E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e500
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	667MHz
Co-Processors/DSP	-
RAM Controllers	DDR, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	-
Voltage - I/O	2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	•
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8541vtalf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Overview

The following section provides a high-level overview of the MPC8541E features. Figure 1 shows the major functional units within the MPC8541E.

Figure 1. MPC8541E Block Diagram

1.1 Key Features

The following lists an overview of the MPC8541E feature set.

- Embedded e500 Book E-compatible core
 - High-performance, 32-bit Book E-enhanced core that implements the PowerPC architecture
 - Dual-issue superscalar, 7-stage pipeline design
 - 32-Kbyte L1 instruction cache and 32-Kbyte L1 data cache with parity protection
 - Lockable L1 caches—entire cache or on a per-line basis
 - Separate locking for instructions and data
 - Single-precision floating-point operations
 - Memory management unit especially designed for embedded applications
 - Enhanced hardware and software debug support
 - Dynamic power management
 - Performance monitor facility

Items on the same line have no ordering requirement with respect to one another. Items on separate lines must be ordered sequentially such that voltage rails on a previous step must reach 90 percent of their value before the voltage rails on the current step reach ten percent of theirs.

NOTE

If the items on line 2 must precede items on line 1, please ensure that the delay does not exceed 500 ms and the power sequence is not done greater than once per day in production environment.

NOTE

From a system standpoint, if the I/O power supplies ramp prior to the V_{DD} core supply, the I/Os on the MPC8541E may drive a logic one or zero during power-up.

2.1.3 Recommended Operating Conditions

Table 2 provides the recommended operating conditions for the MPC8541E. Note that the values in Table 2 are the recommended and tested operating conditions. Proper device operation outside of these conditions is not guaranteed.

Characteristic		Symbol	Recommended Value	Unit
Core supply voltage		V _{DD}	1.2 V ± 60 mV 1.3 V± 50 mV (for 1 GHz only)	V
PLL supply voltage		AV _{DD}	1.2 V ± 60 mV 1.3 V ± 50 mV (for 1 GHz only)	V
DDR DRAM I/O voltage		GV _{DD}	2.5 V ± 125 mV	V
Three-speed Ethernet I/O voltage		LV _{DD}	3.3 V ± 165 mV 2.5 V ± 125 mV	V
PCI, local bus, DUART, system control and power management, I ² C, and JTAG I/O voltage		OV _{DD}	3.3 V ± 165 mV	V
Input voltage	DDR DRAM signals	MV _{IN}	GND to GV _{DD}	V
	DDR DRAM reference	MV _{REF}	GND to GV _{DD}	V
	Three-speed Ethernet signals	LV _{IN}	GND to LV _{DD}	V
	PCI, local bus, DUART, SYSCLK, system control and power management, I ² C, and JTAG signals	OV _{IN}	GND to OV _{DD}	V
Die-junction Temperature		Тj	0 to 105	°C

Table 2. Recommended Operating Conditions

Electrical Characteristics

Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8541E.

1. Note that t_{SYS} refers to the clock period associated with the SYSCLK signal.

Figure 2. Overshoot/Undershoot Voltage for GV_{DD}/OV_{DD}/LV_{DD}

The MPC8541E core voltage must always be provided at nominal 1.2 V (see Table 2 for actual recommended core voltage). Voltage to the processor interface I/Os are provided through separate sets of supply pins and must be provided at the voltages shown in Table 2. The input voltage threshold scales with respect to the associated I/O supply voltage. OV_{DD} and LV_{DD} based receivers are simple CMOS I/O circuits and satisfy appropriate LVCMOS type specifications. The DDR SDRAM interface uses a single-ended differential receiver referenced the externally supplied MV_{REF} signal (nominally set to $GV_{DD}/2$) as is appropriate for the SSTL2 electrical signaling standard.

Power Characteristics

3 Power Characteristics

The estimated typical power dissipation for this family of PowerQUICC III devices is shown in Table 4.

