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Overview

— Four global high resolution timers/counters that can generate interrupts

— Supports additional internal interrupt sources

— Supports fully nested interrupt delivery

— Interrupts can be routed to external pin for external processing

— Interrupts can be routed to the e500 core’s standard or critical interrupt inputs

— Interrupt summary registers allow fast identification of interrupt source

• Two I2C controllers (one is contained within the CPM, the other is a stand-alone controller which 
is not part of the CPM)

— Two-wire interface

— Multiple master support

— Master or slave I2C mode support

— On-chip digital filtering rejects spikes on the bus

• Boot sequencer

— Optionally loads configuration data from serial ROM at reset via the stand-alone I2C interface

— Can be used to initialize configuration registers and/or memory

— Supports extended I2C addressing mode

— Data integrity checked with preamble signature and CRC

• DUART

— Two 4-wire interfaces (RXD, TXD, RTS, CTS)

— Programming model compatible with the original 16450 UART and the PC16550D

• Local bus controller (LBC)

— Multiplexed 32-bit address and data operating at up to 166 MHz

— Eight chip selects support eight external slaves

— Up to eight-beat burst transfers

— The 32-, 16-, and 8-bit port sizes are controlled by an on-chip memory controller

— Three protocol engines available on a per chip select basis:

– General purpose chip select machine (GPCM)

– Three user programmable machines (UPMs)

– Dedicated single data rate SDRAM controller

— Parity support

— Default boot ROM chip select with configurable bus width (8-, 16-, or 32-bit)

• Two Three-speed (10/100/1000)Ethernet controllers (TSECs)

— Dual IEEE 802.3, 802.3u, 802.3x, 802.3z AC compliant controllers

— Support for Ethernet physical interfaces:

– 10/100/1000 Mbps IEEE 802.3 GMII

– 10/100 Mbps IEEE 802.3 MII 

– 10 Mbps IEEE 802.3 MII
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Electrical Characteristics

Figure 3 shows the undershoot and overshoot voltage of the PCI interface of the MPC8541E for the 3.3-V 
signals, respectively.

Figure 3. Maximum AC Waveforms on PCI interface for 3.3-V Signaling

2.1.4 Output Driver Characteristics

Table 3 provides information on the characteristics of the output driver strengths. The values are 
preliminary estimates.

Table 3. Output Drive Capability

Driver Type
Programmable Output 

Impedance (Ω)
Supply
Voltage

Notes

Local bus interface utilities signals 25 OVDD = 3.3 V 1

42 (default)

PCI signals 25 2

42 (default)

DDR signal 20 GVDD = 2.5 V

TSEC/10/100 signals 42 LVDD = 2.5/3.3 V

DUART, system control, I2C, JTAG 42 OVDD = 3.3 V

Notes:
1. The drive strength of the local bus interface is determined by the configuration of the appropriate bits in PORIMPSCR.
2. The drive strength of the PCI interface is determined by the setting of the PCI_GNT1 signal at reset.

11 ns
(Min)

Overvoltage
Waveform

Undervoltage
Waveform

4 ns
(Max)

4 ns
(Max)

62.5 ns

–3.5 V

+7.1 V

7.1 V p-to-p
(Min)

7.1 V p-to-p
(Min)

0 V

+3.6 V
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3 Power Characteristics
The estimated typical power dissipation for this family of PowerQUICC III devices is shown in Table 4.

Table 4.  Power Dissipation(1) (2)

Notes:
1. 

2. 

CCB Frequency (MHz) Core Frequency (MHz) VDD Typical Power(3)(4) (W)

3. 

4. 

Maximum Power(5) (W)

5. 

200 400 1.2 4.4 6.1

500 1.2 4.7 6.5

600 1.2 5.0 6.8

267 533 1.2 4.9 6.7

667 1.2 5.4 7.2

800 1.2 5.8 8.6

333 667 1.2 5.5 7.4

833 1.2 6.0 8.8

1000(6)

6. 

1.3 9.0 12.2

Notes:
1. The values do not include I/O supply power (OVDD, LVDD, GVDD) or AVDD.

2. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) 
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal 
resistance. Any customer design must take these considerations into account to ensure the maximum 105 degrees junction 
temperature is not exceeded on this device.

3. Typical power is based on a nominal voltage of VDD = 1.2V, a nominal process, a junction temperature of Tj = 105° C, and a 
Dhrystone 2.1 benchmark application.

