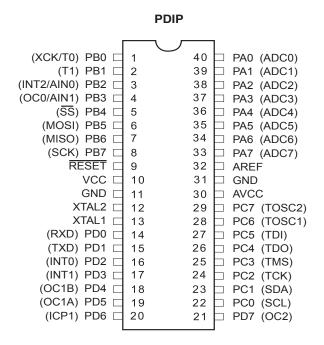


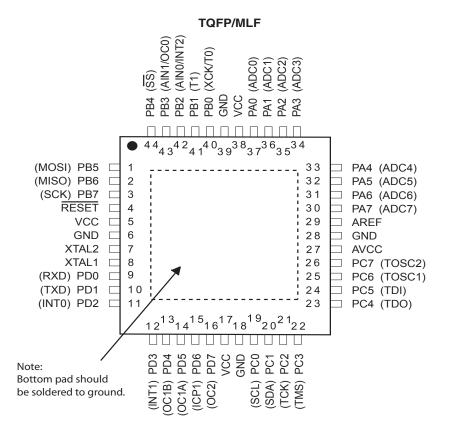
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

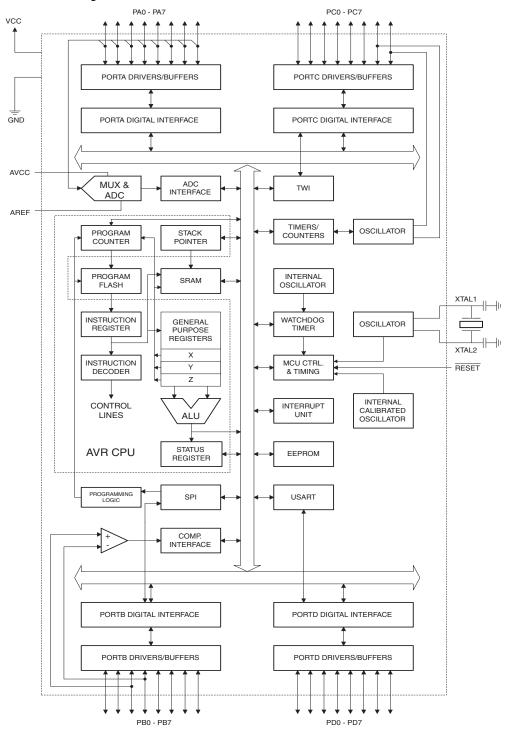

Details	
Product Status	Obsolete
Core Processor	AVR
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	32
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFQFN Exposed Pad
Supplier Device Package	44-VQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atmega32-16mc


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Configurations

Figure 1. Pinout ATmega32



Overview

The Atmel® AVR® ATmega32 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega32 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

Block Diagram

Figure 2. Block Diagram

The Atmel® AVR® core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega32 provides the following features: 32Kbytes of In-System Programmable Flash Program memory with Read-While-Write capabilities, 1024bytes EEPROM, 2Kbyte SRAM, 32 general purpose I/O lines, 32 general purpose working registers, a JTAG interface for Boundaryscan, On-chip Debugging support and programming, three flexible Timer/Counters with compare modes, Internal and External Interrupts, a serial programmable USART, a byte oriented Two-wire Serial Interface, an 8-channel, 10-bit ADC with optional differential input stage with programmable gain (TQFP package only), a programmable Watchdog Timer with Internal Oscillator, an SPI serial port, and six software selectable power saving modes. The Idle mode stops the CPU while allowing the USART, Two-wire interface, A/D Converter, SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next External Interrupt or Hardware Reset. In Power-save mode, the Asynchronous Timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except Asynchronous Timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption. In Extended Standby mode, both the main Oscillator and the Asynchronous Timer continue to run.

The device is manufactured using Atmel's high density nonvolatile memory technology. The Onchip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega32 is a powerful microcontroller that provides a highly-flexible and cost-effective solution to many embedded control applications.

The Atmel AVR ATmega32 is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

Pin Descriptions

VCC Digital supply voltage.

GND Ground.

Port A (PA7..PA0) Port A serves as the analog inputs to the A/D Converter.