CCB Frequency (MHz)	Core Frequency (MHz)	V _{DD}	Typical Power ⁽³⁾⁽⁴⁾ (W)	Maximum Power ⁽⁵⁾ (W)
200	400	1.2	4.4	6.1
	500	1.2	4.7	6.5
	600	1.2	5.0	6.8
267	533	1.2	4.9	6.7
	667	1.2	5.4	7.2
	800	1.2	5.8	8.6
333	667	1.2	5.5	7.4
	833	1.2	6.0	8.8
	1000 ⁽⁶⁾	1.3	9.0	12.2

Table 4. Power Dissipation^{(1) (2)}

Notes:

1. The values do not include I/O supply power (OV_DD, LV_DD, GV_DD) or AV_DD.

2. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Any customer design must take these considerations into account to ensure the maximum 105 degrees junction temperature is not exceeded on this device.

3. Typical power is based on a nominal voltage of V_{DD} = 1.2V, a nominal process, a junction temperature of T_j = 105° C, and a Dhrystone 2.1 benchmark application.

- 4. Thermal solutions likely need to design to a value higher than Typical Power based on the end application, T_A target, and I/O power
- 5. Maximum power is based on a nominal voltage of V_{DD} = 1.2V, worst case process, a junction temperature of T_j = 105° C, and an artificial smoke test.

6. The nominal recommended V_{DD} = 1.3V for this speed grade.

Notes:

- 1.
- 2.
- -.
- 3.
- 4.
- 5.
- 6.

7.2 DUART AC Electrical Specifications

Table 17 provides the AC timing parameters for the DUART interface of the MPC8541E.

Parameter	Value	Unit	Notes
Minimum baud rate	f _{CCB_CLK} / 1048576	baud	3
Maximum baud rate	f _{CCB_CLK} / 16	baud	1, 3
Oversample rate	16	_	2, 3

Table 17. DUART AC Timing Specifications

Notes:

1. Actual attainable baud rate is limited by the latency of interrupt processing.

- The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample.
- 3. Guaranteed by design.

8 Ethernet: Three-Speed, MII Management

This section provides the AC and DC electrical characteristics for three-speed, 10/100/1000, and MII management.

8.1 Three-Speed Ethernet Controller (TSEC) (10/100/1000 Mbps)—GMII/MII/TBI/RGMII/RTBI Electrical Characteristics

The electrical characteristics specified here apply to all GMII (gigabit media independent interface), the MII (media independent interface), TBI (ten-bit interface), RGMII (reduced gigabit media independent interface), and RTBI (reduced ten-bit interface) signals except MDIO (management data input/output) and MDC (management data clock). The RGMII and RTBI interfaces are defined for 2.5 V, while the GMII and TBI interfaces can be operated at 3.3 V or 2.5 V. Whether the GMII, MII, or TBI interface is operated at 3.3 or 2.5 V, the timing is compliant with the IEEE 802.3 standard. The RGMII and RTBI interfaces follow the Hewlett-Packard reduced pin-count interface for Gigabit Ethernet Physical Layer Device Specification Version 1.2a (9/22/2000). The electrical characteristics for MDIO and MDC are specified in Section 8.3, "Ethernet Management Interface Electrical Characteristics."

8.1.1 TSEC DC Electrical Characteristics

All GMII, MII, TBI, RGMII, and RTBI drivers and receivers comply with the DC parametric attributes specified in Table 18 and Table 19. The potential applied to the input of a GMII, MII, TBI, RGMII, or RTBI receiver may exceed the potential of the receiver's power supply (for example, a GMII driver powered from a 3.6-V supply driving V_{OH} into a GMII receiver powered from a 2.5-V supply). Tolerance for dissimilar GMII driver and receiver supply potentials is implicit in these specifications. The RGMII and RTBI signals are based on a 2.5-V CMOS interface voltage as defined by JEDEC EIA/JESD8-5.

