

#### Welcome to E-XFL.COM

#### **Understanding Embedded - Microprocessors**

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

#### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| Product Status                  | Active                                                    |
|---------------------------------|-----------------------------------------------------------|
| Core Processor                  | PowerPC e500                                              |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                            |
| Speed                           | 833MHz                                                    |
| Co-Processors/DSP               | -                                                         |
| RAM Controllers                 | DDR, SDRAM                                                |
| Graphics Acceleration           | No                                                        |
| Display & Interface Controllers | -                                                         |
| Ethernet                        | 10/100/1000Mbps (2)                                       |
| SATA                            | -                                                         |
| USB                             | -                                                         |
| Voltage - I/O                   | 2.5V, 3.3V                                                |
| Operating Temperature           | 0°C ~ 105°C (TA)                                          |
| Security Features               | -                                                         |
| Package / Case                  | 783-BBGA, FCBGA                                           |
| Supplier Device Package         | 783-FCPBGA (29x29)                                        |
| Purchase URL                    | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8541pxapf |
|                                 |                                                           |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



|   |              | 7 |  |
|---|--------------|---|--|
|   |              |   |  |
| Δ | $\mathbf{A}$ |   |  |

| Interface     | Parameters    | GV <sub>DD</sub><br>(2.5 V) | OV <sub>DD</sub><br>(3.3 V) | LV <sub>DD</sub><br>(3.3 V) | LV <sub>DD</sub><br>(2.5 V) | Unit | Comments                             |
|---------------|---------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------|--------------------------------------|
| DDR I/O       | CCB = 200 MHz | 0.46                        | —                           | —                           | —                           | W    | —                                    |
|               | CCB = 266 MHz | 0.59                        | —                           | —                           | —                           | W    | —                                    |
|               | CCB = 300 MHz | 0.66                        | —                           | —                           | —                           | W    | —                                    |
|               | CCB = 333 MHz | 0.73                        | —                           | —                           | —                           | W    | —                                    |
| PCI I/O       | 64b, 66 MHz   | —                           | 0.14                        | —                           | _                           | W    | —                                    |
|               | 64b, 33 MHz   | —                           | 0.08                        | —                           | _                           | W    | —                                    |
|               | 32b, 66 MHz   | —                           | 0.07                        | —                           | —                           | W    | Multiply by 2 if using two 32b ports |
|               | 32b, 33 MHz   | —                           | 0.04                        | _                           | _                           | W    |                                      |
| Local Bus I/O | 32b, 167 MHz  | —                           | 0.30                        | —                           | _                           | W    | —                                    |
|               | 32b, 133 MHz  | —                           | 0.24                        | —                           | —                           | W    | —                                    |
|               | 32b, 83 MHz   | —                           | 0.16                        | _                           | _                           | W    | _                                    |
|               | 32b, 66 MHz   | —                           | 0.13                        | _                           | _                           | W    | _                                    |
|               | 32b, 33 MHz   | —                           | 0.07                        | _                           | _                           | W    | _                                    |
| TSEC I/O      | MII           | —                           | _                           | 0.01                        | _                           | W    | Multiply by number of interfaces     |
|               | GMII or TBI   | —                           | _                           | 0.07                        | _                           | W    | used.                                |
|               | RGMII or RTBI | —                           | —                           | —                           | 0.04                        | W    |                                      |
| CPM - FCC     | MII           | —                           | 0.015                       | —                           | —                           | W    | —                                    |
|               | RMII          | —                           | 0.013                       | —                           | —                           | W    | —                                    |
|               | HDLC 16 Mbps  | —                           | 0.009                       | —                           | —                           | W    | —                                    |

### Table 5. Typical I/O Power Dissipation



## 4.3 Real Time Clock Timing

Table 8 provides the real time clock (RTC) AC timing specifications.

**Table 8. RTC AC Timing Specifications** 

| Parameter/Condition | Symbol            | Min                         | Typical | Мах | Unit | Notes |
|---------------------|-------------------|-----------------------------|---------|-----|------|-------|
| RTC clock high time | t <sub>RTCH</sub> | 2 x<br>t <sub>CCB_CLK</sub> | —       | —   | ns   | —     |
| RTC clock low time  | t <sub>RTCL</sub> | 2 х<br>t <sub>CCB_CLK</sub> | _       | _   | ns   | _     |

# 5 **RESET Initialization**

This section describes the AC electrical specifications for the RESET initialization timing requirements of the MPC8541E. Table 9 provides the RESET initialization AC timing specifications.

#### Table 9. RESET Initialization Timing Specifications

| Parameter/Condition                                                                                     | Min | Мах | Unit    | Notes |
|---------------------------------------------------------------------------------------------------------|-----|-----|---------|-------|
| Required assertion time of HRESET                                                                       | 100 | —   | μs      | _     |
| Minimum assertion time for SRESET                                                                       | 512 | —   | SYSCLKs | 1     |
| PLL input setup time with stable SYSCLK before HRESET negation                                          | 100 | —   | μs      |       |
| Input setup time for POR configs (other than PLL config) with respect to negation of HRESET             | 4   | —   | SYSCLKs | 1     |
| Input hold time for POR configs (including PLL config) with respect to negation of $\overline{HRESET}$  | 2   | —   | SYSCLKs | 1     |
| Maximum valid-to-high impedance time for actively driven POR configs with respect to negation of HRESET | —   | 5   | SYSCLKs | 1     |

Notes:

1. SYSCLK is identical to the PCI\_CLK signal and is the primary clock input for the MPC8541E. See the MPC8555E PowerQUICC<sup>™</sup> III Integrated Communications Processor Reference Manual for more details.

### Table 10 provides the PLL and DLL lock times.

#### Table 10. PLL and DLL Lock Times

| Parameter/Condition | Min  | Мах     | Unit       | Notes |
|---------------------|------|---------|------------|-------|
| PLL lock times      | —    | 100     | μs         |       |
| DLL lock times      | 7680 | 122,880 | CCB Clocks | 1, 2  |

Notes:

1. DLL lock times are a function of the ratio between the output clock and the platform (or CCB) clock. A 2:1 ratio results in the minimum and an 8:1 ratio results in the maximum.

2. The CCB clock is determined by the SYSCLK  $\times$  platform PLL ratio.



# 6 DDR SDRAM

This section describes the DC and AC electrical specifications for the DDR SDRAM interface of the MPC8541E.

