

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Ξ·ϽϚϜ

Product Status	Active
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	667MHz
Co-Processors/DSP	Security; SEC
RAM Controllers	DDR, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	-
Voltage - I/O	2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8541epxalf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Public Key Execution Unit (PKEU) supporting the following:
 - RSA and Diffie-Hellman
 - Programmable field size up to 2048-bits
 - Elliptic curve cryptography
 - F2m and F(p) modes
 - Programmable field size up to 511-bits
 - Data Encryption Standard Execution Unit (DEU)
 - DES, 3DES
 - Two key (K1, K2) or Three Key (K1, K2, K3)
 - ECB and CBC modes for both DES and 3DES
- Advanced Encryption Standard Unit (AESU)
 - Implements the Rinjdael symmetric key cipher
 - Key lengths of 128, 192, and 256 bits. Two key
 - ECB, CBC, CCM, and Counter modes
- ARC Four execution unit (AFEU)
 - Implements a stream cipher compatible with the RC4 algorithm
 - 40- to 128-bit programmable key
- Message Digest Execution Unit (MDEU)
 - SHA with 160-bit or 256-bit message digest
 - MD5 with 128-bit message digest
 - HMAC with either algorithm
- Random Number Generator (RNG)
- 4 Crypto-channels, each supporting multi-command descriptor chains
 - Static and/or dynamic assignment of crypto-execution units via an integrated controller
 - Buffer size of 256 Bytes for each execution unit, with flow control for large data sizes
- High-performance RISC CPM
 - Two full-duplex fast communications controllers (FCCs) that support the following protocol:
 - IEEE Std 802.3TM/Fast Ethernet (10/100)
 - Serial peripheral interface (SPI) support for master or slave
 - I²C bus controller
 - General-purpose parallel ports-16 parallel I/O lines with interrupt capability
- 256 Kbytes of on-chip memory
 - Can act as a 256-Kbyte level-2 cache
 - Can act as a 256-Kbyte or two 128-Kbyte memory-mapped SRAM arrays
 - Can be partitioned into 128-Kbyte L2 cache plus 128-Kbyte SRAM
 - Full ECC support on 64-bit boundary in both cache and SRAM modes

MPC8541E PowerQUICC™ III Integrated Communications Processor Hardware Specification, Rev. 4.2

Overview

Electrical Characteristics

2.1.1 Absolute Maximum Ratings

Table 1 provides the absolute maximum ratings.

Table	1 4	heolu	te Ma	vimum	Ratings	1
lable	1. P	10201U		1XIIIIUIII	naunys	

Cha	racteristic	Symbol	Max Value	Unit	Notes
Core supply voltage		V _{DD}	-0.3 to 1.32 0.3 to 1.43 (for 1 GHz only)	V	
PLL supply voltage		AV _{DD}	-0.3 to 1.32 0.3 to 1.43 (for 1 GHz only)	V	
DDR DRAM I/O voltage		GV _{DD}	-0.3 to 3.63	V	
Three-speed Ethernet I/O, MII management voltage		LV _{DD}	-0.3 to 3.63 -0.3 to 2.75	V	
CPM, PCI, local bus, DUART, system control and power management, I ² C, and JTAG I/O voltage		OV _{DD}	-0.3 to 3.63	V	3
Input voltage	DDR DRAM signals	MV _{IN}	–0.3 to (GV _{DD} + 0.3)	V	2, 5
	DDR DRAM reference	MV _{REF}	–0.3 to (GV _{DD} + 0.3)	V	2, 5
	Three-speed Ethernet signals	LV _{IN}	–0.3 to (LV _{DD} + 0.3)	V	4, 5
	CPM, Local bus, DUART, SYSCLK, system control and power management, I ² C, and JTAG signals	OV _{IN}	-0.3 to (OV _{DD} + 0.3)1	V	5
	PCI	OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	6
Storage temperature range		T _{STG}	-55 to 150	°C	

Notes:

- 1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.
- 2. Caution: MV_{IN} must not exceed GV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 3. **Caution:** OV_{IN} must not exceed OV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 4. **Caution:** LV_{IN} must not exceed LV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 5. (M,L,O)V_{IN} and MV_{REF} may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.
- 6. OV_{IN} on the PCI interface may overshoot/undershoot according to the PCI Electrical Specification for 3.3-V operation, as shown in Figure 3.

2.1.2 Power Sequencing

The MPC8541Erequires its power rails to be applied in a specific sequence in order to ensure proper device operation. These requirements are as follows for power up:

- 1. V_{DD} , AV_{DDn}
- 2. GV_{DD}, LV_{DD}, OV_{DD} (I/O supplies)

7.2 DUART AC Electrical Specifications

Table 17 provides the AC timing parameters for the DUART interface of the MPC8541E.

