E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	600MHz
Co-Processors/DSP	Security; SEC
RAM Controllers	DDR, SDRAM
Graphics Acceleration	Νο
Display & Interface Controllers	•
Ethernet	10/100/1000Mbps (2)
SATA	•
USB	•
Voltage - I/O	2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8541evtake

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- 1000 Mbps IEEE 802.3z TBI
- 10/100/1000 Mbps RGMII/RTBI
- Full- and half-duplex support
- Buffer descriptors are backwards compatible with MPC8260 and MPC860T 10/100 programming models
- 9.6-Kbyte jumbo frame support
- RMON statistics support
- 2-Kbyte internal transmit and receive FIFOs
- MII management interface for control and status
- Programmable CRC generation and checking
- OCeaN switch fabric
 - Three-port crossbar packet switch
 - Reorders packets from a source based on priorities
 - Reorders packets to bypass blocked packets
 - Implements starvation avoidance algorithms
 - Supports packets with payloads of up to 256 bytes
- Integrated DMA controller
 - Four-channel controller
 - All channels accessible by both local and remote masters
 - Extended DMA functions (advanced chaining and striding capability)
 - Support for scatter and gather transfers
 - Misaligned transfer capability
 - Interrupt on completed segment, link, list, and error
 - Supports transfers to or from any local memory or I/O port
 - Selectable hardware-enforced coherency (snoop/no-snoop)
 - Ability to start and flow control each DMA channel from external 3-pin interface
 - Ability to launch DMA from single write transaction
- PCI Controllers
 - PCI 2.2 compatible
 - One 64-bit or two 32-bit PCI ports supported at 16 to 66 MHz
 - Host and agent mode support, 64-bit PCI port can be host or agent, if two 32-bit ports, only one can be an agent
 - 64-bit dual address cycle (DAC) support
 - Supports PCI-to-memory and memory-to-PCI streaming
 - Memory prefetching of PCI read accesses
 - Supports posting of processor-to-PCI and PCI-to-memory writes
 - PCI 3.3-V compatible

- Selectable hardware-enforced coherency
- Selectable clock source (SYSCLK or independent PCI_CLK)
- Power management
 - Fully static 1.2-V CMOS design with 3.3- and 2.5-V I/O
 - Supports power save modes: doze, nap, and sleep
 - Employs dynamic power management
 - Selectable clock source (sysclk or independent PCI_CLK)
- System performance monitor
 - Supports eight 32-bit counters that count the occurrence of selected events
 - Ability to count up to 512 counter specific events
 - Supports 64 reference events that can be counted on any of the 8 counters
 - Supports duration and quantity threshold counting
 - Burstiness feature that permits counting of burst events with a programmable time between bursts
 - Triggering and chaining capability
 - Ability to generate an interrupt on overflow
- System access port
 - Uses JTAG interface and a TAP controller to access entire system memory map
 - Supports 32-bit accesses to configuration registers
 - Supports cache-line burst accesses to main memory
 - Supports large block (4-Kbyte) uploads and downloads
 - Supports continuous bit streaming of entire block for fast upload and download
- IEEE Std 1149.1TM-compatible, JTAG boundary scan
- 783 FC-PBGA package

2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8541E. The MPC8541E is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

2.1 **Overall DC Electrical Characteristics**

This section covers the ratings, conditions, and other characteristics.

Items on the same line have no ordering requirement with respect to one another. Items on separate lines must be ordered sequentially such that voltage rails on a previous step must reach 90 percent of their value before the voltage rails on the current step reach ten percent of theirs.

NOTE

If the items on line 2 must precede items on line 1, please ensure that the delay does not exceed 500 ms and the power sequence is not done greater than once per day in production environment.

NOTE

From a system standpoint, if the I/O power supplies ramp prior to the V_{DD} core supply, the I/Os on the MPC8541E may drive a logic one or zero during power-up.