4. Thermal solutions likely need to design to a value higher than Typical Power based on the end application, TA target, and I/O 
power

5. Maximum power is based on a nominal voltage of VDD = 1.2V, worst case process, a junction temperature of Tj = 105° C, and 
an artificial smoke test.

6. The nominal recommended VDD = 1.3V for this speed grade.
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Table 5. Typical I/O Power Dissipation

Interface Parameters
GVDD 
(2.5 V)

OVDD 
(3.3 V)

LVDD 
(3.3 V)

LVDD 
(2.5 V) Unit Comments

DDR I/O CCB = 200 MHz 0.46 — — — W —

CCB = 266 MHz 0.59 — — — W —

CCB = 300 MHz 0.66 — — — W —

CCB = 333 MHz 0.73 — — — W —

PCI I/O 64b, 66 MHz — 0.14 — — W —

64b, 33 MHz — 0.08 — — W —

32b, 66 MHz — 0.07 — — W Multiply by 2 if using two 32b ports 

32b, 33 MHz — 0.04 — — W

Local Bus I/O 32b, 167 MHz — 0.30 — — W —

32b, 133 MHz — 0.24 — — W —

32b, 83 MHz — 0.16 — — W —

32b, 66 MHz — 0.13 — — W —

32b, 33 MHz — 0.07 — — W —

TSEC I/O MII — — 0.01 — W Multiply by number of interfaces 
used.

GMII or TBI — — 0.07 — W

RGMII or RTBI — — — 0.04 W

CPM - FCC MII — 0.015 — — W —

RMII — 0.013 — — W —

HDLC 16 Mbps — 0.009 — — W —
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6 DDR SDRAM
This section describes the DC and AC electrical specifications for the DDR SDRAM interface of the 
MPC8541E.

6.1 DDR SDRAM DC Electrical Characteristics
Table 11 provides the recommended operating conditions for the DDR SDRAM component(s) of the 
MPC8541E.

Table 12 provides the DDR capacitance. 

Table 11. DDR SDRAM DC Electrical Characteristics

Parameter/Condition Symbol Min Max Unit Notes

I/O supply voltage GVDD 2.375 2.625 V 1

I/O reference voltage MVREF 0.49 × GVDD 0.51 × GVDD V 2

I/O termination voltage VTT MVREF – 0.04 MVREF + 0.04 V 3

Input high voltage VIH MVREF + 0.18 GVDD + 0.3 V —

Input low voltage VIL –0.3 MVREF – 0.18 V —

Output leakage current IOZ –10 10 μA 4

Output high current (VOUT = 1.95 V) IOH –15.2 — mA —

Output low current (VOUT = 0.35 V) IOL 15.2 — mA —

MVREF input leakage current IVREF — 5 μA —

Notes:
1. GVDD is expected to be within 50 mV of the DRAM GVDD at all times.
2. MVREF is expected to be equal to 0.5 × GVDD, and to track GVDD DC variations as measured at the receiver. Peak-to-peak 

noise on MVREF may not exceed ±2% of the DC value.
3. VTT is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be 

equal to MVREF. This rail should track variations in the DC level of MVREF.
4. Output leakage is measured with all outputs disabled, 0 V ≤ VOUT ≤ GVDD.

Table 12. DDR SDRAM Capacitance

Parameter/Condition Symbol Min Max Unit Notes

Input/output capacitance: DQ, DQS, MSYNC_IN CIO 6 8 pF 1

Delta input/output capacitance: DQ, DQS CDIO — 0.5 pF 1

Note:
1. This parameter is sampled. GVDD = 2.5 V ± 0.125 V, f = 1 MHz, TA = 25°C, VOUT = GVDD/2, VOUT (peak to peak) = 0.2 V.
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Ethernet: Three-Speed, MII Management

8.2.3 MII AC Timing Specifications
This section describes the MII transmit and receive AC timing specifications.

8.2.3.1 MII Transmit AC Timing Specifications

Table 22 provides the MII transmit AC timing specifications.

Figure 10 shows the MII transmit AC timing diagram.