Parameter	Value	Unit	Notes
Minimum baud rate	f _{CCB_CLK} / 1048576	baud	3
Maximum baud rate	f _{CCB_CLK} / 16	baud	1, 3
Oversample rate	16	_	2, 3

Table 17. DUART AC Timing Specifications

Notes:

1. Actual attainable baud rate is limited by the latency of interrupt processing.

- The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample.
- 3. Guaranteed by design.

8 Ethernet: Three-Speed, MII Management

This section provides the AC and DC electrical characteristics for three-speed, 10/100/1000, and MII management.

8.1 Three-Speed Ethernet Controller (TSEC) (10/100/1000 Mbps)—GMII/MII/TBI/RGMII/RTBI Electrical Characteristics

The electrical characteristics specified here apply to all GMII (gigabit media independent interface), the MII (media independent interface), TBI (ten-bit interface), RGMII (reduced gigabit media independent interface), and RTBI (reduced ten-bit interface) signals except MDIO (management data input/output) and MDC (management data clock). The RGMII and RTBI interfaces are defined for 2.5 V, while the GMII and TBI interfaces can be operated at 3.3 V or 2.5 V. Whether the GMII, MII, or TBI interface is operated at 3.3 or 2.5 V, the timing is compliant with the IEEE 802.3 standard. The RGMII and RTBI interfaces follow the Hewlett-Packard reduced pin-count interface for Gigabit Ethernet Physical Layer Device Specification Version 1.2a (9/22/2000). The electrical characteristics for MDIO and MDC are specified in Section 8.3, "Ethernet Management Interface Electrical Characteristics."

8.1.1 TSEC DC Electrical Characteristics

All GMII, MII, TBI, RGMII, and RTBI drivers and receivers comply with the DC parametric attributes specified in Table 18 and Table 19. The potential applied to the input of a GMII, MII, TBI, RGMII, or RTBI receiver may exceed the potential of the receiver's power supply (for example, a GMII driver powered from a 3.6-V supply driving V_{OH} into a GMII receiver powered from a 2.5-V supply). Tolerance for dissimilar GMII driver and receiver supply potentials is implicit in these specifications. The RGMII and RTBI signals are based on a 2.5-V CMOS interface voltage as defined by JEDEC EIA/JESD8-5.

Parameter	Symbol	Conditions		Min	Мах	Unit
Supply voltage 3.3 V	LV _{DD}	—		3.13	3.47	V
Output high voltage	V _{OH}	$I_{OH} = -4.0 \text{ mA}$ $LV_{DD} = Min$		2.40	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	$I_{OL} = 4.0 \text{ mA}$ $LV_{DD} = Min$		GND	0.50	V
Input high voltage	V _{IH}			1.70	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	_			0.90	V
Input high current	IIH	$V_{IN}^{1} = LV_{DD}$		_	40	μΑ
Input low current	IIL	V _{IN} ¹ = GND		-600	—	μΑ

Table 18. GMII, MII, and TBI DC Electrical Characteristics

Note:

1. The symbol V_{IN} in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

Table 19. GMII, MII, RGMII RTBI, and TBI DC Electrical Characteristics

Parameters	Symbol	Min	Мах	Unit
Supply voltage 2.5 V	LV _{DD}	2.37	2.63	V
Output high voltage (LV _{DD} = Min, $I_{OH} = -1.0$ mA)	V _{OH}	2.00	LV _{DD} + 0.3	V
Output low voltage (LV _{DD} = Min, I _{OL} = 1.0 mA)	V _{OL}	GND – 0.3	0.40	V
Input high voltage (LV _{DD} = Min)	V _{IH}	1.70	LV _{DD} + 0.3	V
Input low voltage (LV _{DD} = Min)	V _{IL}	-0.3	0.70	V
Input high current ($V_{IN}^{1} = LV_{DD}$)	I _{IH}	—	10	μA
Input low current (V _{IN} ¹ = GND)	IL	-15	_	μΑ

Note:

1. Note that the symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

8.2.4 TBI AC Timing Specifications

This section describes the TBI transmit and receive AC timing specifications.

8.2.4.1 TBI Transmit AC Timing Specifications

Table 24 provides the MII transmit AC timing specifications.