2.1.3 Recommended Operating Conditions

Table 2 provides the recommended operating conditions for the MPC8541E. Note that the values in Table 2 are the recommended and tested operating conditions. Proper device operation outside of these conditions is not guaranteed.

Cha	racteristic	Symbol	Recommended Value	Unit
Core supply voltage		V _{DD}	1.2 V ± 60 mV 1.3 V± 50 mV (for 1 GHz only)	V
PLL supply voltage		AV _{DD}	1.2 V ± 60 mV 1.3 V ± 50 mV (for 1 GHz only)	V
DDR DRAM I/O voltage		GV _{DD}	2.5 V ± 125 mV	V
Three-speed Ethernet I/O vo	Itage	LV _{DD}	3.3 V ± 165 mV 2.5 V ± 125 mV	V
PCI, local bus, DUART, system control and power management, I^2C , and JTAG I/O voltage		OV _{DD}	3.3 V ± 165 mV	V
Input voltage	DDR DRAM signals	MV _{IN}	GND to GV _{DD}	V
	DDR DRAM reference	MV _{REF}	GND to GV _{DD}	V
	Three-speed Ethernet signals	LV _{IN}	GND to LV _{DD}	V
	PCI, local bus, DUART, SYSCLK, system control and power management, I ² C, and JTAG signals	OV _{IN}	GND to OV _{DD}	V
Die-junction Temperature		Тj	0 to 105	°C

Table 2. Recommended Operating Conditions

6 DDR SDRAM

This section describes the DC and AC electrical specifications for the DDR SDRAM interface of the MPC8541E.

6.1 DDR SDRAM DC Electrical Characteristics

Table 11 provides the recommended operating conditions for the DDR SDRAM component(s) of the MPC8541E.

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
I/O supply voltage	GV _{DD}	2.375	2.625	V	1
I/O reference voltage	MV _{REF}	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.18	GV _{DD} + 0.3	V	—
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.18	V	—
Output leakage current	I _{OZ}	-10	10	μA	4
Output high current (V _{OUT} = 1.95 V)	I _{ОН}	-15.2	—	mA	—
Output low current (V _{OUT} = 0.35 V)	I _{OL}	15.2	—	mA	—
MV _{REF} input leakage current	I _{VREF}	_	5	μA	_

Table 11. DDR SDRAM DC Electrical Characteristics

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.

- 2. MV_{REF} is expected to be equal to 0.5 × GV_{DD}, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.
- 3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of MV_{REF}.
- 4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

Table 12 provides the DDR capacitance.

Table 12. DDR SDRAM Capacitance

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ, DQS, MSYNC_IN	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}	—	0.5	pF	1

Note:

1. This parameter is sampled. GV_{DD} = 2.5 V ± 0.125 V, f = 1 MHz, T_A = 25°C, V_{OUT} = $GV_{DD}/2$, V_{OUT} (peak to peak) = 0.2 V.

Parameter	Symbol	Conditions		Min	Мах	Unit
Supply voltage 3.3 V	LV _{DD}	—		3.13	3.47	V
Output high voltage	V _{OH}	$I_{OH} = -4.0 \text{ mA}$ $LV_{DD} = Min$		2.40	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 4.0 mA	LV _{DD} = Min	GND	0.50	V
Input high voltage	V _{IH}	_	—	1.70	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	_	—	-0.3	0.90	V
Input high current	IIH	$V_{IN}^{1} = LV_{DD}$		_	40	μΑ
Input low current	IIL	V _{IN} ¹ = GND		-600	—	μΑ

Table 18. GMII, MII, and TBI DC Electrical Characteristics

Note:

1. The symbol V_{IN} in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

Table 19. GMII, MII, RGMII RTBI, and TBI DC Electrical Characteristics

Parameters	Symbol	Min	Мах	Unit
Supply voltage 2.5 V	LV _{DD}	2.37	2.63	V
Output high voltage (LV _{DD} = Min, $I_{OH} = -1.0$ mA)	V _{OH}	2.00	LV _{DD} + 0.3	V
Output low voltage (LV _{DD} = Min, I _{OL} = 1.0 mA)	V _{OL}	GND – 0.3	0.40	V
Input high voltage (LV _{DD} = Min)	V _{IH}	1.70	LV _{DD} + 0.3	V
Input low voltage (LV _{DD} = Min)	V _{IL}	-0.3	0.70	V
Input high current ($V_{IN}^{1} = LV_{DD}$)	I _{IH}	—	10	μA
Input low current (V _{IN} ¹ = GND)	IL	-15	_	μΑ

Note:

1. Note that the symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

8.2.4 TBI AC Timing Specifications

This section describes the TBI transmit and receive AC timing specifications.

8.2.4.1 TBI Transmit AC Timing Specifications

Table 24 provides the MII transmit AC timing specifications.

Table 24. TBI Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD} of 3.3 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
GTX_CLK clock period	t _{TTX}	_	8.0	—	ns
GTX_CLK duty cycle	t _{TTXH} /t _{TTX}	40	_	60	%
GMII data TCG[9:0], TX_ER, TX_EN setup time GTX_CLK going high	^t ttkhdv	2.0	-	—	ns
GMII data TCG[9:0], TX_ER, TX_EN hold time from GTX_CLK going high	^t тткнdx	1.0		—	ns
GTX_CLK clock rise and fall time	t _{TTXR} , t _{TTXF} ^{2,3}	_	_	1.0	ns

Notes:

1. The symbols used for timing specifications herein follow the pattern of $t_{(first two letters of functional block)(signal)(state)}$

(include to botto or initiate include, include to botto or initiate include, it is a signal (it is the initiate include, it is a signal of the initiate initiat

2. Signal timings are measured at 0.7 V and 1.9 V voltage levels.

3. Guaranteed by design.

Figure 12 shows the TBI transmit AC timing diagram.

Figure 12. TBI Transmit AC Timing Diagram

Ethernet: Three-Speed, MII Management

8.2.4.2 TBI Receive AC Timing Specifications

Table 25 provides the TBI receive AC timing specifications.

Table 25. TBI Receive AC Timing Specifications

At recommended operating conditions with LV_{DD} of 3.3 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
RX_CLK clock period	t _{TRX}		16.0		ns
RX_CLK skew	^t SKTRX	7.5	—	8.5	ns
RX_CLK duty cycle	t _{TRXH} /t _{TRX}	40	_	60	%
RCG[9:0] setup time to rising RX_CLK	t _{TRDVKH}	2.5		—	ns
RCG[9:0] hold time to rising RX_CLK	t _{trdxkh}	1.5	_	—	ns
RX_CLK clock rise time and fall time	t _{TRXR} , t _{TRXF} ^{2,3}	0.7		2.4	ns

Note:

1. The symbols used for timing specifications herein follow the pattern of $t_{(first two letters of functional block)(signal)(state)}$ (reference)(state) for inputs and $t_{(first two letters of functional block)(reference)(state)(signal)(state)}$ for outputs. For example, t_{TRDVKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{TRX} clock reference (K) going to the high (H) state or setup time. Also, t_{TRDXKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) went invalid (X) relative to the t_{TRX} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{TRX} represents the TBI (T) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall). For symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (TRX).

2. Guaranteed by design.

Figure 13 shows the TBI receive AC timing diagram.

Figure 13. TBI Receive AC Timing Diagram

Parameter	Symbol	Conditions		Min	Мах	Unit
Input high current	I _{IH}	LV _{DD} = Max	$V_{IN}^{1} = 2.1 V$	—	40	μA
Input low current	Ι _{ΙL}	LV _{DD} = Max	V _{IN} = 0.5 V	-600	—	μA

Table 27.	MII Managemen	t DC Electrical	Characteristics	(continued)

Note:

1. Note that the symbol V_{IN} , in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

8.3.2 MII Management AC Electrical Specifications

Table 28 provides the MII management AC timing specifications.