# 6.1 DDR SDRAM DC Electrical Characteristics

Table 11 provides the recommended operating conditions for the DDR SDRAM component(s) of the MPC8541E.

| Parameter/Condition                             | Symbol            | Min                      | Мах                      | Unit | Notes |
|-------------------------------------------------|-------------------|--------------------------|--------------------------|------|-------|
| I/O supply voltage                              | GV <sub>DD</sub>  | 2.375                    | 2.625                    | V    | 1     |
| I/O reference voltage                           | MV <sub>REF</sub> | $0.49 	imes GV_{DD}$     | $0.51 	imes GV_{DD}$     | V    | 2     |
| I/O termination voltage                         | V <sub>TT</sub>   | MV <sub>REF</sub> – 0.04 | MV <sub>REF</sub> + 0.04 | V    | 3     |
| Input high voltage                              | V <sub>IH</sub>   | MV <sub>REF</sub> + 0.18 | GV <sub>DD</sub> + 0.3   | V    | —     |
| Input low voltage                               | V <sub>IL</sub>   | -0.3                     | MV <sub>REF</sub> – 0.18 | V    | —     |
| Output leakage current                          | I <sub>oz</sub>   | -10                      | 10                       | μA   | 4     |
| Output high current (V <sub>OUT</sub> = 1.95 V) | I <sub>ОН</sub>   | -15.2                    | —                        | mA   | —     |
| Output low current (V <sub>OUT</sub> = 0.35 V)  | I <sub>OL</sub>   | 15.2                     | —                        | mA   | —     |
| MV <sub>REF</sub> input leakage current         | I <sub>VREF</sub> | _                        | 5                        | μA   | _     |

Table 11. DDR SDRAM DC Electrical Characteristics

#### Notes:

1.  $GV_{DD}$  is expected to be within 50 mV of the DRAM  $GV_{DD}$  at all times.

- 2. MV<sub>REF</sub> is expected to be equal to 0.5 × GV<sub>DD</sub>, and to track GV<sub>DD</sub> DC variations as measured at the receiver. Peak-to-peak noise on MV<sub>REF</sub> may not exceed ±2% of the DC value.
- 3. V<sub>TT</sub> is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV<sub>REF</sub>. This rail should track variations in the DC level of MV<sub>REF</sub>.
- 4. Output leakage is measured with all outputs disabled, 0 V  $\leq$  V<sub>OUT</sub>  $\leq$  GV<sub>DD</sub>.

### Table 12 provides the DDR capacitance.

### Table 12. DDR SDRAM Capacitance

| Parameter/Condition                         | Symbol           | Min | Мах | Unit | Notes |
|---------------------------------------------|------------------|-----|-----|------|-------|
| Input/output capacitance: DQ, DQS, MSYNC_IN | C <sub>IO</sub>  | 6   | 8   | pF   | 1     |
| Delta input/output capacitance: DQ, DQS     | C <sub>DIO</sub> | —   | 0.5 | pF   | 1     |

Note:

1. This parameter is sampled.  $GV_{DD}$  = 2.5 V ± 0.125 V, f = 1 MHz, T<sub>A</sub> = 25°C, V<sub>OUT</sub> =  $GV_{DD}/2$ , V<sub>OUT</sub> (peak to peak) = 0.2 V.



## 8.2.3 MII AC Timing Specifications

This section describes the MII transmit and receive AC timing specifications.

## 8.2.3.1 MII Transmit AC Timing Specifications

Table 22 provides the MII transmit AC timing specifications.

#### Table 22. MII Transmit AC Timing Specifications

At recommended operating conditions with LV\_{DD} of 3.3 V  $\pm$  5%.

| Parameter/Condition                             | Symbol <sup>1</sup>                                  | Min | Тур | Max | Unit |
|-------------------------------------------------|------------------------------------------------------|-----|-----|-----|------|
| TX_CLK clock period 10 Mbps                     | t <sub>MTX</sub> 2                                   | —   | 400 | —   | ns   |
| TX_CLK clock period 100 Mbps                    | t <sub>MTX</sub>                                     | —   | 40  | —   | ns   |
| TX_CLK duty cycle                               | t <sub>MTXH/</sub> t <sub>MTX</sub>                  | 35  | _   | 65  | %    |
| TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay | t <sub>MTKHDX</sub>                                  | 1   | 5   | 15  | ns   |
| TX_CLK data clock rise and fall time            | t <sub>MTXR</sub> , t <sub>MTXF</sub> <sup>2,3</sup> | 1.0 | _   | 4.0 | ns   |

Notes:

 The symbols used for timing specifications herein follow the pattern of t<sub>(first two letters of functional block)(signal)(state)</sub> (reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>MTKHDX</sub> symbolizes MII transmit timing (MT) for the time t<sub>MTX</sub> clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t<sub>MTX</sub> represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

- 2. Signal timings are measured at 0.7 V and 1.9 V voltage levels.
- 3. Guaranteed by design.

Figure 10 shows the MII transmit AC timing diagram.



Figure 10. MII Transmit AC Timing Diagram



# 9.2 Local Bus AC Electrical Specifications

Table 30 describes the general timing parameters of the local bus interface of the MPC8541E with the DLL enabled.

| Parameter                                                             | Configuration <sup>7</sup>     | Symbol <sup>1</sup>  | Min | Max | Unit | Notes   |
|-----------------------------------------------------------------------|--------------------------------|----------------------|-----|-----|------|---------|
| Local bus cycle time                                                  |                                | t <sub>LBK</sub>     | 6.0 | —   | ns   | 2       |
| LCLK[n] skew to LCLK[m] or LSYNC_OUT                                  |                                | t <sub>LBKSKEW</sub> | —   | 150 | ps   | 7, 9    |
| Input setup to local bus clock (except LUPWAIT)                       |                                | t <sub>LBIVKH1</sub> | 1.8 | —   | ns   | 3, 4, 8 |
| LUPWAIT input setup to local bus clock                                |                                | t <sub>LBIVKH2</sub> | 1.7 | —   | ns   | 3, 4    |
| Input hold from local bus clock (except LUPWAIT)                      |                                | t <sub>LBIXKH1</sub> | 0.5 | —   | ns   | 3, 4, 8 |
| LUPWAIT input hold from local bus clock                               |                                | t <sub>LBIXKH2</sub> | 1.0 | —   | ns   | 3, 4    |
| LALE output transition to LAD/LDP output transition (LATCH hold time) |                                | t <sub>LBOTOT</sub>  | 1.5 | —   | ns   | 6       |
| Local bus clock to output valid (except                               | <u>LWE[0:1]</u> = 00           | t <sub>LBKHOV1</sub> | —   | 2.3 | ns   | 3, 8    |
| LAD/LDP and LALE)                                                     | <u>LWE[0:1]</u> = 11 (default) |                      |     | 3.8 |      |         |
| Local bus clock to data valid for LAD/LDP                             | <u>LWE[0:1]</u> = 00           | t <sub>LBKHOV2</sub> | —   | 2.5 | ns   | 3, 8    |
|                                                                       | <u>LWE[0:1]</u> = 11 (default) |                      |     | 4.0 |      |         |
| Local bus clock to address valid for LAD                              | <u>LWE[0:1]</u> = 00           | t <sub>LBKHOV3</sub> | —   | 2.6 | ns   | 3, 8    |
|                                                                       | <u>LWE[0:1]</u> = 11 (default) |                      |     | 4.1 |      |         |
| Output hold from local bus clock (except                              | <u>LWE[0:1]</u> = 00           | t <sub>LBKHOX1</sub> | 0.7 | —   | ns   | 3, 8    |
| LAD/LDP and LALE)                                                     | <u>LWE[0:1]</u> = 11 (default) |                      | 1.6 |     |      |         |
| Output hold from local bus clock for                                  | <u>LWE[0:1]</u> = 00           | t <sub>LBKHOX2</sub> | 0.7 | —   | ns   | 3, 8    |
|                                                                       | <u>LWE[0:1]</u> = 11 (default) |                      | 1.6 |     |      |         |
| Local bus clock to output high Impedance                              | <u>LWE[0:1]</u> = 00           | t <sub>LBKHOZ1</sub> | —   | 2.8 | ns   | 5, 9    |
| (except LAD/LDP and LALE)                                             | <u>LWE[0:1]</u> = 11 (default) |                      |     | 4.2 |      |         |