Table 24. TBI Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD} of 3.3 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
GTX_CLK clock period	t _{TTX}	_	8.0	—	ns
GTX_CLK duty cycle	t _{TTXH} /t _{TTX}	40	_	60	%
GMII data TCG[9:0], TX_ER, TX_EN setup time GTX_CLK going high	^t ttkhdv	2.0	-	—	ns
GMII data TCG[9:0], TX_ER, TX_EN hold time from GTX_CLK going high	^t тткнdx	1.0		—	ns
GTX_CLK clock rise and fall time	t _{TTXR} , t _{TTXF} ^{2,3}	_	_	1.0	ns

Notes:

1. The symbols used for timing specifications herein follow the pattern of $t_{(first two letters of functional block)(signal)(state)}$

(include to botto or initiate include, include to botto or initiate include, it is a signal (it is the initiate include, it is a signal of the initiate initiat

2. Signal timings are measured at 0.7 V and 1.9 V voltage levels.

3. Guaranteed by design.

Figure 12 shows the TBI transmit AC timing diagram.

Figure 12. TBI Transmit AC Timing Diagram

Parameter	Symbol	Conditions		Min	Мах	Unit
Input high current	I _{IH}	LV _{DD} = Max	$V_{IN}^{1} = 2.1 V$	—	40	μA
Input low current	١ _{١L}	LV _{DD} = Max	V _{IN} = 0.5 V	-600	—	μA

Table 27.	MII Managemen	t DC Electrical	Characteristics	(continued)

Note:

1. Note that the symbol V_{IN} , in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

8.3.2 MII Management AC Electrical Specifications

Table 28 provides the MII management AC timing specifications.

Table 28. MII Management AC Timing Specifications

At recommended operating conditions with LV_{DD} is 3.3 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit	Notes
MDC frequency	f _{MDC}	0.893	_	10.4	MHz	2
MDC period	t _{MDC}	96		1120	ns	
MDC clock pulse width high	t _{MDCH}	32			ns	
MDC to MDIO valid	t _{MDKHDV}			2*[1/(f _{ccb_clk} /8)]	ns	3
MDC to MDIO delay	t _{MDKHDX}	10		2*[1/(f _{ccb_clk} /8)]	ns	3
MDIO to MDC setup time	t _{MDDVKH}	5		_	ns	
MDIO to MDC hold time	t _{MDDXKH}	0		_	ns	
MDC rise time	t _{MDCR}	_		10	ns	
MDC fall time	t _{MDHF}			10	ns	

Notes:

 The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MDKHDX} symbolizes management data timing (MD) for the time t_{MDC} from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t_{MDDVKH} symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MDC} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. This parameter is dependent on the system clock speed (that is, for a system clock of 267 MHz, the delay is 70 ns and for a system clock of 333 MHz, the delay is 58 ns).

3. This parameter is dependent on the CCB clock speed (that is, for a CCB clock of 267 MHz, the delay is 60 ns and for a CCB clock of 333 MHz, the delay is 48 ns).

4. Guaranteed by design.

Figure 18. Local Bus Signals, Nonspecial Signals Only (DLL Bypass Mode)

СРМ

10 CPM

This section describes the DC and AC electrical specifications for the CPM of the MPC8541E.

10.1 CPM DC Electrical Characteristics

Table 32 provides the DC electrical characteristics for the CPM.

Characteristic	Symbol	Condition	Min	Мах	Unit	Notes
Input high voltage	V _{IH}		2.0	3.465	V	1
Input low voltage	V _{IL}		GND	0.8	V	1, 2
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V	1
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V	1
Output high voltage	V _{OH}	I _{OH} = -2.0 mA	2.4	—	V	1
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V	1

Table 32. CPM DC Electrical Characteristics

10.2 CPM AC Timing Specifications

Table 33 and Table 34 provide the CPM input and output AC timing specifications, respectively.

NOTE: Rise/Fall Time on CPM Input Pins

It is recommended that the rise/fall time on CPM input pins should not exceed 5 ns. This should be enforced especially on clock signals. Rise time refers to signal transitions from 10% to 90% of VCC; fall time refers to transitions from 90% to 10% of VCC.

Characteristic	Symbol ²	Min ³	Unit
FCC inputs—internal clock (NMSI) input setup time	t _{FIIVKH}	6	ns
FCC inputs—internal clock (NMSI) hold time	t _{FIIXKH}	0	ns
FCC inputs—external clock (NMSI) input setup time	t _{FEIVKH}	2.5	ns
FCC inputs—external clock (NMSI) hold time	t _{FEIXKH} b	2	ns
SPI inputs—internal clock (NMSI) input setup time	t _{NIIVKH}	6	ns
SPI inputs—internal clock (NMSI) input hold time	t _{NIIXKH}	0	ns
SPI inputs—external clock (NMSI) input setup time	t _{NEIVKH}	4	ns
SPI inputs—external clock (NMSI) input hold time	t _{NEIXKH}	2	ns
PIO inputs—input setup time	t _{PIIVKH}	8	ns