Table 28. MII Management AC Timing Specifications

At recommended operating conditions with LV_{DD} is 3.3 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit	Notes
MDC frequency	f _{MDC}	0.893	_	10.4	MHz	2
MDC period	t _{MDC}	96		1120	ns	
MDC clock pulse width high	t _{MDCH}	32			ns	
MDC to MDIO valid	t _{MDKHDV}			2*[1/(f _{ccb_clk} /8)]	ns	3
MDC to MDIO delay	t _{MDKHDX}	10		2*[1/(f _{ccb_clk} /8)]	ns	3
MDIO to MDC setup time	t _{MDDVKH}	5		_	ns	
MDIO to MDC hold time	t _{MDDXKH}	0		_	ns	
MDC rise time	t _{MDCR}	_		10	ns	
MDC fall time	t _{MDHF}			10	ns	

Notes:

 The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MDKHDX} symbolizes management data timing (MD) for the time t_{MDC} from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t_{MDDVKH} symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MDC} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. This parameter is dependent on the system clock speed (that is, for a system clock of 267 MHz, the delay is 70 ns and for a system clock of 333 MHz, the delay is 58 ns).

3. This parameter is dependent on the CCB clock speed (that is, for a CCB clock of 267 MHz, the delay is 60 ns and for a CCB clock of 333 MHz, the delay is 48 ns).

4. Guaranteed by design.

Figure 35 provides the test access port timing diagram.

Figure 35. Test Access Port Timing Diagram

12 I²C

This section describes the DC and AC electrical characteristics for the I²C interface of the MPC8541E.

12.1 I²C DC Electrical Characteristics

Table 39 provides the DC electrical characteristics for the I^2C interface of the MPC8541E.

Table 39. I²C DC Electrical Characteristics

At recommended operating conditions with OV_{DD} of 3.3 V \pm 5%.

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage level	V _{IH}	$0.7 imes OV_{DD}$	OV _{DD} + 0.3	V	_
Input low voltage level	V _{IL}	-0.3	$0.3 imes OV_{DD}$	V	
Low level output voltage	V _{OL}	0	$0.2 \times \text{OV}_{\text{DD}}$	V	1
Output fall time from $V_{IH}(\text{min})$ to $V_{IL}(\text{max})$ with a bus capacitance from 10 to 400 pF	t _{I2KLKV}	$20 + 0.1 \times C_B$	250	ns	2
Pulse width of spikes which must be suppressed by the input filter	t _{I2KHKL}	0	50	ns	3
Input current each I/O pin (input voltage is between 0.1 \times OV_{DD} and 0.9 \times OV_{DD}(max)	I	-10	10	μΑ	4
Capacitance for each I/O pin	CI	—	10	pF	—

Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

2. C_B = capacitance of one bus line in pF.

3. Refer to the MPC8555E PowerQUICC[™] III Integrated Communications Processor Reference Manual for information on the digital filter used.

4. I/O pins obstruct the SDA and SCL lines if $\ensuremath{\mathsf{OV}_{\mathsf{DD}}}$ is switched off.

Table 40 provides the AC timing parameters for the I²C interface of the MPC8541E.

Table 40. I²C AC Electrical Specifications

All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 39).

Parameter	Symbol ¹	Min	Мах	Unit
SCL clock frequency	f _{I2C}	0	400	kHz
Low period of the SCL clock	t _{I2CL} 6	1.3	_	μs
High period of the SCL clock	t _{I2CH} 6	0.6	_	μs
Setup time for a repeated START condition	t _{I2SVKH} ⁶	0.6	_	μs
Hold time (repeated) START condition (after this period, the first clock pulse is generated)	t _{I2SXKL} 6	0.6	_	μs
Data setup time	t _{I2DVKH} 6	100	_	ns
Data hold time: CBUS compatible masters I ² C bus devices	t _{I2DXKL}	0 ²	0.9 ³	μs
Rise time of both SDA and SCL signals	t _{I2CR}	20 + 0.1 C _b ⁴	300	ns
Fall time of both SDA and SCL signals	t _{I2CF}	20 + 0.1 C _b ⁴	300	ns
Set-up time for STOP condition	t _{I2PVKH}	0.6	_	μs
Bus free time between a STOP and START condition	t _{I2KHDX}	1.3	_	μs
Noise margin at the LOW level for each connected device (including hysteresis)	V _{NL}	$0.1 \times OV_{DD}$	_	V
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times OV_{DD}$	_	V