Ethernet: Three-Speed, MII Management

8.2.2.1 GMII Receive AC Timing Specifications

Table 21 provides the GMII receive AC timing specifications.

Table 21. GMII Receive AC Timing Specifications

At recommended operating conditions with LV_{DD} of 3.3 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
RX_CLK clock period	t _{GRX}	—	8.0	—	ns
RX_CLK duty cycle	t _{GRXH} /t _{GRX}	40	—	60	%
RXD[7:0], RX_DV, RX_ER setup time to RX_CLK	t _{GRDVKH}	2.0	—	—	ns
RXD[7:0], RX_DV, RX_ER hold time to RX_CLK	t _{GRDXKH}	0.5	—	—	ns
RX_CLK clock rise and fall time	t _{GRXR} , t _{GRXF} ^{2,3}	_		1.0	ns

Note:

1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)

(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{GRDVKH} symbolizes GMII receive timing (GR) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{RX} clock reference (K) going to the high state (H) or setup time. Also, t_{GRDXKL} symbolizes GMII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{GRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{GRX} represents the GMII (G) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. Signal timings are measured at 0.7 V and 1.9 V voltage levels.

3. Guaranteed by design.

Figure 8 provides the AC test load for TSEC.

Figure 8. TSEC AC Test Load

Figure 9 shows the GMII receive AC timing diagram.

Figure 9. GMII Receive AC Timing Diagram

Ethernet: Three-Speed, MII Management

Figure 14. RGMII and RTBI AC Timing and Multiplexing Diagrams

8.3 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to MII management interface signals MDIO (management data input/output) and MDC (management data clock). The electrical characteristics for GMII, RGMII, TBI and RTBI are specified in Section 8.1, "Three-Speed Ethernet Controller (TSEC) (10/100/1000 Mbps)—GMII/MII/TBI/RGMII/RTBI Electrical Characteristics."

8.3.1 MII Management DC Electrical Characteristics

The MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in Table 27.

Parameter	Symbol	Conditions		Min	Мах	Unit
Supply voltage (3.3 V)	OV _{DD}	—		3.13	3.47	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	$LV_{DD} = Min$	2.10	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	LV _{DD} = Min	GND	0.50	V
Input high voltage	V _{IH}	—		1.70	—	V
Input low voltage	V _{IL}	-	_	—	0.90	V

Table 27. MII Management DC Electrical Characteristics
--

Parameter	Configuration ⁷	Symbol ¹	Min	Max	Unit	Notes
Local bus clock to address valid for LAD	LWE[0:1] = 00	t _{LBKLOV3}	_	0.8	ns	3
	LWE[0:1] = 11 (default)			2.3		
Output hold from local bus clock (except	LWE[0:1] = 00	t _{LBKLOX1}	-2.7	_	ns	3
LAD/LDP and LALE)	$\overline{LWE[0:1]} = 11$ (default)		-1.8			
Output hold from local bus clock for LAD/LDP	LWE[0:1] = 00	t _{LBKLOX2}	-2.7	_	ns	3
	$\overline{LWE[0:1]} = 11$ (default)		-1.8			
Local bus clock to output high Impedance	<u>LWE[0:1]</u> = 00	t _{LBKLOZ1}		1.0	ns	5
(except LAD/LDP and LALE)	$\overline{LWE[0:1]} = 11$ (default)			2.4		
Local bus clock to output high impedance for	<u>LWE[0:1]</u> = 00	t _{LBKLOZ2}		1.0	ns	5
	LWE[0:1] = 11 (default)			2.4		

Table 31. Local Bus General Timing Parameters—DLL Bypassed (continued)

Notes:

- The symbols used for timing specifications herein follow the pattern of t<sub>(First two letters of functional block)(signal)(state) (reference)(state) for inputs and t_(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one(1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
 </sub>
- 2. All timings are in reference to LSYNC_IN for DLL enabled mode.
- 3. All signals are measured from $OV_{DD}/2$ of the rising edge of local bus clock for DLL bypass mode to $0.4 \times OV_{DD}$ of the signal in question for 3.3-V signaling levels.
- 4. Input timings are measured at the pin.
- 5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 6. The value of t_{LBOTOT} is defined as the sum of 1/2 or 1 ccb_clk cycle as programmed by LBCR[AHD], and the number of local bus buffer delays used as programmed at power-on reset with configuration pins LWE[0:1].
- 7. Maximum possible clock skew between a clock LCLK[m] and a relative clock LCLK[n]. Skew measured between complementary signals at OV_{DD}/2.
- 8. Guaranteed by characterization.
- 9. Guaranteed by design.

Figure 16 provides the AC test load for the local bus.

Figure 16. Local Bus C Test Load

Figure 18. Local Bus Signals, Nonspecial Signals Only (DLL Bypass Mode)

Local Bus

Figure 19. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Enabled)

JTAG

11 JTAG

This section describes the AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the MPC8541E.

Table 38 provides the JTAG AC timing specifications as defined in Figure 32 through Figure 35.

Table 38. JTAG AC Timing Specifications (Independent of SYSCLK)¹

At recommended operating conditions (see Table 2).

Parameter	Symbol ²	Min	Мах	Unit	Notes
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	_
JTAG external clock cycle time	t _{JTG}	30	—	ns	—
JTAG external clock pulse width measured at 1.4 V	t _{JTKHKL}	15	—	ns	—
JTAG external clock rise and fall times	t _{JTGR} & t _{JTGF}	0	2	ns	—
TRST assert time	t _{TRST}	25	—	ns	3
Input setup times: Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 0		ns	4
Input hold times: Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	20 25	_	ns	4
Valid times: Boundary-scan data TDO	t _{JTKLDV} t _{JTKLOV}	4 4	20 25	ns	5
Output hold times: Boundary-scan data TDO	t _{jtkldx} t _{jtklox}	—	_	ns	5
JTAG external clock to output high impedance: Boundary-scan data TDO	t _{JTKLDZ} t _{JTKLOZ}	3 3	19 9	ns	5, 6

Notes:

 All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 31). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the t_t clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}}

3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.

- 4. Non-JTAG signal input timing with respect to t_{TCLK}.
- 5. Non-JTAG signal output timing with respect to t_{TCLK}.
- 6. Guaranteed by design.

Package and Pin Listings

Signal	Signal Package Pin Number		Power Supply	Notes
LA[28:31]	T18, T19, T20, T21	0	OV _{DD}	5, 7, 9
LAD[0:31]	AD26, AD27, AD28, AC26, AC27, AC28, AA22, AA23, AA26, Y21, Y22, Y26, W20, W22, W26, V19, T22, R24, R23, R22, R21, R18, P26, P25, P20, P19, P18, N22, N23, N24, N25, N26	I/O	OV _{DD}	-
LALE	V21	0	OV _{DD}	5, 8, 9
LBCTL	V20	0	OV _{DD}	9
LCKE	U23	0	OV _{DD}	—
LCLK[0:2]	U27, U28, V18	0	OV _{DD}	—
LCS[0:4]	Y27, Y28, W27, W28, R27	0	OV _{DD}	—
LCS5/DMA_DREQ2	R28	I/O	OV _{DD}	1
LCS6/DMA_DACK2	P27	0	OV _{DD}	1
LCS7/DMA_DDONE2	P28	0	OV _{DD}	1
LDP[0:3]	AA27, AA28, T26, P21	I/O	OV _{DD}	—
LGPL0/LSDA10	U19	0	OV _{DD}	5, 9
LGPL1/LSDWE	U22	0	OV _{DD}	5, 9
LGPL2/LOE/LSDRAS	V28	0	OV _{DD}	5, 8, 9
LGPL3/LSDCAS	V27	0	OV _{DD}	5, 9
LGPL4/ LGTA /LUPWAIT/ LPBSE	V23	I/O	OV _{DD}	21
LGPL5	V22	0	OV _{DD}	5, 9
LSYNC_IN	T27	Ι	OV _{DD}	—
LSYNC_OUT	T28	0	OV _{DD}	—
LWE[0:1]/LSDDQM[0:1]/ LBS[0:1]	AB28, AB27	0	OV _{DD}	1, 5, 9
LWE[2:3]/LSDDQM[2:3]/ LBS[2:3]	T23, P24	0	OV _{DD}	1, 5, 9
	DMA			
DMA_DREQ[0:1]	H5, G4	Ι	OV _{DD}	—
DMA_DACK[0:1]	H6, G5	0	OV _{DD}	—
DMA_DDONE[0:1]	H7, G6	0	OV _{DD}	<u> </u>
	Programmable Interrupt Controller			<u></u>
MCP	AG17	Ι	OV _{DD}	—
UDE	AG16	I	OV _{DD}	-