### Table 30. Local Bus General Timing Parameters—DLL Enabled



| Parameter                                    | Configuration <sup>7</sup>           | Symbol <sup>1</sup>  | Min  | Max | Unit | Notes |
|----------------------------------------------|--------------------------------------|----------------------|------|-----|------|-------|
| Local bus clock to address valid for LAD     | LWE[0:1] = 00                        | t <sub>LBKLOV3</sub> | _    | 0.8 | ns   | 3     |
|                                              | $\overline{LWE[0:1]} = 11$ (default) |                      |      | 2.3 |      |       |
| Output hold from local bus clock (except     | LWE[0:1] = 00                        | t <sub>LBKLOX1</sub> | -2.7 | _   | ns   | 3     |
| LAD/LDP and LALE)                            | $\overline{LWE[0:1]} = 11$ (default) |                      | -1.8 |     |      |       |
| Output hold from local bus clock for LAD/LDP | LWE[0:1] = 00                        | t <sub>LBKLOX2</sub> | -2.7 | _   | ns   | 3     |
|                                              | $\overline{LWE[0:1]} = 11$ (default) |                      | -1.8 |     |      |       |
| Local bus clock to output high Impedance     | <u>LWE[0:1]</u> = 00                 | t <sub>LBKLOZ1</sub> |      | 1.0 | ns   | 5     |
| (except LAD/LDP and LALE)                    | $\overline{LWE[0:1]} = 11$ (default) |                      |      | 2.4 |      |       |
| Local bus clock to output high impedance for | <u>LWE[0:1]</u> = 00                 | t <sub>LBKLOZ2</sub> |      | 1.0 | ns   | 5     |
|                                              | LWE[0:1] = 11 (default)              |                      |      | 2.4 |      |       |

#### Table 31. Local Bus General Timing Parameters—DLL Bypassed (continued)

#### Notes:

- The symbols used for timing specifications herein follow the pattern of t<sub>(First two letters of functional block)(signal)(state) (reference)(state) for inputs and t<sub>(First two letters of functional block)</sub>(reference)(state)(signal)(state) for outputs. For example, t<sub>LBIXKH1</sub> symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t<sub>LBK</sub> clock reference (K) goes high (H), in this case for clock one(1). Also, t<sub>LBKHOX</sub> symbolizes local bus timing (LB) for the t<sub>LBK</sub> clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
  </sub>
- 2. All timings are in reference to LSYNC\_IN for DLL enabled mode.
- 3. All signals are measured from  $OV_{DD}/2$  of the rising edge of local bus clock for DLL bypass mode to  $0.4 \times OV_{DD}$  of the signal in question for 3.3-V signaling levels.
- 4. Input timings are measured at the pin.
- 5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 6. The value of t<sub>LBOTOT</sub> is defined as the sum of 1/2 or 1 ccb\_clk cycle as programmed by LBCR[AHD], and the number of local bus buffer delays used as programmed at power-on reset with configuration pins LWE[0:1].
- 7. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at OV<sub>DD</sub>/2.
- 8. Guaranteed by characterization.
- 9. Guaranteed by design.

Figure 16 provides the AC test load for the local bus.



Figure 16. Local Bus C Test Load



# **13.2 PCI AC Electrical Specifications**

This section describes the general AC timing parameters of the PCI bus of the MPC8541E. Note that the SYSCLK signal is used as the PCI input clock. Table 42 provides the PCI AC timing specifications at 66 MHz.

### NOTE

PCI Clock can be PCI1\_CLK or SYSCLK based on POR config input.

### NOTE

The input setup time does not meet the PCI specification.

#### Table 42. PCI AC Timing Specifications at 66 MHz

| Parameter                               | Symbol <sup>1</sup> | Min                 | Max | Unit   | Notes    |
|-----------------------------------------|---------------------|---------------------|-----|--------|----------|
| Clock to output valid                   | <sup>t</sup> PCKHOV | _                   | 6.0 | ns     | 2, 3     |
| Output hold from Clock                  | t <sub>PCKHOX</sub> | 2.0                 | —   | ns     | 2, 9     |
| Clock to output high impedance          | t <sub>PCKHOZ</sub> | _                   | 14  | ns     | 2, 3, 10 |
| Input setup to Clock                    | t <sub>PCIVKH</sub> | 3.3                 | —   | ns     | 2, 4, 9  |
| Input hold from Clock                   | t <sub>PCIXKH</sub> | 0                   | —   | ns     | 2, 4, 9  |
| REQ64 to HRESET <sup>9</sup> setup time | t <sub>PCRVRH</sub> | $10 \times t_{SYS}$ | —   | clocks | 5, 6, 10 |
| HRESET to REQ64 hold time               | t <sub>PCRHRX</sub> | 0                   | 50  | ns     | 6, 10    |
| HRESET high to first FRAME assertion    | t <sub>PCRHFV</sub> | 10                  | _   | clocks | 7, 10    |

Notes:

Note that the symbols used for timing specifications herein follow the pattern of t<sub>(first two letters of functional block)(signal)(state)</sub> (reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>PCIVKH</sub> symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the SYSCLK clock, t<sub>SYS</sub>, reference (K) going to the high (H) state or setup time. Also, t<sub>PCRHFV</sub> symbolizes PCI timing (PC) with respect to the frame signal (F) going to the valid (V) state.

2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.

3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

4. Input timings are measured at the pin.

5. The timing parameter t<sub>SYS</sub> indicates the minimum and maximum CLK cycle times for the various specified frequencies. The system clock period must be kept within the minimum and maximum defined ranges. For values see Section 15, "Clocking."