Port A also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. When pins PA0 to PA7 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B (PB7..PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the ATmega32 as listed on page 57.

Port C (PC7..PC0)

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PC5(TDI), PC3(TMS) and PC2(TCK) will be activated even if a reset occurs.

The TD0 pin is tri-stated unless TAP states that shift out data are entered.

Port C also serves the functions of the JTAG interface and other special features of the ATmega32 as listed on page 60.

Port D (PD7..PD0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega32 as listed on page 62.

RESET

Reset Input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 15 on page 37. Shorter pulses are not guaranteed to generate a reset.

XTAL1

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

XTAL2

Output from the inverting Oscillator amplifier.

AVCC

AVCC is the supply voltage pin for Port A and the A/D Converter. It should be externally connected to V_{CC} , even if the ADC is not used. If the ADC is used, it should be connected to V_{CC} through a low-pass filter.

AREF

AREF is the analog reference pin for the A/D Converter.

Resources

A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr.

Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C.

About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C Compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C Compiler documentation for more details.

Register Summary

SEP SEP SEP F	Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
SPE (585) SPH	\$3F (\$5F)	SREG	ı	Т	Н	S	V	N	Z	С	
\$20,000 Cocker Temericounterio Objetic Compare Register \$20,000 Cocker Total Total Total Total Cocker Total	· · ·		-		-						
SSA (848) GiPR NFT1 NFT9 NFT2 -	\$3D (\$5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	12
\$50,856 GIFR INTFI INTFO INTEX	\$3C (\$5C)		Timer/Counter	0 Output Compar	e Register	1		•	1	•	82
\$99 (899) TIMSK COEE						-	-	-			
\$35 (859) THE COCP2 TOV2 LICH COCF1A											
\$36 (\$56) SPINCE SPINCE SPINCE SPINCE SPINCE SPINCE STORE ST											
\$36,869 TWCR					-						
\$34 (\$54) MCUCR SE \$M2 \$M1 \$M0 \$ISC11 \$ISC10 \$ISC01 \$ISC00 \$2, 68 \$34 (\$54) MCUCRS \$10 MCUCRS					TWSTA						
\$32 (\$42) TOCTO		MCUCR	SE	SM2	SM1	SM0	ISC11	ISC10	ISC01	ISC00	32, 66
S2 (S82)	\$34 (\$54)	MCUCSR	JTD		-	JTRF	WDRF	BORF	EXTRF	PORF	40, 67, 228
SSTON (857) OSCOCAL Oscillator Calibration Register 30 224 330 350 SFOR ADTS2 ADTS1 ADTS0 ACME PUD PSR2 PSR10 56.85,131,196,211 327	· · · · · ·				COM01	COM00	WGM01	CS02	CS01	CS00	
SST1106ST111	\$32 (\$52)										
\$30 (850)	\$31 ⁽¹⁾ (\$51) ⁽¹⁾										
\$25 (8F) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 FOC1A FOC1B WGM11 WGM10 107	\$30 (\$50)				ADTSO	_	ACME	PLID	PSR2	PSR10	
\$20 (54F) TOCR1B ICNCT ICEST WGM13 WGM12 CS12 CS11 CS10 110						COM1B0					
\$20, 1940 TONTH Timer/Countert - Counter Register High Byte 1111 \$20, 1948 OCR1AH Timer/Countert - Counter Register tow Byte 1111 \$20, 1948 OCR1AH Timer/Countert - Counter Counter Register A High Byte 1111 \$20, 1949 OCR1AH Timer/Countert - Output Compare Register A High Byte 1111 \$20, 1949 OCR1AH Timer/Countert - Output Compare Register A High Byte 1111 \$20, 1949 OCR1AH Timer/Countert - Output Compare Register B Low Byte 1111 \$20, 1949 OCR1AH Timer/Countert - Output Compare Register B Low Byte 1111 \$20, 1949 OCR1AH Timer/Countert - Output Compare Register B Low Byte 1111 \$20, 1949 OCR1AH Timer/Countert - Input Capture Register High Byte 1111 \$20, 1949 OCR2AH Timer/Countert - Input Capture Register High Byte 1111 \$20, 1949 OCR2AH Timer/Countert - Input Capture Register High Byte 1111 \$20, 1949 OCR2AH Timer/Countert - Input Capture Register High Byte 1111 \$20, 1949 OCR2AH Timer/Countert - Input Capture Register High Byte 1111 OCR2AH OCR2AH Timer/Countert - Input Capture Register Low Byte 1127 S20, 1949 OCR2AH OCR2A					-						