Notes:

- 1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{12DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{12C} clock reference (K) going to the high (H) state or setup time. Also, t_{12SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{12C} clock reference (K) going to the low (L) state or hold time. Also, t_{12PVKH} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{12C} clock reference (K) going to the stop condition (P) reaching the valid state (V) relative to the t_{12C} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}
- MPC8541E provides a hold time of at least 300 ns for the SDA signal (referred to the V_{IHmin} of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- 3. The maximum t_{I2DVKH} has only to be met if the device does not stretch the LOW period (t_{I2CL}) of the SCL signal.
- 4. C_B = capacitance of one bus line in pF.
- 5. Guaranteed by design.

Package and Pin Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes
LA[28:31]	T18, T19, T20, T21	0	OV _{DD}	5, 7, 9
LAD[0:31]	AD26, AD27, AD28, AC26, AC27, AC28, AA22, AA23, AA26, Y21, Y22, Y26, W20, W22, W26, V19, T22, R24, R23, R22, R21, R18, P26, P25, P20, P19, P18, N22, N23, N24, N25, N26	I/O	OV _{DD}	-
LALE	V21	0	OV _{DD}	5, 8, 9
LBCTL	V20	0	OV _{DD}	9
LCKE	U23	0	OV _{DD}	—
LCLK[0:2]	U27, U28, V18	0	OV _{DD}	—
LCS[0:4]	Y27, Y28, W27, W28, R27	0	OV _{DD}	—
LCS5/DMA_DREQ2	R28	I/O	OV _{DD}	1
LCS6/DMA_DACK2	P27	0	OV _{DD}	1
LCS7/DMA_DDONE2	P28	0	OV _{DD}	1
LDP[0:3]	AA27, AA28, T26, P21	I/O	OV _{DD}	—
LGPL0/LSDA10 U19		0	OV _{DD}	5, 9
LGPL1/LSDWE	U22	0	OV _{DD}	5, 9
LGPL2/LOE/LSDRAS	V28	0	OV _{DD}	5, 8, 9
LGPL3/LSDCAS	V27	0	OV _{DD}	5, 9
LGPL4/ LGTA /LUPWAIT/ LPBSE	V23	I/O	OV _{DD}	21
LGPL5	V22	0	OV _{DD}	5, 9
LSYNC_IN	T27	Ι	OV _{DD}	—
LSYNC_OUT	T28	0	OV _{DD}	—
LWE[0:1]/LSDDQM[0:1]/ LBS[0:1]	AB28, AB27	O OV _{DD}		1, 5, 9
LWE[2:3]/LSDDQM[2:3]/ LBS[2:3]	T23, P24	0	OV _{DD}	1, 5, 9
	DMA			
DMA_DREQ[0:1]	H5, G4	Ι	OV _{DD}	—
DMA_DACK[0:1]	H6, G5	0	OV _{DD}	—
DMA_DDONE[0:1]	H7, G6	0	OV _{DD}	<u> </u>
	Programmable Interrupt Controller			<u></u>
MCP	AG17	Ι	OV _{DD}	—
UDE	AG16	I	OV _{DD}	-

Table 43. MPC8541E Pinout Listing (continued)