- 6. The setup and hold time is with respect to the rising edge of HRESET.
- 7. The timing parameter t<sub>PCRHFV</sub> is a minimum of 10 clocks rather than the minimum of 5 clocks in the PCI 2.2 Local Bus Specifications.
- 8. The reset assertion timing requirement for  $\overline{\text{HRESET}}$  is 100  $\mu\text{s}.$
- 9. Guaranteed by characterization.

10.Guaranteed by design.

Figure 16 provides the AC test load for PCI.



Figure 38. PCI AC Test Load

### Table 43. MPC8541E Pinout Listing (continued)

| Signal        | Package Pin Number                                                                                                                                                                                                                                                                                                                               | Pin Type | Power<br>Supply  | Notes |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|-------|
| PCI2_GNT[1:4] | AD18, AE18, AE19, AD19                                                                                                                                                                                                                                                                                                                           | 0        | OV <sub>DD</sub> | 5, 9  |
| PCI2_IDSEL    | AC22                                                                                                                                                                                                                                                                                                                                             | I        | OV <sub>DD</sub> | —     |
| PCI2_IRDY     | AD20                                                                                                                                                                                                                                                                                                                                             | I/O      | OV <sub>DD</sub> | 2     |
| PCI2_PERR     | AC20                                                                                                                                                                                                                                                                                                                                             | I/O      | OV <sub>DD</sub> | 2     |
| PCI2_REQ[0]   | AD21                                                                                                                                                                                                                                                                                                                                             | I/O      | OV <sub>DD</sub> | —     |
| PCI2_REQ[1:4] | AE21, AD22, AE22, AC23                                                                                                                                                                                                                                                                                                                           | I        | OV <sub>DD</sub> | —     |
| PCI2_SERR     | AE20                                                                                                                                                                                                                                                                                                                                             | I/O      | OV <sub>DD</sub> | 2,4   |
| PCI2_STOP     | AC21                                                                                                                                                                                                                                                                                                                                             | I/O      | OV <sub>DD</sub> | 2     |
| PCI2_TRDY     | AC19                                                                                                                                                                                                                                                                                                                                             | I/O      | OV <sub>DD</sub> | 2     |
|               | DDR SDRAM Memory Interface                                                                                                                                                                                                                                                                                                                       |          |                  | 1     |
| MDQ[0:63]     | M26, L27, L22, K24, M24, M23, K27, K26, K22, J28,<br>F26, E27, J26, J23, H26, G26, C26, E25, C24, E23,<br>D26, C25, A24, D23, B23, F22, J21, G21, G22, D22,<br>H21, E21, N18, J18, D18, L17, M18, L18, C18, A18,<br>K17, K16, C16, B16, G17, L16, A16, L15, G15, E15,<br>C14, K13, C15, D15, E14, D14, D13, E13, D12, A11,<br>F13, H13, A13, B12 | I/O      | GV <sub>DD</sub> |       |
| MECC[0:7]     | N20, M20, L19, E19, C21, A21, G19, A19                                                                                                                                                                                                                                                                                                           | I/O      | GV <sub>DD</sub> |       |
| MDM[0:8]      | L24, H28, F24, L21, E18, E16, G14, B13, M19                                                                                                                                                                                                                                                                                                      | 0        | GV <sub>DD</sub> | —     |
| MDQS[0:8]     | L26, J25, D25, A22, H18, F16, F14, C13, C20                                                                                                                                                                                                                                                                                                      | I/O      | GV <sub>DD</sub> | —     |
| MBA[0:1]      | B18, B19                                                                                                                                                                                                                                                                                                                                         | 0        | GV <sub>DD</sub> |       |
| MA[0:14]      | N19, B21, F21, K21, M21, C23, A23, B24, H23, G24,<br>K19, B25, D27, J14, J13                                                                                                                                                                                                                                                                     | 0        | GV <sub>DD</sub> | _     |
| MWE           | D17                                                                                                                                                                                                                                                                                                                                              | 0        | GV <sub>DD</sub> | —     |
| MRAS          | F17                                                                                                                                                                                                                                                                                                                                              | 0        | GV <sub>DD</sub> | —     |
| MCAS          | J16                                                                                                                                                                                                                                                                                                                                              | 0        | GV <sub>DD</sub> | —     |
| MCS[0:3]      | H16, G16, J15, H15                                                                                                                                                                                                                                                                                                                               | 0        | GV <sub>DD</sub> | —     |
| MCKE[0:1]     | E26, E28                                                                                                                                                                                                                                                                                                                                         | 0        | GV <sub>DD</sub> | 11    |
| MCK[0:5]      | J20, H25, A15, D20, F28, K14                                                                                                                                                                                                                                                                                                                     | 0        | GV <sub>DD</sub> | —     |
| MCK[0:5]      | F20, G27, B15, E20, F27, L14                                                                                                                                                                                                                                                                                                                     | 0        | GV <sub>DD</sub> | —     |
| MSYNC_IN      | M28                                                                                                                                                                                                                                                                                                                                              | I        | GV <sub>DD</sub> | 22    |
| MSYNC_OUT     | N28                                                                                                                                                                                                                                                                                                                                              | 0        | GV <sub>DD</sub> | 22    |
|               | Local Bus Controller Interface                                                                                                                                                                                                                                                                                                                   |          |                  |       |
| LA[27]        | U18                                                                                                                                                                                                                                                                                                                                              | 0        | OV <sub>DD</sub> | 5, 9  |