Table 33. CPM Input AC Timing Specifications ¹

СРМ

10.3 CPM I2C AC Specification

Table 35. I2C Timing

Characteristic	Expression	All Freq	uencies	Unit	
Characteristic	Expression	Min	Мах	Unit	
SCL clock frequency (slave)	f _{SCL}	0	F _{MAX} ⁽¹⁾	Hz	
SCL clock frequency (master)	f _{SCL}	BRGCLK/16512	BRGCLK/48	Hz	
Bus free time between transmissions	t _{SDHDL}	1/(2.2 * f _{SCL})	—	S	
Low period of SCL	t _{SCLCH}	1/(2.2 * f _{SCL})	—	S	
High period of SCL	tSCHCL	1/(2.2 * f _{SCL})	—	S	
Start condition setup time ²	tSCHDL	2/(divider * f _{SCL})	(2)	S	
Start condition hold time ²	t _{SDLCL}	3/(divider * f _{SCL})	—	S	
Data hold time ²	t _{SCLDX}	2/(divider * f _{SCL})	—	S	
Data setup time ²	t _{SDVCH}	3/(divider * f _{SCL})	—	S	
SDA/SCL rise time	t _{SRISE}	—	1/(10 * f _{SCL})	S	
SDA/SCL fall time	t _{SFALL}	—	1/(33 * f _{SCL})	S	
Stop condition setup time	t _{SCHDH}	2/(divider * f _{SCL})	—	S	

Notes:

1. $F_{MAX} = BRGCLK/(min_divider*prescale. Where prescaler=25-I2MODE[PDIV]; and min_divider=12 if digital filter disabled and 18 if enabled.$

Example #1: if I2MODE[PDIV]=11 (prescaler=4) and I2MODE[FLT]=0 (digital filter disabled) then FMAX=BRGCLK/48 Example #2: if I2MODE[PDIV]=00 (prescaler=32) and I2MODE[FLT]=1 (digital filter enabled) then FMAX=BRGCLK/576 2. divider = f_{SCL}/prescaler.

In master mode: divider=BRGCLK/(f_{SCL}*prescaler)=2*(I2BRG[DIV]+3)

In slave mode: divider=BRGCLK/(f_{SCL}*prescaler)

Figure 30. CPM I2C Bus Timing Diagram

Figure 16 provides the AC test load for the I^2C .

Figure 36. I²C AC Test Load

Figure 37 shows the AC timing diagram for the I^2C bus.

Figure 37. I²C Bus AC Timing Diagram

13 PCI

This section describes the DC and AC electrical specifications for the PCI bus of the MPC8541E.

13.1 PCI DC Electrical Characteristics

Table 41 provides the DC electrical characteristics for the PCI interface of the MPC8541E.

Parameter	Symbol	Test Condition	Min	Мах	Unit
High-level input voltage	V _{IH}	$V_{OUT} \ge V_{OH}$ (min) or	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	$V_{OUT} \le V_{OL}$ (max)	-0.3	0.8	V
Input current	I _{IN}	$V_{IN}^2 = 0 V \text{ or } V_{IN} = V_{DD}$	—	±5	μA
High-level output voltage	V _{OH}	OV _{DD} = min, I _{OH} = −100 μA	OV _{DD} – 0.2	_	V
Low-level output voltage	V _{OL}	$OV_{DD} = min,$ $I_{OL} = 100 \ \mu A$		0.2	V

Table 41. PCI DC Electrical Characteristics ¹

Notes:

1. Ranges listed do not meet the full range of the DC specifications of the PCI 2.2 Local Bus Specifications.

2. Note that the symbol V_{IN}, in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

13.2 PCI AC Electrical Specifications

This section describes the general AC timing parameters of the PCI bus of the MPC8541E. Note that the SYSCLK signal is used as the PCI input clock. Table 42 provides the PCI AC timing specifications at 66 MHz.

NOTE

PCI Clock can be PCI1_CLK or SYSCLK based on POR config input.

NOTE

The input setup time does not meet the PCI specification.

Table 42. PCI AC Timing Specifications at 66 MHz

Parameter	Symbol ¹	Min	Max	Unit	Notes
Clock to output valid	^t PCKHOV	_	6.0	ns	2, 3
Output hold from Clock	t _{PCKHOX}	2.0	—	ns	2, 9
Clock to output high impedance	t _{PCKHOZ}	_	14	ns	2, 3, 10
Input setup to Clock	t _{PCIVKH}	3.3	—	ns	2, 4, 9
Input hold from Clock	t _{PCIXKH}	0	—	ns	2, 4, 9
REQ64 to HRESET ⁹ setup time	t _{PCRVRH}	$10 \times t_{SYS}$	—	clocks	5, 6, 10
HRESET to REQ64 hold time	t _{PCRHRX}	0	50	ns	6, 10
HRESET high to first FRAME assertion	t _{PCRHFV}	10	_	clocks	7, 10

Notes:

Note that the symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the SYSCLK clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the frame signal (F) going to the valid (V) state.