Table 43. MPC8541E Pinout Listing (continued)

Package and Pin Listings

Table 43.	MPC8541E	Pinout Listing	(continued)	١
		I mout Listing	(continucu)	,

Signal	Package Pin Number	Pin Type	Power Supply	Notes				
	JTAG							
тск	AF21	Ι	OV _{DD}	—				
TDI	AG21	Ι	OV _{DD}	12				
TDO	AF19	0	OV _{DD}	11				
TMS	AF23	I	OV _{DD}	12				
TRST	AG23	I	OV _{DD}	12				
	DFT							
LSSD_MODE	AG19	Ι	OV _{DD}	20				
L1_TSTCLK	AB22	Ι	OV _{DD}	20				
L2_TSTCLK	AG22	Ι	OV _{DD}	20				
TEST_SEL0	AH20	I	OV _{DD}	3				
TEST_SEL1	AG26	I	OV _{DD}	3				
	Thermal Management							
THERM0	AG2	_		14				
THERM1	AH3	_	_	14				
	Power Management							
ASLEEP	AG18		—	9, 18				
	Power and Ground Signals							
AV _{DD} 1	AH19	Power for e500 PLL (1.2 V)	AV _{DD} 1	—				
AV _{DD} 2	AH18	Power for CCB PLL (1.2 V)	AV _{DD} 2	—				
AV _{DD} 3	AH17	Power for CPM PLL (1.2 V)	AV _{DD} 3	_				
AV _{DD} 4	AF28	Power for PCI1 PLL (1.2 V)	AV _{DD} 4	-				
AV _{DD} 5	AE28	Power for PCI2 PLL (1.2 V)	AV _{DD} 5	—				

16 Thermal

This section describes the thermal specifications of the MPC8541E.

16.1 Thermal Characteristics

Table 49 provides the package thermal characteristics for the MPC8541E.

Characteristic	Symbol	Value	Unit	Notes
Junction-to-ambient Natural Convection on four layer board (2s2p)	$R_{ extsf{ heta}JMA}$	17	°C/W	1, 2
Junction-to-ambient (@200 ft/min or 1.0 m/s) on four layer board (2s2p)	$R_{ extsf{ heta}JMA}$	14	°C/W	1, 2
Junction-to-ambient (@400 ft/min or 2.0 m/s) on four layer board (2s2p)	$R_{ extsf{ heta}JMA}$	13	°C/W	1, 2
Junction-to-board thermal	$R_{ extsf{ heta}JB}$	10	°C/W	3
Junction-to-case thermal	R _{θJC}	0.96	°C/W	4

Notes

1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance

- 2. Per JEDEC JESD51-6 with the board horizontal.
- 3. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 4. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). Cold plate temperature is used for case temperature; measured value includes the thermal resistance of the interface layer.