Package and Pin Listings

| Signal                                    | Package Pin Number                                                                                                                                                               | Pin Type | Power<br>Supply  | Notes    |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|----------|--|
| LA[28:31]                                 | T18, T19, T20, T21                                                                                                                                                               | 0        | OV <sub>DD</sub> | 5, 7, 9  |  |
| LAD[0:31]                                 | AD26, AD27, AD28, AC26, AC27, AC28, AA22,<br>AA23, AA26, Y21, Y22, Y26, W20, W22, W26, V19,<br>T22, R24, R23, R22, R21, R18, P26, P25, P20, P19,<br>P18, N22, N23, N24, N25, N26 | I/O      | OV <sub>DD</sub> | -        |  |
| LALE                                      | V21                                                                                                                                                                              | 0        | OV <sub>DD</sub> | 5, 8, 9  |  |
| LBCTL                                     | V20                                                                                                                                                                              | 0        | OV <sub>DD</sub> | 9        |  |
| LCKE                                      | U23                                                                                                                                                                              | 0        | OV <sub>DD</sub> | —        |  |
| LCLK[0:2]                                 | U27, U28, V18                                                                                                                                                                    | 0        | OV <sub>DD</sub> | —        |  |
| LCS[0:4]                                  | Y27, Y28, W27, W28, R27                                                                                                                                                          | 0        | OV <sub>DD</sub> | —        |  |
| LCS5/DMA_DREQ2                            | R28                                                                                                                                                                              | I/O      | OV <sub>DD</sub> | 1        |  |
| LCS6/DMA_DACK2                            | P27                                                                                                                                                                              | 0        | OV <sub>DD</sub> | 1        |  |
| LCS7/DMA_DDONE2                           | P28                                                                                                                                                                              | 0        | OV <sub>DD</sub> | 1        |  |
| LDP[0:3]                                  | AA27, AA28, T26, P21                                                                                                                                                             | I/O      | OV <sub>DD</sub> | —        |  |
| LGPL0/LSDA10                              | U19                                                                                                                                                                              | 0        | OV <sub>DD</sub> | 5, 9     |  |
| LGPL1/LSDWE                               | U22                                                                                                                                                                              | 0        | OV <sub>DD</sub> | 5, 9     |  |
| LGPL2/LOE/LSDRAS                          | V28                                                                                                                                                                              | 0        | OV <sub>DD</sub> | 5, 8, 9  |  |
| LGPL3/LSDCAS                              | V27                                                                                                                                                                              | 0        | OV <sub>DD</sub> | 5, 9     |  |
| LGPL4/ <del>LGTA</del> /LUPWAIT/<br>LPBSE | V23                                                                                                                                                                              | I/O      | OV <sub>DD</sub> | 21       |  |
| LGPL5                                     | V22                                                                                                                                                                              | 0        | OV <sub>DD</sub> | 5, 9     |  |
| LSYNC_IN                                  | T27                                                                                                                                                                              | Ι        | OV <sub>DD</sub> | —        |  |
| LSYNC_OUT                                 | T28                                                                                                                                                                              | 0        | OV <sub>DD</sub> | —        |  |
| LWE[0:1]/LSDDQM[0:1]/<br>LBS[0:1]         | AB28, AB27                                                                                                                                                                       | 0        | OV <sub>DD</sub> | 1, 5, 9  |  |
| LWE[2:3]/LSDDQM[2:3]/<br>LBS[2:3]         | T23, P24                                                                                                                                                                         | 0        | OV <sub>DD</sub> | 1, 5, 9  |  |
|                                           | DMA                                                                                                                                                                              |          |                  |          |  |
| DMA_DREQ[0:1]                             | H5, G4                                                                                                                                                                           | Ι        | OV <sub>DD</sub> | —        |  |
| DMA_DACK[0:1]                             | H6, G5                                                                                                                                                                           | 0        | OV <sub>DD</sub> | —        |  |
| DMA_DDONE[0:1]                            | H7, G6                                                                                                                                                                           | 0        | OV <sub>DD</sub> | <u> </u> |  |
|                                           | Programmable Interrupt Controller                                                                                                                                                |          |                  | <u></u>  |  |
| MCP                                       | AG17                                                                                                                                                                             | Ι        | OV <sub>DD</sub> | —        |  |
| UDE                                       | AG16                                                                                                                                                                             | I        | OV <sub>DD</sub> | -        |  |

### Table 43. MPC8541E Pinout Listing (continued)



Package and Pin Listings

| Table 43. | MPC8541E | Pinout | Listing | (continued) | 1 |
|-----------|----------|--------|---------|-------------|---|
| 14010 101 |          |        |         |             |   |

| Signal           | Package Pin Number                                   | Pin Type | Power<br>Supply  | Notes    |  |  |  |
|------------------|------------------------------------------------------|----------|------------------|----------|--|--|--|
| IRQ[0:7]         | AA18, Y18, AB18, AG24, AA21, Y19, AA19, AG25         | I        | OV <sub>DD</sub> | —        |  |  |  |
| IRQ8             | AB20                                                 | I        | OV <sub>DD</sub> | 9        |  |  |  |
| IRQ9/DMA_DREQ3   | Y20                                                  | I        | OV <sub>DD</sub> | 1        |  |  |  |
| IRQ10/DMA_DACK3  | AF26                                                 | I/O      | OV <sub>DD</sub> | 1        |  |  |  |
| IRQ11/DMA_DDONE3 | AH24                                                 | I/O      | OV <sub>DD</sub> | 1        |  |  |  |
| IRQ_OUT          | AB21                                                 | 0        | OV <sub>DD</sub> | 2, 4     |  |  |  |
|                  | Ethernet Management Interface                        |          |                  |          |  |  |  |
| EC_MDC           | F1                                                   | 0        | OV <sub>DD</sub> | 5, 9     |  |  |  |
| EC_MDIO          | E1                                                   | I/O      | OV <sub>DD</sub> | —        |  |  |  |
|                  | Gigabit Reference Clock                              |          |                  |          |  |  |  |
| EC_GTX_CLK125    | E2                                                   | I        | LV <sub>DD</sub> | —        |  |  |  |
|                  | Three-Speed Ethernet Controller (Gigabit Ether       | net 1)   |                  |          |  |  |  |
| TSEC1_TXD[7:4]   | A6, F7, D7, C7                                       | 0        | LV <sub>DD</sub> | —        |  |  |  |
| TSEC1_TXD[3:0]   | B7, A7, G8, E8                                       | 0        | LV <sub>DD</sub> | 9, 18    |  |  |  |
| TSEC1_TX_EN      | C8                                                   | 0        | LV <sub>DD</sub> | 11       |  |  |  |
| TSEC1_TX_ER      | B8                                                   | 0        | LV <sub>DD</sub> | —        |  |  |  |
| TSEC1_TX_CLK     | C6                                                   | I        | LV <sub>DD</sub> | —        |  |  |  |
| TSEC1_GTX_CLK    | B6                                                   | 0        | LV <sub>DD</sub> | —        |  |  |  |
| TSEC1_CRS        | C3                                                   | I        | LV <sub>DD</sub> |          |  |  |  |
| TSEC1_COL        | G7                                                   | I        | LV <sub>DD</sub> |          |  |  |  |
| TSEC1_RXD[7:0]   | D4, B4, D3, D5, B5, A5, F6, E6                       | I        | LV <sub>DD</sub> |          |  |  |  |
| TSEC1_RX_DV      | D2                                                   | I        | LV <sub>DD</sub> |          |  |  |  |
| TSEC1_RX_ER      | E5                                                   | I        | LV <sub>DD</sub> | —        |  |  |  |
| TSEC1_RX_CLK     | D6                                                   | I        | LV <sub>DD</sub> | —        |  |  |  |
|                  | Three-Speed Ethernet Controller (Gigabit Ethernet 2) |          |                  |          |  |  |  |
| TSEC2_TXD[7:4]   | B10, A10, J10, K11                                   | 0        | LV <sub>DD</sub> | —        |  |  |  |
| TSEC2_TXD[3:0]   | J11, H11, G11, E11                                   | 0        | LV <sub>DD</sub> | 5, 9, 18 |  |  |  |
| TSEC2_TX_EN      | B11                                                  | 0        | LV <sub>DD</sub> | 11       |  |  |  |
| TSEC2_TX_ER      | D11                                                  | 0        | LV <sub>DD</sub> | -        |  |  |  |
| TSEC2_TX_CLK     | D10                                                  | I        | LV <sub>DD</sub> | —        |  |  |  |
| TSEC2_GTX_CLK    | C10                                                  | 0        | LV <sub>DD</sub> |          |  |  |  |