2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.

3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

4. Input timings are measured at the pin.

5. The timing parameter t_{SYS} indicates the minimum and maximum CLK cycle times for the various specified frequencies. The system clock period must be kept within the minimum and maximum defined ranges. For values see Section 15, "Clocking."

- 6. The setup and hold time is with respect to the rising edge of HRESET.
- 7. The timing parameter t_{PCRHFV} is a minimum of 10 clocks rather than the minimum of 5 clocks in the PCI 2.2 Local Bus Specifications.
- 8. The reset assertion timing requirement for $\overline{\text{HRESET}}$ is 100 $\mu\text{s}.$
- 9. Guaranteed by characterization.

10.Guaranteed by design.

Figure 16 provides the AC test load for PCI.

Figure 38. PCI AC Test Load

Figure 39 shows the PCI input AC timing conditions.

Figure 39. PCI Input AC Timing Measurement Conditions

Figure 40 shows the PCI output AC timing conditions.

Figure 40. PCI Output AC Timing Measurement Condition

14 Package and Pin Listings

This section details package parameters, pin assignments, and dimensions.

14.1 Package Parameters for the MPC8541E FC-PBGA

The package parameters are as provided in the following list. The package type is $29 \text{ mm} \times 29 \text{ mm}$, 783 flip chip plastic ball grid array (FC-PBGA).

Die size	$8.7 \text{ mm} \times 9.3 \text{ mm} \times 0.75 \text{ mm}$
Package outline	$29 \text{ mm} \times 29 \text{ mm}$
Interconnects	783
Pitch	1 mm
Minimum module height	3.07 mm
Maximum module height	3.75 mm
Solder Balls	62 Sn/36 Pb/2 Ag
Ball diameter (typical)	0.5 mm

14.2 Mechanical Dimensions of the FC-PBGA

Figure 41 the mechanical dimensions and bottom surface nomenclature of the MPC8541E 783 FC-PBGA package.

Notes:

- 1. All dimensions are in millimeters.
- 2. Dimensions and tolerances per ASME Y14.5M-1994.
- 3. Maximum solder ball diameter measured parallel to datum A.
- 4. Datum A, the seating plane, is defined by the spherical crowns of the solder balls.
- 5. Capacitors may not be present on all devices.
- 6. Caution must be taken not to short capacitors or exposed metal capacitor pads on package top.
- 7. The socket lid must always be oriented to A1.

Table 43. MPC8541E Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
PCI2_GNT[1:4]	AD18, AE18, AE19, AD19	0	OV _{DD}	5, 9
PCI2_IDSEL	AC22	I	OV _{DD}	—
PCI2_IRDY	AD20	I/O	OV _{DD}	2
PCI2_PERR	AC20	I/O	OV _{DD}	2
PCI2_REQ[0]	AD21	I/O	OV _{DD}	—
PCI2_REQ[1:4]	AE21, AD22, AE22, AC23	I	OV _{DD}	—
PCI2_SERR	AE20	I/O	OV _{DD}	2,4
PCI2_STOP	AC21	I/O	OV _{DD}	2
PCI2_TRDY	AC19	I/O	OV _{DD}	2
	DDR SDRAM Memory Interface			1
MDQ[0:63]	M26, L27, L22, K24, M24, M23, K27, K26, K22, J28, F26, E27, J26, J23, H26, G26, C26, E25, C24, E23, D26, C25, A24, D23, B23, F22, J21, G21, G22, D22, H21, E21, N18, J18, D18, L17, M18, L18, C18, A18, K17, K16, C16, B16, G17, L16, A16, L15, G15, E15, C14, K13, C15, D15, E14, D14, D13, E13, D12, A11, F13, H13, A13, B12	I/O	GV _{DD}	
MECC[0:7]	N20, M20, L19, E19, C21, A21, G19, A19	I/O	GV _{DD}	
MDM[0:8]	L24, H28, F24, L21, E18, E16, G14, B13, M19	0	GV _{DD}	—
MDQS[0:8]	L26, J25, D25, A22, H18, F16, F14, C13, C20	I/O	GV _{DD}	—
MBA[0:1]	B18, B19	0	GV _{DD}	
MA[0:14]	N19, B21, F21, K21, M21, C23, A23, B24, H23, G24, K19, B25, D27, J14, J13	0	GV _{DD}	_
MWE	D17	0	GV _{DD}	—
MRAS	F17	0	GV _{DD}	—
MCAS	J16	0	GV _{DD}	—
MCS[0:3]	H16, G16, J15, H15	0	GV _{DD}	—
MCKE[0:1]	E26, E28	0	GV _{DD}	11
MCK[0:5]	J20, H25, A15, D20, F28, K14	0	GV _{DD}	—
MCK[0:5]	F20, G27, B15, E20, F27, L14	0	GV _{DD}	—
MSYNC_IN	M28	I	GV _{DD}	22
MSYNC_OUT	N28	0	GV _{DD}	22
	Local Bus Controller Interface			
LA[27]	U18	0	OV _{DD}	5, 9