Figure 10. MII Transmit AC Timing Diagram

Table 22. MII Transmit AC Timing Specifications
At recommended operating conditions with LVDD of 3.3 V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit

TX_CLK clock period 10 Mbps tMTX
2 — 400 — ns

TX_CLK clock period 100 Mbps tMTX — 40 — ns

TX_CLK duty cycle tMTXH/tMTX 35 — 65 %

TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay tMTKHDX 1 5 15 ns

TX_CLK data clock rise and fall time tMTXR, tMTXF 
2,3 1.0 — 4.0 ns

Notes:
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) 

(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMTKHDX 
symbolizes MII transmit timing (MT) for the time tMTX clock reference (K) going high (H) until data outputs (D) are invalid 
(X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock 
of a particular functional. For example, the subscript of tMTX represents the MII(M) transmit (TX) clock. For rise and fall 
times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. Signal timings are measured at 0.7 V and 1.9 V voltage levels.

3. Guaranteed by design.

TX_CLK

TXD[3:0]

tMTKHDX

tMTX

tMTXH

tMTXR

tMTXF

TX_EN
TX_ER
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10 CPM
This section describes the DC and AC electrical specifications for the CPM of the MPC8541E.

10.1 CPM DC Electrical Characteristics
Table 32 provides the DC electrical characteristics for the CPM.

10.2 CPM AC Timing Specifications
Table 33 and Table 34 provide the CPM input and output AC timing specifications, respectively.

NOTE: Rise/Fall Time on CPM Input Pins

It is recommended that the rise/fall time on CPM input pins should not 
exceed 5 ns. This should be enforced especially on clock signals. Rise time 
refers to signal transitions from 10% to 90% of VCC; fall time refers to 
transitions from 90% to 10% of VCC.

Table 32. CPM DC Electrical Characteristics

Characteristic Symbol Condition Min Max Unit Notes

Input high voltage VIH 2.0 3.465 V 1

Input low voltage VIL GND 0.8 V 1, 2

Output high voltage VOH IOH = –8.0 mA 2.4 — V 1

Output low voltage VOL  IOL = 8.0 mA — 0.5 V 1

Output high voltage VOH IOH = –2.0 mA 2.4 — V 1

Output low voltage VOL IOL = 3.2 mA — 0.4 V 1

Table 33. CPM Input AC Timing Specifications 1

Characteristic Symbol 2 Min3 Unit

FCC inputs—internal clock (NMSI) input setup time tFIIVKH 6 ns

FCC inputs—internal clock (NMSI) hold time tFIIXKH 0 ns

FCC inputs—external clock (NMSI) input setup time tFEIVKH 2.5 ns

FCC inputs—external clock (NMSI) hold time tFEIXKHb 2 ns

SPI inputs—internal clock (NMSI) input setup time tNIIVKH 6 ns

SPI inputs—internal clock (NMSI) input hold time tNIIXKH 0 ns

SPI inputs—external clock (NMSI) input setup time tNEIVKH 4 ns

SPI inputs—external clock (NMSI) input hold time tNEIXKH 2 ns

PIO inputs—input setup time tPIIVKH 8 ns
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10.3 CPM I2C AC Specification

Figure 30. CPM I2C Bus Timing Diagram

Table 35. I2C Timing

Characteristic Expression
All Frequencies

Unit
Min Max

SCL clock frequency (slave) fSCL 0 FMAX
(1)

Notes:
1.    FMAX = BRGCLK/(min_divider*prescale. Where prescaler=25-I2MODE[PDIV]; and min_divider=12 if digital filter disabled 
and 18 if enabled.

      Example #1: if I2MODE[PDIV]=11 (prescaler=4) and I2MODE[FLT]=0 (digital filter disabled) then FMAX=BRGCLK/48
      Example #2: if I2MODE[PDIV]=00 (prescaler=32) and I2MODE[FLT]=1 (digital filter enabled) then FMAX=BRGCLK/576

Hz

SCL clock frequency (master) fSCL BRGCLK/16512 BRGCLK/48 Hz

Bus free time between transmissions tSDHDL 1/(2.2 * fSCL) — s

Low period of SCL tSCLCH 1/(2.2 * fSCL) — s

High period of SCL tSCHCL 1/(2.2 * fSCL) — s

Start condition setup time2 tSCHDL 2/(divider * fSCL) (2)