Package and Pin Listings

Table 43.	MPC8541E	Pinout Listing	(continued)	١
		I mout Listing	(continucu)	,

Signal	Package Pin Number	Pin Type	Power Supply	Notes				
JTAG								
тск	AF21	Ι	OV _{DD}	—				
TDI	AG21	Ι	OV _{DD}	12				
TDO	AF19	0	OV _{DD}	11				
TMS	AF23	I	OV _{DD}	12				
TRST	AG23	I	OV _{DD}	12				
	DFT							
LSSD_MODE	AG19	Ι	OV _{DD}	20				
L1_TSTCLK	AB22	Ι	OV _{DD}	20				
L2_TSTCLK	AG22	Ι	OV _{DD}	20				
TEST_SEL0	AH20	I	OV _{DD}	3				
TEST_SEL1	AG26	I	OV _{DD}	3				
	Thermal Management							
THERM0	AG2	_	_	14				
THERM1	AH3	_	_	14				
	Power Management							
ASLEEP	AG18		—	9, 18				
	Power and Ground Signals							
AV _{DD} 1	AH19	Power for e500 PLL (1.2 V)	AV _{DD} 1	—				
AV _{DD} 2 AH18 Power for C0 PLL (1.2 V		Power for CCB PLL (1.2 V)	AV _{DD} 2	—				
AV _{DD} 3 AH17 Power for CPM AV _{DD} 3 PLL (1.2 V)		AV _{DD} 3	—					
AV _{DD} 4 AF28 Power for PCI1 PLL (1.2 V)		AV _{DD} 4	—					
AV _{DD} 5	AE28	Power for PCI2 PLL (1.2 V)	AV _{DD} 5	—				

Package and Pin Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes
GND	C19, C22, C27, D8, E3, E12, E24, F11, F18, F23, G9, G12, G25, H4, H12, H14, H17, H20, H22, H27, J19, J24, K5, K9, K18, K23, K28, L6, L20, L25, M4, M12, M14, M16, M22, M27, N2, N13, N15, N17, P12, P14, P16, P23, R13, R15, R17, R20, R26, T3, T8, T10, T12, T14, T16, U6, U13, U15, U16, U17, U21, V7, V10, V26, W5, W18, W23, Y8, Y16, AA6, AA13, AB4, AB11, AB19, AC6, AC9, AD3, AD8, AD17, AF2, AF4, AF10, AF13, AF15, AF27, AG3, AG7			
GV _{DD}	A14, A20, A25, A26, A27, A28, B17, B22, B28, C12, C28, D16, D19, D21, D24, D28, E17, E22, F12, F15, F19, F25, G13, G18, G20, G23, G28, H19, H24, J12, J17, J22, J27, K15, K20, K25, L13, L23, L28, M25, N21		GV _{DD}	
LV _{DD}	DD A4, C5, E7, H10 TI E (2		LV _{DD}	_
MV _{REF}	N27	Reference Voltage Signal; DDR	MV _{REF}	_
No Connects	No Connects AA24, AA25, AA3, AA4, AA7 AA8, AB24, AB25, AC24, AC25, AD23, AD24, AD25, AE23, AE24, AE25, AE26, AE27, AF24, AF25, H1, H2, J1, J2, J3, J4, J5, J6, M1, N1, N10, N11, N4, N5, N7, N8, N9, P10, P8, P9, R10, R11, T24, T25, U24, U25, V24, V25, W24, W25, W9, Y24, Y25, Y5, Y6, Y9, AH26, AH28, AG28, AH1, AG1, AH2, B1, B2, A2, A3		_	16
OV _{DD} D1, E4, H3, K4, K10, L7, M5, N3, P22, R19, R25, T T7, U5, U20, U26, V8, W4, W13, W19, W21, Y7, Y2 AA5, AA12, AA16, AA20, AB7, AB9, AB26, AC5, AC11, AC17, AD4, AE1, AE8, AE10, AE15, AF7 AF12, AG27, AH4		PCI, 10/100 Ethernet, and other Standard (3.3 V)	OV _{DD}	
RESERVED	C1, T11, U11, AF1	—	_	15
SENSEVDD	L12	Power for Core (1.2 V)	V _{DD}	13
SENSEVSS	K12 —		—	13
V _{DD}	M13, M15, M17, N14, N16, P13, P15, P17, R12, R14, R16, T13, T15, T17, U12, U14	Power for Core (1.2 V)	V _{DD}	
	СРМ			
PA[8:31]	J7, J8, K8, K7, K6, K3, K2, K1, L1, L2, L3, L4, L5, L8, L9, L10, L11, M10, M9, M8, M7, M6, M3, M2	I/O	OV _{DD}	