Table 43.	MPC8541E	Pinout Listing	(continued)	١
		I mout Listing	(continucu)	,

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	JTAG			
тск	AF21	Ι	OV _{DD}	—
TDI	AG21	Ι	OV _{DD}	12
TDO	AF19	0	OV _{DD}	11
TMS	AF23	I	OV _{DD}	12
TRST	AG23	I	OV _{DD}	12
	DFT			
LSSD_MODE	AG19	Ι	OV _{DD}	20
L1_TSTCLK	AB22	Ι	OV _{DD}	20
L2_TSTCLK	AG22	Ι	OV _{DD}	20
TEST_SEL0	AH20	I	OV _{DD}	3
TEST_SEL1	AG26	I	OV _{DD}	3
	Thermal Management			
THERM0	AG2	_		14
THERM1	AH3	_	_	14
	Power Management			
ASLEEP	AG18		—	9, 18
	Power and Ground Signals			
AV _{DD} 1	AH19	Power for e500 PLL (1.2 V)	AV _{DD} 1	—
AV _{DD} 2	AH18	Power for CCB PLL (1.2 V)	AV _{DD} 2	—
AV _{DD} 3	AH17	Power for CPM PLL (1.2 V)	AV _{DD} 3	_
AV _{DD} 4	AF28		AV _{DD} 4	-
AV _{DD} 5	AE28	Power for PCI2 PLL (1.2 V)	AV _{DD} 5	—

Signal	Package Pin Number	Pin Type	Power Supply	Notes
GND	 A12, A17, B3, B14, B20, B26, B27, C2, C4, C11,C17, C19, C22, C27, D8, E3, E12, E24, F11, F18, F23, G9, G12, G25, H4, H12, H14, H17, H20, H22, H27, J19, J24, K5, K9, K18, K23, K28, L6, L20, L25, M4, M12, M14, M16, M22, M27, N2, N13, N15, N17, P12, P14, P16, P23, R13, R15, R17, R20, R26, T3, T8, T10, T12, T14, T16, U6, U13, U15, U16, U17, U21, V7, V10, V26, W5, W18, W23, Y8, Y16, AA6, AA13, AB4, AB11, AB19, AC6, AC9, AD3, AD8, AD17, AF2, AF4, AF10, AF13, AF15, AF27, AG3, AG7 	_	_	_
GV _{DD}	A14, A20, A25, A26, A27, A28, B17, B22, B28, C12, C28, D16, D19, D21, D24, D28, E17, E22, F12, F15, F19, F25, G13, G18, G20, G23, G28, H19, H24, J12, J17, J22, J27, K15, K20, K25, L13, L23, L28, M25, N21	Power for DDR DRAM I/O Voltage (2.5 V)	GV _{DD}	_
LV _{DD}	A4, C5, E7, H10	Reference Voltage; Three-Speed Ethernet I/O (2.5 V, 3.3 V)	LV _{DD}	_
MV _{REF}	N27	Reference Voltage Signal; DDR	MV _{REF}	_
No Connects	AA24, AA25, AA3, AA4, AA7 AA8, AB24, AB25, AC24, AC25, AD23, AD24, AD25, AE23, AE24, AE25, AE26, AE27, AF24, AF25, H1, H2, J1, J2, J3, J4, J5, J6, M1, N1, N10, N11, N4, N5, N7, N8, N9, P10, P8, P9, R10, R11, T24, T25, U24, U25, V24, V25, W24, W25, W9, Y24, Y25, Y5, Y6, Y9, AH26, AH28, AG28, AH1, AG1, AH2, B1, B2, A2, A3	_	_	16
OV _{DD}	D1, E4, H3, K4, K10, L7, M5, N3, P22, R19, R25, T2, T7, U5, U20, U26, V8, W4, W13, W19, W21, Y7, Y23, AA5, AA12, AA16, AA20, AB7, AB9, AB26, AC5, AC11, AC17, AD4, AE1, AE8, AE10, AE15, AF7, AF12, AG27, AH4	PCI, 10/100 Ethernet, and other Standard (3.3 V)	OV _{DD}	_
RESERVED	C1, T11, U11, AF1	—	_	15
SENSEVDD	L12	Power for Core (1.2 V)	V _{DD}	13
SENSEVSS	K12	—	_	13
V _{DD}	M13, M15, M17, N14, N16, P13, P15, P17, R12, R14, R16, T13, T15, T17, U12, U14	Power for Core (1.2 V)	V _{DD}	
	СРМ			
PA[8:31]	J7, J8, K8, K7, K6, K3, K2, K1, L1, L2, L3, L4, L5, L8, L9, L10, L11, M10, M9, M8, M7, M6, M3, M2	I/O	OV _{DD}	