2.  divider = fSCL/prescaler. 
      In master mode: divider=BRGCLK/(fSCL*prescaler)=2*(I2BRG[DIV]+3)
      In slave mode:   divider=BRGCLK/(fSCL*prescaler)

s

Start condition hold time2 tSDLCL 3/(divider * fSCL) — s

Data hold time 2 tSCLDX 2/(divider * fSCL) — s

Data setup time2 tSDVCH 3/(divider * fSCL) — s

SDA/SCL rise time tSRISE — 1/(10 * fSCL) s

SDA/SCL fall time tSFALL — 1/(33 * fSCL) s

Stop condition setup time tSCHDH 2/(divider * fSCL) — s

SCL

SDA

tSDHDL tSCLCH tSCHCL

tSCHDL

tSDLCL

tSCLDX tSDVCH

tSRISE tSFALL tSCHDH
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The following two tables are examples of I2C AC parameters at I2C clock value of 100k and 400k 
respectively.

Table 36. CPM I2C Timing (fSCL=100 kHz)

Characteristic Expression
Frequency = 100 kHz

Unit
Min Max

SCL clock frequency (slave) fSCL — 100 kHz

SCL clock frequency (master) fSCL — 100 kHz

Bus free time between transmissions tSDHDL 4.7 — μs

Low period of SCL tSCLCH 4.7 — μs

High period of SCL tSCHCL 4 — μs

Start condition setup time tSCHDL 2 — μs

Start condition hold time tSDLCL 3 — μs

Data hold time tSCLDX 2 — μs

Data setup time tSDVCH 3 — μs

SDA/SCL rise time tSRISE — 1 μs

SDA/SCL fall time (master) tSFALL — 303 ns

Stop condition setup time tSCHDH 2 — μs

Table 37. CPM I2C Timing (fSCL=400 kHz)

Characteristic Expression
Frequency = 400 kHz

Unit
Min Max

SCL clock frequency (slave) fSCL — 400 kHz

SCL clock frequency (master) fSCL — 400 kHz

Bus free time between transmissions tSDHDL 1.2 — μs

Low period of SCL tSCLCH 1.2 — μs

High period of SCL tSCHCL 1 — μs

Start condition setup time tSCHDL 420 — ns

Start condition hold time tSDLCL 630 — ns

Data hold time tSCLDX 420 — ns

Data setup time tSDVCH 630 — ns

SDA/SCL rise time tSRISE — 250 ns

SDA/SCL fall time tSFALL — 75 ns

Stop condition setup time tSCHDH 420 — ns
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Package and Pin Listings

GND A12, A17, B3, B14, B20, B26, B27, C2, C4, C11,C17, 
C19, C22, C27, D8, E3, E12, E24, F11, F18, F23, G9, 
G12, G25, H4, H12, H14, H17, H20, H22, H27, J19, 
J24, K5, K9, K18, K23, K28, L6, L20, L25, M4, M12, 
M14, M16, M22, M27, N2, N13, N15, N17, P12, P14, 

P16, P23, R13, R15, R17, R20, R26, T3, T8, T10, 
T12, T14, T16, U6, U13, U15, U16, U17, U21, V7, 

V10, V26, W5, W18, W23, Y8, Y16, AA6, AA13, AB4, 
AB11, AB19, AC6, AC9, AD3, AD8, AD17, AF2, AF4, 

AF10, AF13, AF15, AF27, AG3, AG7

— — —

GVDD A14, A20, A25, A26, A27, A28, B17, B22, B28, C12, 
C28, D16, D19, D21, D24, D28, E17, E22, F12, F15, 
F19, F25, G13, G18, G20, G23, G28, H19, H24, J12, 
J17, J22, J27, K15, K20, K25, L13, L23, L28, M25, 

N21

Power for DDR 
DRAM I/O 

Voltage
(2.5 V)

GVDD —

LVDD A4, C5, E7, H10 Reference 
Voltage; 

Three-Speed 
Ethernet I/O 
(2.5 V, 3.3 V)

LVDD —

MVREF N27 Reference 
Voltage Signal; 

DDR

MVREF —

No Connects AA24, AA25, AA3, AA4, AA7 AA8, AB24, AB25, 
AC24, AC25, AD23, AD24, AD25, AE23, AE24, 

AE25, AE26, AE27, AF24, AF25, H1, H2, J1, J2, J3, 
J4, J5, J6, M1, N1, N10, N11, N4, N5, N7, N8, N9, 
P10, P8, P9, R10, R11, T24, T25, U24, U25, V24, 
V25, W24, W25, W9, Y24, Y25, Y5, Y6, Y9, AH26, 