Table 43. MPC8541E Pinout Listing (continued)

Clocking

15.3 e500 Core PLL Ratio

Table 47 describes the clock ratio between the e500 core complex bus (CCB) and the e500 core clock. This ratio is determined by the binary value of LALE and LGPL2 at power up, as shown in Table 47.

Binary Value of LALE, LGPL2 Signals	Ratio Description
00	2:1 e500 core:CCB
01	5:2 e500 core:CCB
10	3:1 e500 core:CCB
11	7:2 e500 core:CCB

Table 47. e500 Core to CCB Ratio

15.4 Frequency Options

Table 48 shows the expected frequency values for the platform frequency when using a CCB to SYSCLK ratio in comparison to the memory bus speed.

Table 48. Frequency Options with Respect to Memory Bus Speeds

CCB to SYSCLK Ratio	SYSCLK (MHz)								
	17	25	33	42	67	83	100	111	133
				Platform/	CCB Frequ	ency (MHz)			
2							200	222	267
3					200	250	300	333	
4					267	333		•	<u>.</u>
5				208	333		1		
6			200	250		4			
8		200	267	333					
9		225	300		-				
10		250	333	1					
12	200	300		-					
16	267		-						

ltem No	QTY	MEI PN	Description
1	1	MFRAME-2000	HEATSINK FRAME
2	1	MSNK-1120	EXTRUDED HEATSINK
3	1	MCLIP-1013	CLIP
4	4	MPPINS-1000	FRAME ATTACHMENT PINS

Illustrative source provided by Millennium Electronics (MEI) Figure 48. Exploded Views (2) of a Heat Sink Attachment using a Plastic Force

The die junction-to-ambient and the heat sink-to-ambient thermal resistances are common figure-of-merits used for comparing the thermal performance of various microelectronic packaging technologies, one should exercise caution when only using this metric in determining thermal management because no single parameter can adequately describe three-dimensional heat flow. The final die-junction operating temperature is not only a function of the component-level thermal resistance, but the system level design and its operating conditions. In addition to the component's power consumption, a number of factors affect the final operating die-junction temperature: airflow, board population (local heat flux of adjacent components), system air temperature rise, altitude, etc.

Due to the complexity and the many variations of system-level boundary conditions for today's microelectronic equipment, the combined effects of the heat transfer mechanisms (radiation convection and conduction) may vary widely. For these reasons, we recommend using conjugate heat transfer models for the boards, as well as, system-level designs.

17.8.1 Termination of Unused Signals

If the JTAG interface and COP header are not used, Freescale recommends the following connections:

- TRST should be tied to HRESET through a 0 k Ω isolation resistor so that it is asserted when the system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during the power-on reset flow. Freescale recommends that the COP header be designed into the system as shown in Figure 52. If this is not possible, the isolation resistor allows future access to TRST in case a JTAG interface may need to be wired onto the system in future debug situations.
- Tie TCK to OV_{DD} through a 10 k Ω resistor. This prevents TCK from changing state and reading incorrect data into the device.
- No connection is required for TDI, TMS, or TDO.

18 Document Revision History

Table 51 provides a revision history for this hardware specification.