Table 43. MPC8541E Pinout Listing (continued)

Table 43. MPC8541E Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
PB[18:31]	P7, P6, P5, P4, P3, P2, P1, R1, R2, R3, R4, R5, R6, R7	I/O	OV _{DD}	_
PC[0, 1, 4–29]	R8, R9, T9, T6, T5, T4, T1, U1, U2, U3, U4, U7, U8, U9, U10, V9, V6, V5, V4, V3, V2, V1, W1, W2, W3, W6, W7, W8	I/O	OV _{DD}	
PD[7, 14–25, 29–31]	Y4, AA2, AA1, AB1, AB2, AB3, AB5, AB6, AC7, AC4, AC3, AC2, AC1, AD6, AE3, AE2	Ι/Ο	OV _{DD}	—

Notes:

- 1. All multiplexed signals are listed only once and do not re-occur. For example, LCS5/DMA_REQ2 is listed only once in the Local Bus Controller Interface section, and is not mentioned in the DMA section even though the pin also functions as DMA_REQ2.
- 2. Recommend a weak pull-up resistor (2–10 k Ω) be placed on this pin to OV_{DD}.
- 3. This pin must always be pulled down to GND.
- 4. This pin is an open drain signal.
- 5. This pin is a reset configuration pin. It has a weak internal pull-up P-FET which is enabled only when the MPC8541E is in the reset state. This pull-up is designed such that it can be overpowered by an external 4.7-kΩ pull-down resistor. If an external device connected to this pin might pull it down during reset, then a pull-up or active driver is needed if the signal is intended to be high during reset.
- 6. Treat these pins as no connects (NC) unless using debug address functionality.
- The value of LA[28:31] during reset sets the CCB clock to SYSCLK PLL ratio. These pins require 4.7-kΩ pull-up or pull-down resistors. See Section 15.2, "Platform/System PLL Ratio."
- The value of LALE and LGPL2 at reset set the e500 core clock to CCB Clock PLL ratio. These pins require 4.7-kΩ pull-up or pull-down resistors. See the Section 15.3, "e500 Core PLL Ratio."
- 9. Functionally, this pin is an output, but structurally it is an I/O because it either samples configuration input during reset or because it has other manufacturing test functions. This pin therefore is described as an I/O for boundary scan.
- This pin functionally requires a pull-up resistor, but during reset it is a configuration input that controls 32- vs. 64-bit PCI operation. Therefore, it must be actively driven low during reset by reset logic if the device is to be configured to be a 64-bit PCI device. Refer to the PCI Specification.
- 11. This output is actively driven during reset rather than being three-stated during reset.
- 12. These JTAG pins have weak internal pull-up P-FETs that are always enabled.
- 13. These pins are connected to the V_{DD}/GND planes internally and may be used by the core power supply to improve tracking and regulation.
- 14. Internal thermally sensitive resistor.
- 15. No connections should be made to these pins.
- 16. These pins are not connected for any functional use.
- 17. PCI specifications recommend that a weak pull-up resistor (2–10 kΩ) be placed on the higher order pins to OV_{DD} when using 64-bit buffer mode (pins PCI_AD[63:32] and PCI2_C_BE[7:4]).
- 18. If this pin is connected to a device that pulls down during reset, an external pull-up is required to that is strong enough to pull this signal to a logic 1 during reset.
- 19. Recommend a pull-up resistor (~1 k Ω) be placed on this pin to OV_{DD}.
- 20. These are test signals for factory use only and must be pulled up (100 Ω to 1k Ω) to OV_{DD} for normal machine operation.
- 21. If this signal is used as both an input and an output, a weak pull-up ($\sim 10 k\Omega$) is required on this pin.
- 22. MSYNC_IN and MSYNC_OUT should be connected together for proper operation.

Clocking

15.3 e500 Core PLL Ratio

Table 47 describes the clock ratio between the e500 core complex bus (CCB) and the e500 core clock. This ratio is determined by the binary value of LALE and LGPL2 at power up, as shown in Table 47.