\$22 (344) OCRTAH Timer/Counter1 - Output Compare Register A Low Byte 111 320 (349) OCRTAH Timer/Counter1 - Output Compare Register B High Byte 111 320 (349) OCRTAH Timer/Counter1 - Output Compare Register B Low Byte 111 320 (349) OCRTAH Timer/Counter1 - Output Compare Register B Low Byte 111 320 (349) OCRTAH Timer/Counter1 - Output Compare Register B Low Byte 111 320 (349) OCRTAH Timer/Counter1 - Output Compare Register B Low Byte 111 320 (349) ICRTAH Timer/Counter1 - Input Capture Register Low Byte 111 320 (349) ICRTAH Timer/Counter1 - Input Capture Register Low Byte 111 320 (349) ICRTAH Timer/Counter1 - Input Capture Register Low Byte 122 323 (343) OCR2 Timer/Counter2 (B Bits) 127 322 (349) OCR2 Timer/Counter2 (B Bits) 127 322 (342) ASSR		TCNT1H	Timer/Counter	1 – Counter Regi	ster High Byte						111
\$20,0440	\$2C (\$4C)	TCNT1L		U							111
\$20 (949)					_						
\$22 (\$49)											
\$27 (\$47)											
S26 (946) ICRIL						-					
S25 (845) TCCR2											
S24 [444] TONT2					I		WGM21	CS22	CS21	CS20	
\$22 (\$42) ASSR			Timer/Counter	2 (8 Bits)		•			•		
S21 (\$41) WDTCR	\$23 (\$43)	OCR2	Timer/Counter	2 Output Compar	e Register				_		127
UBRRH	\$22 (\$42)			-	-						
S2001 (\$40) S1F (\$3F)	\$21 (\$41)					WDTOE	WDE		1	WDP0	
\$1F (\$3F)	\$20 ⁽²⁾ (\$40) ⁽²⁾					- LIDMO	LICEC			LICROI	
\$1E (\$3E)	\$1F (\$3F)		URSEL -	- UMISEL							
\$1D (\$3D)			EEPROM Add	ress Register Lov		_	_	_	LLANG	LLAN	
\$18 (\$38) PORTA PORTA PORTA6 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 64 \$13 (\$33) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 64 \$19 (\$39) PINA PINA7 PINA6 PINA5 PINA5 PINA5 PINA3 PINA2 PINA1 PINA0 64 \$18 (\$38) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 64 \$17 (\$37) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 64 \$16 (\$36) PINB PINB7 PINB6 PINB5 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 65 \$15 (\$35) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 65 \$14 (\$34) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 65 \$13 (\$33) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC1 DDC0 65 \$11 (\$32) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 65 \$11 (\$31) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 65 \$11 (\$30) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 65 \$06 (\$25) SPDR SPI Data Register 138 \$00 (\$25) SPDR SPI Data Register 138 \$00 (\$25) UDR USART I/O Data Register 159 \$08 (\$28) UCSRA RXC TXC UDRE FE DOR PE U2X MPCM 160 \$00 (\$27) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 214 \$06 (\$26) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 216					,						
\$14 (\$3A) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 64 \$19 (\$39) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 64 \$18 (\$38) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 64 \$17 (\$37) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 64 \$16 (\$36) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 65 \$15 (\$35) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 65 \$14 (\$34) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 65 \$13 (\$33) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 65 \$12 (\$32) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 65 \$10 (\$30) PIND PIND7 PIND6 DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 65 \$10 (\$30) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 65 \$10 (\$30) PIND PIND7 PIND6 PIND5 PIND4 DDD3 DDD2 DDD1 DDD0 65 \$10 (\$30) PIND PIND7 PIND6 PIND5 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 65 \$06 (\$2E) SPSR SPIF WCOL — — — — — — SPI2X 138 \$00 (\$2D) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 136 \$08 (\$2B) UCSRA RXC TXC UDRE FE DOR PE U2X MPCM 160 \$00 (\$29) UBRRL USART Baud Rate Register Low Byte \$00 (\$27) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 214 \$06 (\$26) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 216	\$1C (\$3C)	EECR	_	-	-	_	EERIE	EEMWE	EEWE	EERE	19