16.2 Thermal Management Information

This section provides thermal management information for the flip chip plastic ball grid array (FC-PBGA) package for air-cooled applications. Proper thermal control design is primarily dependent on the system-level design—the heat sink, airflow, and thermal interface material. The recommended attachment method to the heat sink is illustrated in Figure 42. The heat sink should be attached to the printed-circuit board with the spring force centered over the die. This spring force should not exceed 10 pounds force.

FC-PBGA Package Heat Sink Clip Thermal Interface Material

Printed-Circuit Board

Figure 42. Package Exploded Cross-Sectional View with Several Heat Sink Options

The system board designer can choose between several types of heat sinks to place on the MPC8541E. There are several commercially-available heat sinks from the following vendors:

Aavid Thermalloy 80 Commercial St. Concord, NH 03301 Internet: www.aavidthermalloy.com	603-224-9988
Alpha Novatech 473 Sapena Ct. #15 Santa Clara, CA 95054 Internet: www.alphanovatech.com	408-749-7601
International Electronic Research Corporation (IERC) 413 North Moss St. Burbank, CA 91502 Internet: www.ctscorp.com	818-842-7277
Millennium Electronics (MEI) Loroco Sites 671 East Brokaw Road San Jose, CA 95112 Internet: www.mei-millennium.com	408-436-8770
Tyco Electronics Chip Coolers [™] P.O. Box 3668 Harrisburg, PA 17105-3668 Internet: www.chipcoolers.com	800-522-6752
Wakefield Engineering 33 Bridge St. Pelham, NH 03076 Internet: www.wakefield.com	603-635-5102

Ultimately, the final selection of an appropriate heat sink depends on many factors, such as thermal performance at a given air velocity, spatial volume, mass, attachment method, assembly, and cost. Several heat sinks offered by Aavid Thermalloy, Alpha Novatech, IERC, Chip Coolers, Millennium Electronics, and Wakefield Engineering offer different heat sink-to-ambient thermal resistances, that allows the MPC8541E to function in various environments.

16.2.1 Recommended Thermal Model

For system thermal modeling, the MPC8541E thermal model is shown in Figure 44. Five cuboids are used to represent this device. To simplify the model, the solder balls and substrate are modeled as a single block 29x29x1.6 mm with the conductivity adjusted accordingly. The die is modeled as 8.7 x 9.3 mm at a thickness of 0.75 mm. The bump/underfill layer is modeled as a collapsed resistance between the die and substrate assuming a conductivity of 4.4 W/m•K in the thickness dimension of 0.07 mm. The lid attach adhesive is also modeled as a collapsed resistance with dimensions of 8.7 x 9.3 x 0.05 mm and the conductivity of 1.07 W/m•K. The nickel plated copper lid is modeled as 11 x 11 x 1 mm.

Conductivity	Value	Unit				
Lid (11 × 11 × 1 mm)						
k _x	360	W/(m \times K)	-	↑	Lid	Adhesive
k _y	360			7	Die	Bump/underfil
k _z	360		 	2		<u> </u>
Lid Adhesive—Collapsed resistance (8.7 \times 9.3 \times 0.05 mm)				Side	ale)	
k _z	1.07					
D (8.7 × 9.3 >	ie × 0.75 mm)			x		
Bump/Underfill—C (8.7 × 9.3 >	ollapsed resistance × 0.07 mm)					
kz	4.4				Substrate	
Substrate and Solder Balls ($25 \times 25 \times 1.6$ mm)			Heat Source			
k _x	14.2		•			
k _y	14.2					
k _z	1.2					
			У			

Top View of Model (Not to Scale)

Figure 43. MPC8541E Thermal Model

System Design Information

Figure 49 shows the PLL power supply filter circuit.