Binary Value of LALE, LGPL2 Signals	Ratio Description
00	2:1 e500 core:CCB
01	5:2 e500 core:CCB
10	3:1 e500 core:CCB
11	7:2 e500 core:CCB

Table 47. e500 Core to CCB Ratio

15.4 Frequency Options

Table 48 shows the expected frequency values for the platform frequency when using a CCB to SYSCLK ratio in comparison to the memory bus speed.

Table 48. Frequency Options with Respect to Memory Bus Speeds

CCB to SYSCLK Ratio	SYSCLK (MHz)								
	17	25	33	42	67	83	100	111	133
				Platform/	CCB Frequ	ency (MHz)			
2							200	222	267
3					200	250	300	333	
4					267	333		•	<u>.</u>
5				208	333		1		
6			200	250		4			
8		200	267	333					
9		225	300		2				
10	1	250	333	1					
12	200	300		-					
16	267								

16 Thermal

This section describes the thermal specifications of the MPC8541E.

16.1 Thermal Characteristics

Table 49 provides the package thermal characteristics for the MPC8541E.

Characteristic	Symbol	Value	Unit	Notes
Junction-to-ambient Natural Convection on four layer board (2s2p)	$R_{ extsf{ heta}JMA}$	17	°C/W	1, 2
Junction-to-ambient (@200 ft/min or 1.0 m/s) on four layer board (2s2p)	$R_{ extsf{ heta}JMA}$	14	°C/W	1, 2
Junction-to-ambient (@400 ft/min or 2.0 m/s) on four layer board (2s2p)	$R_{ extsf{ heta}JMA}$	13	°C/W	1, 2
Junction-to-board thermal	$R_{ extsf{ heta}JB}$	10	°C/W	3
Junction-to-case thermal	R _{θJC}	0.96	°C/W	4

Notes

1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance

- 2. Per JEDEC JESD51-6 with the board horizontal.
- 3. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 4. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). Cold plate temperature is used for case temperature; measured value includes the thermal resistance of the interface layer.

16.2 Thermal Management Information

This section provides thermal management information for the flip chip plastic ball grid array (FC-PBGA) package for air-cooled applications. Proper thermal control design is primarily dependent on the system-level design—the heat sink, airflow, and thermal interface material. The recommended attachment method to the heat sink is illustrated in Figure 42. The heat sink should be attached to the printed-circuit board with the spring force centered over the die. This spring force should not exceed 10 pounds force.

18 Document Revision History

Table 51 provides a revision history for this hardware specification.

Rev. No.	Date	Substantive Change(s)	
4.2	1/2008	Added "Note: Rise/Fall Time on CPM Input Pins" and following note text to Section 10.2, "CPM AC Timing Specifications."	
4.1	07/2007	Inserted Figure 3, ""Maximum AC Waveforms on PCI interface for 3.3-V Signaling."	
4	12/2006	Updated Section 2.1.2, "Power Sequencing." Updated back page information.	
3.2	11/2006	Updated Section 2.1.2, "Power Sequencing." Replaced Section 17.8, "JTAG Configuration Signals."	
3.1	10/2005	Table 4: Added footnote 2 about junction temperature.Table 4: Added max. power values for 1000 MHz core frequency.Removed Figure 3, "Maximum AC Waveforms on PCI Interface for 3.3-V Signaling."Table 30: Modified note to tLBKSKEW from 8 to 9Table 30: Changed tLBKHOZ1 and tLBKHOV2 values.Table 30: Added note 3 to tLBKHOV1.Table 30 and Table 31: Modified note 3.Table 31: Added note 3 to tLBKLOV1.Table 31: Modified values for tLBKHKT, tLBKLOV1, tLBKLOV2, tLBKLOV3, tLBKLOZ1, and tLBKLOZ2.Figure 21: Changed Input Signals: LAD[0:31]/LDP[0:3].Table 43: PCI1_CLK and PCI2_CLK changed from I/O to I.Table 52: Added column for Encryption Acceleration.	
3	8/29/2005	Table 4: Modified max. power values. Table 43: Modified notes for signals TSEC1_TXD[3:0], TSEC2_TXD[3:0], TRIG_OUT/READY, MSRCID4, and MDVAL.	
2	8/2005	Previous revision's history listed incorrect cross references. Table 2 is now correctly listed as Table 27 and Table 31 is now listed as Table 31. Table 7: Added note 2. Table 14: Modified min and max values for t _{DDKHMP}	
1	6/2005	Table 27: Changed LV _{dd} to OV _{dd} for the supply voltage Ethernet management interface.Table 4: Modified footnote 4 and changed typical power for the 1000MHz core frequency.Table 31: Corrected symbols for body rows 9–15, effectively changing them from a high state to a low state.	
0	6/2005	Initial Release.	