AH28, AG28, AH1, AG1, AH2, B1, B2, A2, A3

— — 16

OVDD D1, E4, H3, K4, K10, L7, M5, N3, P22, R19, R25, T2, 
T7, U5, U20, U26, V8, W4, W13, W19, W21, Y7, Y23, 

AA5, AA12, AA16, AA20, AB7, AB9, AB26, AC5, 
AC11, AC17, AD4, AE1, AE8, AE10, AE15, AF7, 

AF12, AG27, AH4

PCI, 10/100 
Ethernet, and 

other Standard
(3.3 V)

OVDD —

RESERVED C1, T11, U11, AF1 — — 15

SENSEVDD L12 Power for Core
(1.2 V)

VDD 13

SENSEVSS K12 — — 13

VDD M13, M15, M17, N14, N16, P13, P15, P17, R12, R14, 
R16, T13, T15, T17, U12, U14

Power for Core
(1.2 V)

VDD —

CPM

PA[8:31] J7, J8, K8, K7, K6, K3, K2, K1, L1, L2, L3, L4, L5, L8, 
L9, L10, L11, M10, M9, M8, M7, M6, M3, M2

I/0 OVDD —

Table 43. MPC8541E Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Notes
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15 Clocking
This section describes the PLL configuration of the MPC8541E. Note that the platform clock is identical 
to the CCB clock.

15.1 Clock Ranges
Table 44 provides the clocking specifications for the processor core and Table 44 provides the clocking 
specifications for the memory bus.

Table 44. Processor Core Clocking Specifications

Characteristic

Maximum Processor Core Frequency

Unit Notes533 MHz 600 MHz  667 MHz  833 MHz  1000 MHz

Min Max Min Max Min Max Min Max Min Max

e500 core 
processor 
frequency

400 533 400 600 400 667 400 833 400 1000 MHz 1, 2, 3

Notes:

1. Caution: The CCB to SYSCLK ratio and e500 core to CCB ratio settings must be chosen such that the resulting SYSCLK 
frequency, e500 (core) frequency, and CCB frequency do not exceed their respective maximum or minimum operating 
frequencies. Refer to Section 15.2, “Platform/System PLL Ratio,” and Section 15.3, “e500 Core PLL Ratio,” for ratio settings.

2.)The minimum e500 core frequency is based on the minimum platform frequency of 200 MHz.

3. 1000 MHz frequency supports only a 1.3 V core.

Table 45. Memory Bus Clocking Specifications

Characteristic

Maximum Processor Core 
Frequency

Unit Notes
533, 600, 667, 883, 1000 MHz

Min Max

Memory bus frequency 100 166 MHz 1, 2, 3

Notes:
1. Caution: The CCB to SYSCLK ratio and e500 core to CCB ratio settings must be chosen such that 

the resulting SYSCLK frequency, e500 (core) frequency, and CCB frequency do not exceed their 
respective maximum or minimum operating frequencies. Refer to Section 15.2, “Platform/System PLL 
Ratio,” and Section 15.3, “e500 Core PLL Ratio,” for ratio settings.

2. The memory bus speed is half of the DDR data rate, hence, half of the platform clock frequency.

3. 1000 MHz frequency supports only a 1.3 V core.
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15.2 Platform/System PLL Ratio 
The platform clock is the clock that drives the L2 cache, the DDR SDRAM data rate, and the e500 core 
complex bus (CCB), and is also called the CCB clock. The values are determined by the binary value on 
LA[28:31] at power up, as shown in Table 46.

There is no default for this PLL ratio; these signals must be pulled to the desired values.

For specifications on the PCI_CLK, refer to the PCI 2.2 Specification.

Table 46. CCB Clock Ratio

Binary Value of
LA[28:31] Signals

Ratio Description

0000 16:1 ratio CCB clock: SYSCLK (PCI bus)

0001 Reserved

0010 2:1 ratio CCB clock: SYSCLK (PCI bus)

0011 3:1 ratio CCB clock: SYSCLK (PCI bus)

0100 4:1 ratio CCB clock: SYSCLK (PCI bus)

0101 5:1 ratio CCB clock: SYSCLK (PCI bus)

0110 6:1 ratio CCB clock: SYSCLK (PCI bus)

0111 Reserved

1000 8:1 ratio CCB clock: SYSCLK (PCI bus)

1001 9:1 ratio CCB clock: SYSCLK (PCI bus)

1010 10:1 ratio CCB clock: SYSCLK (PCI bus)

1011 Reserved

1100 12:1 ratio CCB clock: SYSCLK (PCI bus)

1101 Reserved

1110 Reserved

1111 Reserved
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16 Thermal
This section describes the thermal specifications of the MPC8541E.