Package and Pin Listings

| Signal            | Package Pin Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pin Type                                                               | Power<br>Supply   | Notes |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------|-------|
| GND               | <ul> <li>A12, A17, B3, B14, B20, B26, B27, C2, C4, C11,C17,</li> <li>C19, C22, C27, D8, E3, E12, E24, F11, F18, F23, G9,</li> <li>G12, G25, H4, H12, H14, H17, H20, H22, H27, J19,</li> <li>J24, K5, K9, K18, K23, K28, L6, L20, L25, M4, M12,</li> <li>M14, M16, M22, M27, N2, N13, N15, N17, P12, P14,</li> <li>P16, P23, R13, R15, R17, R20, R26, T3, T8, T10,</li> <li>T12, T14, T16, U6, U13, U15, U16, U17, U21, V7,</li> <li>V10, V26, W5, W18, W23, Y8, Y16, AA6, AA13, AB4,</li> <li>AB11, AB19, AC6, AC9, AD3, AD8, AD17, AF2, AF4,</li> <li>AF10, AF13, AF15, AF27, AG3, AG7</li> </ul> | _                                                                      | _                 | _     |
| GV <sub>DD</sub>  | A14, A20, A25, A26, A27, A28, B17, B22, B28, C12,<br>C28, D16, D19, D21, D24, D28, E17, E22, F12, F15,<br>F19, F25, G13, G18, G20, G23, G28, H19, H24, J12,<br>J17, J22, J27, K15, K20, K25, L13, L23, L28, M25,<br>N21                                                                                                                                                                                                                                                                                                                                                                            | Power for DDR<br>DRAM I/O<br>Voltage<br>(2.5 V)                        | GV <sub>DD</sub>  | _     |
| LV <sub>DD</sub>  | A4, C5, E7, H10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Reference<br>Voltage;<br>Three-Speed<br>Ethernet I/O<br>(2.5 V, 3.3 V) | LV <sub>DD</sub>  | _     |
| MV <sub>REF</sub> | N27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reference<br>Voltage Signal;<br>DDR                                    | MV <sub>REF</sub> | _     |
| No Connects       | AA24, AA25, AA3, AA4, AA7 AA8, AB24, AB25,<br>AC24, AC25, AD23, AD24, AD25, AE23, AE24,<br>AE25, AE26, AE27, AF24, AF25, H1, H2, J1, J2, J3,<br>J4, J5, J6, M1, N1, N10, N11, N4, N5, N7, N8, N9,<br>P10, P8, P9, R10, R11, T24, T25, U24, U25, V24,<br>V25, W24, W25, W9, Y24, Y25, Y5, Y6, Y9, AH26,<br>AH28, AG28, AH1, AG1, AH2, B1, B2, A2, A3                                                                                                                                                                                                                                                | _                                                                      | _                 | 16    |
| OV <sub>DD</sub>  | D1, E4, H3, K4, K10, L7, M5, N3, P22, R19, R25, T2,<br>T7, U5, U20, U26, V8, W4, W13, W19, W21, Y7, Y23,<br>AA5, AA12, AA16, AA20, AB7, AB9, AB26, AC5,<br>AC11, AC17, AD4, AE1, AE8, AE10, AE15, AF7,<br>AF12, AG27, AH4                                                                                                                                                                                                                                                                                                                                                                          | PCI, 10/100<br>Ethernet, and<br>other Standard<br>(3.3 V)              | OV <sub>DD</sub>  | _     |
| RESERVED          | C1, T11, U11, AF1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | —                                                                      | _                 | 15    |
| SENSEVDD          | L12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Power for Core<br>(1.2 V)                                              | V <sub>DD</sub>   | 13    |
| SENSEVSS          | K12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | —                                                                      | _                 | 13    |
| V <sub>DD</sub>   | M13, M15, M17, N14, N16, P13, P15, P17, R12, R14,<br>R16, T13, T15, T17, U12, U14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Power for Core<br>(1.2 V)                                              | V <sub>DD</sub>   |       |
|                   | СРМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |                   |       |
| PA[8:31]          | J7, J8, K8, K7, K6, K3, K2, K1, L1, L2, L3, L4, L5, L8, L9, L10, L11, M10, M9, M8, M7, M6, M3, M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I/O                                                                    | OV <sub>DD</sub>  |       |

### Table 43. MPC8541E Pinout Listing (continued)



# 15 Clocking

This section describes the PLL configuration of the MPC8541E. Note that the platform clock is identical to the CCB clock.

# 15.1 Clock Ranges

Table 44 provides the clocking specifications for the processor core and Table 44 provides the clocking specifications for the memory bus.

|                                     |     |     |     | Maximur | n Proce | ssor Core | e Frequen | су  |      |       |      |         |
|-------------------------------------|-----|-----|-----|---------|---------|-----------|-----------|-----|------|-------|------|---------|
| Characteristic                      | 533 | MHz | 600 | MHz     | 667     | ' MHz     | 833       | MHz | 1000 | ) MHz | Unit | Notes   |
|                                     | Min | Max | Min | Max     | Min     | Max       | Min       | Max | Min  | Max   |      |         |
| e500 core<br>processor<br>frequency | 400 | 533 | 400 | 600     | 400     | 667       | 400       | 833 | 400  | 1000  | MHz  | 1, 2, 3 |

**Table 44. Processor Core Clocking Specifications** 

Notes:

1. **Caution:** The CCB to SYSCLK ratio and e500 core to CCB ratio settings must be chosen such that the resulting SYSCLK frequency, e500 (core) frequency, and CCB frequency do not exceed their respective maximum or minimum operating frequencies. Refer to Section 15.2, "Platform/System PLL Ratio," and Section 15.3, "e500 Core PLL Ratio," for ratio settings.

2.) The minimum e500 core frequency is based on the minimum platform frequency of 200 MHz.

3. 1000 MHz frequency supports only a 1.3 V core.

