencies, contact your 
local Freescale sales office. In addition to the processor frequency, the part numbering scheme also 
includes an application modifier which may specify special application conditions. Each part number also 
contains a revision code which refers to the die mask revision number.

Table 52. Part Numbering Nomenclature

MPC nnnn t pp aa a r

Product
Code

Part
Identifier

Encryption
Acceleration

Temperature
Range1 Package 2

Processor 
Frequency 3

Platform 
Frequency

Revision 
Level4

MPC 8541 Blank = not 
included

E = included

Blank = 0 to 105°C
C = –40 to 105°C

PX = FC-PBGA

VT = FC-PBGA 
(lead free)

AJ = 533 MHz

AK = 600 MHz

AL = 667 MHz

AP = 833 MHz

AQ = 1000 MHZ

D = 266 MHz

E = 300 MHz

F = 333 MHz

Notes: 
1. For Temperature Range=C, Processor Frequency is limited to 667 MHz with a Platform Frequency selector of 333 MHz, 

Processor Frequency is limited to 533 MHz with a Platform Frequency selector of 266 MHz.

2. See Section 14, “Package and Pin Listings,” for more information on available package types.

3. Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this 
specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other 
maximum core frequencies.

4. Contact you local Freescale field applications engineer (FAE).
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