16.1 Thermal Characteristics
Table 49 provides the package thermal characteristics for the MPC8541E.

16.2 Thermal Management Information
This section provides thermal management information for the flip chip plastic ball grid array (FC-PBGA) 
package for air-cooled applications. Proper thermal control design is primarily dependent on the 
system-level design—the heat sink, airflow, and thermal interface material. The recommended attachment 
method to the heat sink is illustrated in Figure 42. The heat sink should be attached to the printed-circuit 
board with the spring force centered over the die. This spring force should not exceed 10 pounds force. 

Table 49. Package Thermal Characteristics

Characteristic Symbol Value Unit Notes

Junction-to-ambient Natural Convection on four layer board (2s2p) RθJMA 17 °C/W 1, 2

Junction-to-ambient (@200 ft/min or 1.0 m/s) on four layer board (2s2p) RθJMA 14 °C/W 1, 2

Junction-to-ambient (@400 ft/min or 2.0 m/s) on four layer board (2s2p) RθJMA 13 °C/W 1, 2

Junction-to-board thermal RθJB 10 °C/W 3

Junction-to-case thermal RθJC 0.96 °C/W 4

Notes
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) 

temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal 
resistance

2. Per JEDEC JESD51–6 with the board horizontal.
3. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on 

the top surface of the board near the package.
4. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 

1012.1). Cold plate temperature is used for case temperature; measured value includes the thermal resistance of the 
interface layer.
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Figure 42. Package Exploded Cross-Sectional View with Several Heat Sink Options

The system board designer can choose between several types of heat sinks to place on the MPC8541E. 
There are several commercially-available heat sinks from the following vendors:

Aavid Thermalloy 603-224-9988
80 Commercial St.
Concord, NH 03301
Internet: www.aavidthermalloy.com

Alpha Novatech 408-749-7601
473 Sapena Ct. #15
Santa Clara, CA 95054
Internet: www.alphanovatech.com

International Electronic Research Corporation (IERC) 818-842-7277
413 North Moss St.
Burbank, CA 91502
Internet: www.ctscorp.com

Millennium Electronics (MEI) 408-436-8770
Loroco Sites
671 East Brokaw Road
San Jose, CA 95112
Internet: www.mei-millennium.com

Tyco Electronics 800-522-6752
Chip Coolers™
P.O. Box 3668
Harrisburg, PA 17105-3668
Internet: www.chipcoolers.com

Wakefield Engineering 603-635-5102
33 Bridge St.
Pelham, NH 03076
Internet: www.wakefield.com

Heat Sink
FC-PBGA Package

Heat Sink
Clip

Printed-Circuit Board

Die

Lid

Thermal Interface Material
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16.2.2 Internal Package Conduction Resistance
For the packaging technology, shown in Table 49, the intrinsic internal conduction thermal resistance paths 
are as follows:

• The die junction-to-case thermal resistance

• The die junction-to-board thermal resistance

Figure 44 depicts the primary heat transfer path for a package with an attached heat sink mounted to a 
printed-circuit board.

Figure 44. Package with Heat Sink Mounted to a Printed-Circuit Board 

The heat sink removes most of the heat from the device. Heat generated on the active side of the chip is 
conducted through the silicon and through the lid, then through the heat sink attach material (or thermal 
interface material), and finally to the heat sink. The junction-to-case thermal resistance is low enough that 
the heat sink attach material and heat sink thermal resistance are the dominant terms.

16.2.3 Thermal Interface Materials
A thermal interface material is required at the package-to-heat sink interface to minimize the thermal 
contact resistance. For those applications where the heat sink is attached by spring clip mechanism, 
Figure 45 shows the thermal performance of three thin-sheet thermal-interface materials (silicone, 
graphite/oil, floroether oil), a bare joint, and a joint with thermal grease as a function of contact pressure. 
As shown, the performance of these thermal interface materials improves with increasing contact pressure. 
The use of thermal grease significantly reduces the interface thermal resistance. The bare joint results in a 
thermal resistance approximately six times greater than the thermal grease joint. 

Heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board (see 
Figure 41). Therefore, the synthetic grease offers the best thermal performance, especially at the low 
interface pressure. 

When removing the heat sink for re-work, it is preferable to slide the heat sink off slowly until the thermal 
interface material loses its grip. If the support fixture around the package prevents sliding off the heat sink, 

External Resistance

External Resistance

Internal Resistance

Radiation Convection

Radiation Convection

Heat Sink

Printed-Circuit Board

Thermal Interface Material

Package/Leads
Die Junction
Die/Package

(Note the internal versus external package resistance)



MPC8541E PowerQUICC™ III Integrated Communications Processor Hardware Specification, Rev. 4.2

74 Freescale Semiconductor
 

Thermal

The spring mounting should be designed to apply the force only directly above the die. By localizing the 
force, rocking of the heat sink is minimized. One suggested mounting method attaches a plastic fence to 
the board to provide the structure on which the heat sink spring clips. The plastic fence also provides the 
opportunity to minimize the holes in the printed-circuit board and to locate them at the corners of the 
package. Figure 47 and provide exploded views of the plastic fence, heat sink, and spring clip.

Figure 47. Exploded Views (1) of a Heat Sink Attachment using a Plastic Fence
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Figure 48. Exploded Views (2) of a Heat Sink Attachment using a Plastic Force

The die junction-to-ambient and the heat sink-to-ambient thermal resistances are common figure-of-merits 
used for comparing the thermal performance of various microelectronic packaging technologies, one 
should exercise caution when only using this metric in determining thermal management because no single 
parameter can adequately describe three-dimensional heat flow. The final die-junction operating 
temperature is not only a function of the component-level thermal resistance, but the system level design 
and its operating conditions. In addition to the component’s power consumption, a number of factors affect 
the final operating die-junction temperature: airflow, board population (local heat flux of adjacent 
components), system air temperature rise, altitude, etc.

Due to the complexity and the many variations of system-level boundary conditions for today’s 
microelectronic equipment, the combined effects of the heat transfer mechanisms (radiation convection 
and conduction) may vary widely. For these reasons, we recommend using conjugate heat transfer models 
for the boards, as well as, system-level designs.
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17 System Design Information
This section provides electrical and thermal design recommendations for successful application of the 
MPC8541E.

17.1 System Clocking
The MPC8541E includes five PLLs.

1. The platform PLL (AVDD1) generates the platform clock from the externally supplied SYSCLK 
input. The frequency ratio between the platform and SYSCLK is selected using the platform PLL 
ratio configuration bits as described in Section 15.2, “Platform/System PLL Ratio.”

2. The e500 Core PLL (AVDD2) generates the core clock as a slave to the platform clock. The 
frequency ratio between the e500 core clock and the platform clock is selected using the e500 
PLL ratio configuration bits as described in Section 15.3, “e500 Core PLL Ratio.”

3. The CPM PLL (AVDD3) is slaved to the platform clock and is used to generate clocks used 
internally by the CPM block. The ratio between the CPM PLL and the platform clock is fixed and 
not under user control.

4. The PCI1 PLL (AVDD4) generates the clocking for the first PCI bus.

5. The PCI2 PLL (AVDD5) generates the clock for the second PCI bus.

17.2 PLL Power Supply Filtering
Each of the PLLs listed above is provided with power through independent power supply pins (AVDD1, 
AVDD2, AVDD3, AVDD4, and AVDD5 respectively). The AVDD level should always be equivalent to VDD, 
and preferably these voltages are derived directly from VDD through a low frequency filter scheme such 
as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to 
provide five independent filter circuits as illustrated in Figure 49, one to each of the five AVDD pins. By 
providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the 
other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz 
range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL). 
Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook 
of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a 
single large value capacitor.

Each circuit should be placed as close as possible to the specific AVDD pin being supplied to minimize 
noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AVDD 
pin, which is on the periphery of the 783 FC-PBGA footprint, without the inductance of vias.
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Figure 49 shows the PLL power supply filter circuit.