### Table 45. Memory Bus Clocking Specifications

| Characteristic       | Maximum Pro<br>Frequ<br>533, 600, 667, | Unit | Notes |         |
|----------------------|----------------------------------------|------|-------|---------|
|                      | Min                                    | Мах  |       |         |
| Memory bus frequency | 100                                    | 166  | MHz   | 1, 2, 3 |

Notes:

- 1. **Caution:** The CCB to SYSCLK ratio and e500 core to CCB ratio settings must be chosen such that the resulting SYSCLK frequency, e500 (core) frequency, and CCB frequency do not exceed their respective maximum or minimum operating frequencies. Refer to Section 15.2, "Platform/System PLL Ratio," and Section 15.3, "e500 Core PLL Ratio," for ratio settings.
- 2. The memory bus speed is half of the DDR data rate, hence, half of the platform clock frequency.
- 3. 1000 MHz frequency supports only a 1.3 V core.







Figure 46. Thermalloy #2328B Heat Sink-to-Ambient Thermal Resistance Versus Airflow Velocity

## 16.2.4.2 Case 2

Every system application has different conditions that the thermal management solution must solve. As an alternate example, assume that the air reaching the component is 85 °C with an approach velocity of 1 m/sec. For a maximum junction temperature of 105 °C at 8 W, the total thermal resistance of junction to case thermal resistance plus thermal interface material plus heat sink thermal resistance must be less than 2.5 °C/W. The value of the junction to case thermal resistance in Table 49 includes the thermal interface resistance of a thin layer of thermal grease as documented in footnote 4 of the table. Assuming that the heat sink is flat enough to allow a thin layer of grease or phase change material, then the heat sink must be less than 1.5 °C/W.

Millennium Electronics (MEI) has tooled a heat sink MTHERM-1051 for this requirement assuming a compactPCI environment at 1 m/sec and a heat sink height of 12 mm. The MEI solution is illustrated in Figure 47 and Figure 48. This design has several significant advantages:

- The heat sink is clipped to a plastic frame attached to the application board with screws or plastic inserts at the corners away from the primary signal routing areas.
- The heat sink clip is designed to apply the force holding the heat sink in place directly above the die at a maximum force of less than 10 lbs.
- For applications with significant vibration requirements, silicone damping material can be applied between the heat sink and plastic frame.



| ltem No | QTY | MEI PN      | Description           |
|---------|-----|-------------|-----------------------|
| 1       | 1   | MFRAME-2000 | HEATSINK FRAME        |
| 2       | 1   | MSNK-1120   | EXTRUDED HEATSINK     |
| 3       | 1   | MCLIP-1013  | CLIP                  |
| 4       | 4   | MPPINS-1000 | FRAME ATTACHMENT PINS |



Illustrative source provided by Millennium Electronics (MEI) Figure 48. Exploded Views (2) of a Heat Sink Attachment using a Plastic Force

The die junction-to-ambient and the heat sink-to-ambient thermal resistances are common figure-of-merits used for comparing the thermal performance of various microelectronic packaging technologies, one should exercise caution when only using this metric in determining thermal management because no single parameter can adequately describe three-dimensional heat flow. The final die-junction operating temperature is not only a function of the component-level thermal resistance, but the system level design and its operating conditions. In addition to the component's power consumption, a number of factors affect the final operating die-junction temperature: airflow, board population (local heat flux of adjacent components), system air temperature rise, altitude, etc.

Due to the complexity and the many variations of system-level boundary conditions for today's microelectronic equipment, the combined effects of the heat transfer mechanisms (radiation convection and conduction) may vary widely. For these reasons, we recommend using conjugate heat transfer models for the boards, as well as, system-level designs.

# NP

#### System Design Information

When data is held high, SW1 is closed (SW2 is open) and  $R_P$  is trimmed until the voltage at the pad equals  $OV_{DD}/2$ .  $R_P$  then becomes the resistance of the pull-up devices.  $R_P$  and  $R_N$  are designed to be close to each other in value. Then,  $Z_0 = (R_P + R_N)/2$ .



Figure 50. Driver Impedance Measurement

The value of this resistance and the strength of the driver's current source can be found by making two measurements. First, the output voltage is measured while driving logic 1 without an external differential termination resistor. The measured voltage is  $V_1 = R_{source} \times I_{source}$ . Second, the output voltage is measured while driving logic 1 with an external precision differential termination resistor of value  $R_{term}$ . The measured voltage is  $V_2 = 1/(1/R_1 + 1/R_2)) \times I_{source}$ . Solving for the output impedance gives  $R_{source} = R_{term} \times (V_1/V_2 - 1)$ . The drive current is then  $I_{source} = V_1/R_{source}$ .

Table 50 summarizes the signal impedance targets. The driver impedance are targeted at minimum  $V_{DD}$ , nominal  $OV_{DD}$ , 105°C.

| Impedance      | Local Bus, Ethernet, DUART, Control, Configuration, Power<br>Management | PCI       | DDR DRAM  | Symbol            | Unit |
|----------------|-------------------------------------------------------------------------|-----------|-----------|-------------------|------|
| R <sub>N</sub> | 43 Target                                                               | 25 Target | 20 Target | Z <sub>0</sub>    | Ω    |
| R <sub>P</sub> | 43 Target                                                               | 25 Target | 20 Target | Z <sub>0</sub>    | Ω    |
| Differential   | NA                                                                      | NA        | NA        | Z <sub>DIFF</sub> | Ω    |

| Table 50 | Impedance | Characteristics |
|----------|-----------|-----------------|
|----------|-----------|-----------------|

**Note:** Nominal supply voltages. See Table 1,  $T_i = 105^{\circ}C$ .



# 17.6 Configuration Pin Multiplexing

The MPC8541E provides the user with power-on configuration options which can be set through the use of external pull-up or pull-down resistors of 4.7 k $\Omega$  on certain output pins (see customer visible configuration pins). These pins are generally used as output only pins in normal operation.

While  $\overline{\text{HRESET}}$  is asserted however, these pins are treated as inputs. The value presented on these pins while  $\overline{\text{HRESET}}$  is asserted, is latched when  $\overline{\text{HRESET}}$  deasserts, at which time the input receiver is disabled and the I/O circuit takes on its normal function. Most of these sampled configuration pins are equipped with an on-chip gated resistor of approximately  $20 \text{ k}\Omega$ . This value should permit the  $4.7\text{-k}\Omega$  resistor to pull the configuration pin to a valid logic low level. The pull-up resistor is enabled only during  $\overline{\text{HRESET}}$  (and for platform/system clocks after  $\overline{\text{HRESET}}$  deassertion to ensure capture of the reset value). When the input receiver is disabled the pull-up is also, thus allowing functional operation of the pin as an output with minimal signal quality or delay disruption. The default value for all configuration bits treated this way has been encoded such that a high voltage level puts the device into the default state and external resistors are needed only when non-default settings are required by the user.

Careful board layout with stubless connections to these pull-down resistors coupled with the large value of the pull-down resistor should minimize the disruption of signal quality or speed for output pins thus configured.