Figure 49. PLL Power Supply Filter Circuit

17.3 Decoupling Recommendations

Due to large address and data buses, and high operating frequencies, the MPC8541E can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the MPC8541E system, and the MPC8541E itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer place at least one decoupling capacitor at each V_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} pins of the MPC8541E. These decoupling capacitors should receive their power from separate V_{DD} , OV_{DD} , GV_{DD} , OV_{DD} , OV_{DD} , GV_{DD} , OV_{DD} , OV

These capacitors should have a value of 0.01 or 0.1 μ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the V_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time necessary. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors—100–330 μ F (AVX TPS tantalum or Sanyo OSCON).

17.4 Connection Recommendations

To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. Unused active low inputs should be tied to OV_{DD} , GV_{DD} , or LV_{DD} as required. Unused active high inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.

Power and ground connections must be made to all external V_{DD} , GV_{DD} , LV_{DD} , OV_{DD} , and GND pins of the MPC8541E.

17.5 Output Buffer DC Impedance

The MPC8541E drivers are characterized over process, voltage, and temperature. For all buses, the driver is a push-pull single-ended driver type (open drain for I^2C).

To measure Z_0 for the single-ended drivers, an external resistor is connected from the chip pad to OV_{DD} or GND. Then, the value of each resistor is varied until the pad voltage is $OV_{DD}/2$ (see Figure 50). The output impedance is the average of two components, the resistances of the pull-up and pull-down devices.

System Design Information

Notes:

- 1. The COP port and target board should be able to independently assert HRESET and TRST to the processor in order to fully control the processor as shown here.
- 2. Populate this with a 10 Ω resistor for short-circuit/current-limiting protection.
- 3. The KEY location (pin 14) is not physically present on the COP header.
- 4. Although pin 12 is defined as a No-Connect, some debug tools may use pin 12 as an additional GND pin for improved signal integrity.
- This switch is included as a precaution for BSDL testing. The switch should be open during BSDL testing to avoid accidentally asserting the TRST line. If BSDL testing is not being performed, this switch should be closed or removed.
- 6. Asserting SRESET causes a machine check interrupt to the e500 core.

Figure 52. JTAG Interface Connection

Device Nomenclature

19 Device Nomenclature

Ordering information for the parts fully covered by this specification document is provided in Section 19.1, "Nomenclature of Parts Fully Addressed by this Document."

19.1 Nomenclature of Parts Fully Addressed by this Document

Table 52 provides the Freescale part numbering nomenclature for the MPC8541E. Note that the individual part numbers correspond to a maximum processor core frequency. For available frequencies, contact your local Freescale sales office. In addition to the processor frequency, the part numbering scheme also includes an application modifier which may specify special application conditions. Each part number also contains a revision code which refers to the die mask revision number.

MPC	nnnn		t	рр	aa	а	r
Product Code	Part Identifier	Encryption Acceleration	Temperature Range ¹	Package ²	Processor Frequency ³	Platform Frequency	Revision Level ⁴
MPC	8541	Blank = not included E = included	Blank = 0 to 105°C C = -40 to 105°C	PX = FC-PBGA VT = FC-PBGA (lead free)	AJ = 533 MHz AK = 600 MHz AL = 667 MHz AP = 833 MHz AQ = 1000 MHZ	D = 266 MHz E = 300 MHz F = 333 MHz	

Table 52. Part Numbering Nomenclature

Notes:

1. For Temperature Range=C, Processor Frequency is limited to 667 MHz with a Platform Frequency selector of 333 MHz, Processor Frequency is limited to 533 MHz with a Platform Frequency selector of 266 MHz.

2. See Section 14, "Package and Pin Listings," for more information on available package types.

 Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other maximum core frequencies.

4. Contact you local Freescale field applications engineer (FAE).

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 +1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. The described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM Corp. and used under license. IEEE 802.3 and 1149.1 are registered trademarks of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). This product is not endorsed or approved by the IEEE. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2008. All rights reserved.

Document Number: MPC8541EEC Rev. 4.2 1/2008