Figure 49. PLL Power Supply Filter Circuit

17.3 Decoupling Recommendations
Due to large address and data buses, and high operating frequencies, the MPC8541E can generate transient 
power surges and high frequency noise in its power supply, especially while driving large capacitive loads. 
This noise must be prevented from reaching other components in the MPC8541E system, and the 
MPC8541E itself requires a clean, tightly regulated source of power. Therefore, it is recommended that 
the system designer place at least one decoupling capacitor at each VDD, OVDD, GVDD, and LVDD pins 
of the MPC8541E. These decoupling capacitors should receive their power from separate VDD, OVDD, 
GVDD, LVDD, and GND power planes in the PCB, utilizing short traces to minimize inductance. 
Capacitors may be placed directly under the device using a standard escape pattern. Others may surround 
the part.

These capacitors should have a value of 0.01 or 0.1 µF. Only ceramic SMT (surface mount technology) 
capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, 
feeding the VDD, OVDD, GVDD, and LVDD planes, to enable quick recharging of the smaller chip 
capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the 
quick response time necessary. They should also be connected to the power and ground planes through two 
vias to minimize inductance. Suggested bulk capacitors—100–330 µF (AVX TPS tantalum or Sanyo 
OSCON).

17.4 Connection Recommendations
To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal 
level. Unused active low inputs should be tied to OVDD, GVDD, or LVDD as required. Unused active high 
inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.

Power and ground connections must be made to all external VDD, GVDD, LVDD, OVDD, and GND pins of 
the MPC8541E.

17.5 Output Buffer DC Impedance
The MPC8541E drivers are characterized over process, voltage, and temperature. For all buses, the driver 
is a push-pull single-ended driver type (open drain for I2C).

To measure Z0 for the single-ended drivers, an external resistor is connected from the chip pad to OVDD 
or GND. Then, the value of each resistor is varied until the pad voltage is OVDD/2 (see Figure 50). The 
output impedance is the average of two components, the resistances of the pull-up and pull-down devices. 

VDD AVDD (or L2AVDD)

 2.2 µF  2.2 µF

 GND
Low ESL Surface Mount Capacitors

10 Ω
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18 Document Revision History
Table 51 provides a revision history for this hardware specification.

Table 51. Document Revision History

Rev. No. Date Substantive Change(s)

4.2 1/2008 Added “Note: Rise/Fall Time on CPM Input Pins” and following note text to Section 10.2, “CPM AC 
Timing Specifications.”

4.1 07/2007 Inserted Figure 3, ““Maximum AC Waveforms on PCI interface for 3.3-V Signaling.”

4 12/2006 Updated Section 2.1.2, “Power Sequencing.”

Updated back page information.

3.2 11/2006 Updated Section 2.1.2, “Power Sequencing.”

Replaced Section 17.8, “JTAG Configuration Signals.”

3.1 10/2005 Table 4: Added footnote 2 about junction temperature.

Table 4: Added max. power values for 1000 MHz core frequency. 

Removed Figure 3, “Maximum AC Waveforms on PCI Interface for 3.3-V Signaling.”

Table 30: Modified note to tLBKSKEW from 8 to 9

Table 30: Changed tLBKHOZ1 and tLBKHOV2 values.

Table 30: Added note 3 to tLBKHOV1.

Table 30 and Table 31: Modified note 3. 

Table 31: Added note 3 to tLBKLOV1.

Table 31: Modified values for tLBKHKT, tLBKLOV1, tLBKLOV2, tLBKLOV3, tLBKLOZ1, and tLBKLOZ2.

Figure 21: Changed Input Signals: LAD[0:31]/LDP[0:3].

Table 43: Modified note for signal CLK_OUT. 

Table 43: PCI1_CLK and PCI2_CLK changed from I/O to I.

Table 52: Added column for Encryption Acceleration.

3 8/29/2005 Table 4: Modified max. power values. 

Table 43: Modified notes for signals TSEC1_TXD[3:0], TSEC2_TXD[3:0], TRIG_OUT/READY, 
MSRCID4, and MDVAL. 

2 8/2005 Previous revision’s history listed incorrect cross references. Table 2 is now correctly listed as 
Table 27 and Table 31 is now listed as Table 31.

Table 7: Added note 2.

Table 14: Modified min and max values for tDDKHMP

1 6/2005 Table 27: Changed LVdd to OVdd for the supply voltage Ethernet management interface.

Table 4: Modified footnote 4 and changed typical power for the 1000MHz core frequency.

Table 31: Corrected symbols for body rows 9–15, effectively changing them from a high state to a 
low state.

0 6/2005 Initial Release.