The platform PLL ratio and e500 PLL ratio configuration pins are not equipped with these default pull-up devices.

# 17.7 Pull-Up Resistor Requirements

The MPC8541E requires high resistance pull-up resistors (10 k $\Omega$  is recommended) on open drain type pins.

Correct operation of the JTAG interface requires configuration of a group of system control pins as demonstrated in Figure 52. Care must be taken to ensure that these pins are maintained at a valid deasserted state under normal operating conditions as most have asynchronous behavior and spurious assertion give unpredictable results.

TSEC1\_TXD[3:0] must not be pulled low during reset. Some PHY chips have internal pulldowns that could cause this to happen. If such PHY chips are used, then a pullup must be placed on these signals strong enough to restore these signals to a logical 1 during reset.

Refer to the PCI 2.2 specification for all pull-ups required for PCI.

# 17.8 JTAG Configuration Signals

Boundary-scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the IEEE 1149.1 specification, but is provided on all processors that implement the Power Architecture. The device requires TRST to be asserted during reset conditions to ensure the JTAG boundary logic does not interfere with normal chip operation. While it is possible to force the TAP controller to the reset state using only the TCK and TMS signals, generally systems assert TRST during the power-on reset flow. Simply tying TRST to HRESET is not practical because the JTAG interface is also used for accessing the common on-chip processor (COP) function.



## 17.8.1 Termination of Unused Signals

If the JTAG interface and COP header are not used, Freescale recommends the following connections:

- TRST should be tied to HRESET through a 0 k $\Omega$  isolation resistor so that it is asserted when the system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during the power-on reset flow. Freescale recommends that the COP header be designed into the system as shown in Figure 52. If this is not possible, the isolation resistor allows future access to TRST in case a JTAG interface may need to be wired onto the system in future debug situations.
- Tie TCK to  $OV_{DD}$  through a 10 k $\Omega$  resistor. This prevents TCK from changing state and reading incorrect data into the device.
- No connection is required for TDI, TMS, or TDO.



# **18 Document Revision History**

Table 51 provides a revision history for this hardware specification.

| Rev. No. | Date      | Substantive Change(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.2      | 1/2008    | Added "Note: Rise/Fall Time on CPM Input Pins" and following note text to Section 10.2, "CPM AC Timing Specifications."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4.1      | 07/2007   | Inserted Figure 3, ""Maximum AC Waveforms on PCI interface for 3.3-V Signaling."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4        | 12/2006   | Updated Section 2.1.2, "Power Sequencing."<br>Updated back page information.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3.2      | 11/2006   | Updated Section 2.1.2, "Power Sequencing."<br>Replaced Section 17.8, "JTAG Configuration Signals."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.1      | 10/2005   | Table 4: Added footnote 2 about junction temperature.Table 4: Added max. power values for 1000 MHz core frequency.Removed Figure 3, "Maximum AC Waveforms on PCI Interface for 3.3-V Signaling."Table 30: Modified note to t <sub>LBKSKEW f</sub> rom 8 to 9Table 30: Changed t <sub>LBKHOZ1</sub> and t <sub>LBKHOV2</sub> values.Table 30: Added note 3 to t <sub>LBKHOV1</sub> .Table 30 and Table 31: Modified note 3.Table 31: Added note 3 to t <sub>LBKLOV1</sub> .Table 31: Modified values for t <sub>LBKHOV1</sub> , t <sub>LBKLOV2</sub> , t <sub>LBKLOV3</sub> , t <sub>LBKLOZ1</sub> , and t <sub>LBKLOZ2</sub> .Figure 21: Changed Input Signals: LAD[0:31]/LDP[0:3].Table 43: Modified note for signal CLK_OUT.Table 43: PCI1_CLK and PCI2_CLK changed from I/O to I.Table 52: Added column for Encryption Acceleration. |
| 3        | 8/29/2005 | Table 4: Modified max. power values.         Table 43: Modified notes for signals TSEC1_TXD[3:0], TSEC2_TXD[3:0], TRIG_OUT/READY,         MSRCID4, and MDVAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2        | 8/2005    | Previous revision's history listed incorrect cross references. Table 2 is now correctly listed as<br>Table 27 and Table 31 is now listed as Table 31.<br>Table 7: Added note 2.<br>Table 14: Modified min and max values for t <sub>DDKHMP</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1        | 6/2005    | Table 27: Changed LV <sub>dd</sub> to OV <sub>dd</sub> for the supply voltage Ethernet management interface.Table 4: Modified footnote 4 and changed typical power for the 1000MHz core frequency.Table 31: Corrected symbols for body rows 9–15, effectively changing them from a high state to a low state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0        | 6/2005    | Initial Release.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



Device Nomenclature

# **19 Device Nomenclature**

Ordering information for the parts fully covered by this specification document is provided in Section 19.1, "Nomenclature of Parts Fully Addressed by this Document."

# **19.1** Nomenclature of Parts Fully Addressed by this Document

Table 52 provides the Freescale part numbering nomenclature for the MPC8541E. Note that the individual part numbers correspond to a maximum processor core frequency. For available frequencies, contact your local Freescale sales office. In addition to the processor frequency, the part numbering scheme also includes an application modifier which may specify special application conditions. Each part number also contains a revision code which refers to the die mask revision number.

| MPC             | nnnn               |                                         | t                                      | рр                                          | aa                                                                            | а                                         | r                              |
|-----------------|--------------------|-----------------------------------------|----------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------|--------------------------------|
| Product<br>Code | Part<br>Identifier | Encryption<br>Acceleration              | Temperature<br>Range <sup>1</sup>      | Package <sup>2</sup>                        | Processor<br>Frequency <sup>3</sup>                                           | Platform<br>Frequency                     | Revision<br>Level <sup>4</sup> |
| MPC             | 8541               | Blank = not<br>included<br>E = included | Blank = 0 to 105°C<br>C = -40 to 105°C | PX = FC-PBGA<br>VT = FC-PBGA<br>(lead free) | AJ = 533 MHz<br>AK = 600 MHz<br>AL = 667 MHz<br>AP = 833 MHz<br>AQ = 1000 MHZ | D = 266 MHz<br>E = 300 MHz<br>F = 333 MHz |                                |

### Table 52. Part Numbering Nomenclature

Notes:

1. For Temperature Range=C, Processor Frequency is limited to 667 MHz with a Platform Frequency selector of 333 MHz, Processor Frequency is limited to 533 MHz with a Platform Frequency selector of 266 MHz.

2. See Section 14, "Package and Pin Listings," for more information on available package types.

 Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other maximum core frequencies.

4. Contact you local Freescale field applications engineer (FAE).



**Device Nomenclature** 

## THIS PAGE INTENTIONALLY LEFT BLANK