Rev. No.	Date	Substantive Change(s)
4.2	1/2008	Added "Note: Rise/Fall Time on CPM Input Pins" and following note text to Section 10.2, "CPM AC Timing Specifications."
4.1	07/2007	Inserted Figure 3, ""Maximum AC Waveforms on PCI interface for 3.3-V Signaling."
4	12/2006	Updated Section 2.1.2, "Power Sequencing." Updated back page information.
3.2	11/2006	Updated Section 2.1.2, "Power Sequencing." Replaced Section 17.8, "JTAG Configuration Signals."
3.1	10/2005	Table 4: Added footnote 2 about junction temperature.Table 4: Added max. power values for 1000 MHz core frequency.Removed Figure 3, "Maximum AC Waveforms on PCI Interface for 3.3-V Signaling."Table 30: Modified note to tLBKSKEW from 8 to 9Table 30: Changed tLBKHOZ1 and tLBKHOV2 values.Table 30: Added note 3 to tLBKHOV1.Table 30 and Table 31: Modified note 3.Table 31: Added note 3 to tLBKLOV1.Table 31: Modified values for tLBKHKT, tLBKLOV1, tLBKLOV2, tLBKLOV3, tLBKLOZ1, and tLBKLOZ2.Figure 21: Changed Input Signals: LAD[0:31]/LDP[0:3].Table 43: PCI1_CLK and PCI2_CLK changed from I/O to I.Table 52: Added column for Encryption Acceleration.
3	8/29/2005	Table 4: Modified max. power values. Table 43: Modified notes for signals TSEC1_TXD[3:0], TSEC2_TXD[3:0], TRIG_OUT/READY, MSRCID4, and MDVAL.
2	8/2005	Previous revision's history listed incorrect cross references. Table 2 is now correctly listed as Table 27 and Table 31 is now listed as Table 31. Table 7: Added note 2. Table 14: Modified min and max values for t _{DDKHMP}
1	6/2005	Table 27: Changed LV _{dd} to OV _{dd} for the supply voltage Ethernet management interface.Table 4: Modified footnote 4 and changed typical power for the 1000MHz core frequency.Table 31: Corrected symbols for body rows 9–15, effectively changing them from a high state to a low state.
0	6/2005	Initial Release.

Device Nomenclature

19 Device Nomenclature

Ordering information for the parts fully covered by this specification document is provided in Section 19.1, "Nomenclature of Parts Fully Addressed by this Document."

19.1 Nomenclature of Parts Fully Addressed by this Document

Table 52 provides the Freescale part numbering nomenclature for the MPC8541E. Note that the individual part numbers correspond to a maximum processor core frequency. For available frequencies, contact your local Freescale sales office. In addition to the processor frequency, the part numbering scheme also includes an application modifier which may specify special application conditions. Each part number also contains a revision code which refers to the die mask revision number.

MPC	nnnn		t	рр	aa	а	r
Product Code	Part Identifier	Encryption Acceleration	Temperature Range ¹	Package ²	Processor Frequency ³	Platform Frequency	Revision Level ⁴
MPC	8541	Blank = not included E = included	Blank = 0 to 105°C C = -40 to 105°C	PX = FC-PBGA VT = FC-PBGA (lead free)	AJ = 533 MHz AK = 600 MHz AL = 667 MHz AP = 833 MHz AQ = 1000 MHZ	D = 266 MHz E = 300 MHz F = 333 MHz	

Table 52. Part Numbering Nomenclature

Notes:

1. For Temperature Range=C, Processor Frequency is limited to 667 MHz with a Platform Frequency selector of 333 MHz, Processor Frequency is limited to 533 MHz with a Platform Frequency selector of 266 MHz.

2. See Section 14, "Package and Pin Listings," for more information on available package types.

 Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other maximum core frequencies.

4. Contact you local Freescale field applications engineer (FAE).

19.2 Part Marking

Parts are marked as the example shown in Figure 53.

Notes:

MMMMM is the 5-digit mask number. ATWLYYWWA is the traceability code. CCCCC is the country of assembly. This space is left blank if parts are assembled in the United States.

Figure 53. Part Marking for FC-PBGA Device

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 +1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. The described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM Corp. and used under license. IEEE 802.3 and 1149.1 are registered trademarks of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). This product is not endorsed or approved by the IEEE. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2008. All rights reserved.

Document Number: MPC8541EEC Rev. 4.2 1/2008