\$19 (\$39) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 64 \$18 (\$38) PORTB PORTB7 PORTB6 PORTB6 PORTB5 PORTB4 PORTB2 PORTB1 PORTB1 64 \$17 (\$37) DDRB DDB7 DDB6 DDB5 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 64 \$16 (\$36) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 65 \$15 (\$35) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 65 \$14 (\$34) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 65 \$13 (\$33) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 65 \$12 (\$32) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 65 \$11 (\$31) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 65 \$10 (\$30) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 65 \$0F (\$2F) SPDR SPI Data Register 138 \$0D (\$2E) SPSR SPIF WCOL SPI2X 138 \$0D (\$2E) SPSR SPIF WCOL SPI2X 138 \$0D (\$2D) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 136 \$00 (\$2C) UDR USART I/O Data Register 159 \$08 (\$28) UCSRA RXC TXC UDRE FE DOR PE U2X MPCM 160 \$00 (\$2A) UCSRB RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 161 \$00 (\$2P) UBRRL USART Baud Rate Register Low Byte 164 \$00 (\$2P) ADMUX REF\$1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 214 \$06 (\$28) ADCSRA ADEN ADSC ADATE ADIF ADIF ADIE ADPS2 ADPS1 ADPS0 216	\$1B (\$3B)	PORTA	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	64
\$18 (\$38) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 64 \$17 (\$37) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 64 \$16 (\$36) PINB PINB7 PINB6 PINB5 PINB6 PINB3 PINB4 PINB3 PINB2 PINB1 PINB0 65 \$15 (\$35) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 65 \$14 (\$34) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 65 \$13 (\$33) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 65 \$12 (\$32) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 65 \$11 (\$31) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 65 \$10 (\$30) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 65 \$10 (\$30) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 65 \$06 (\$2E) SPSR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 138 \$00 (\$2C) UDR USART I/O Data Register \$138 \$00 (\$2C) UDR USART I/O Data Register \$159 \$08 (\$2B) UCSRA RXC TXC UDRE FE DOR PE U2X MPCM 160 \$00 (\$2D) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 136 \$00 (\$2D) USRRA RXC TXC UDRE FE DOR PE U2X MPCM 160 \$00 (\$2D) USRRA RXC TXC UDRE FE DOR PE U2X MPCM 160 \$00 (\$2D) USRRA RXC TXC UDRE FE DOR PE U2X MPCM 160 \$00 (\$2D) USRRA RXC TXC UDRE RXEN TXEN UCSZ2 RXB8 TXB8 161 \$00 (\$2D) USRRA RXC TXC UDRE RXEN TXEN UCSZ2 RXB8 TXB8 161 \$00 (\$2D) USRRA RXC TXC UDRE RXEN TXEN UCSZ2 RXB8 TXB8 161 \$00 (\$2D) ACSRA RAC RACS RACO ACO ACO ACO ACO ACO ACO ACO ACO ACO											
\$17 (\$37) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 64 \$16 (\$36) PINB PINB7 PINB6 PINB5 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 65 \$15 (\$35) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 65 \$14 (\$34) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 65 \$13 (\$33) PINC PINC7 PINC6 PINC6 PINC5 PORTD4 PORTD3 PINC2 PINC1 PINC0 65 \$12 (\$32) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 65 \$11 (\$31) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 65 \$10 (\$30) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 65 \$0F (\$2F) SPDR SPI Data Register 138 \$0F (\$2F) SPDR SPI Data Register 138 \$0D (\$2D) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 136 \$0D (\$2D) UCSRA RXC TXC UDRE FE DOR PE U2X MPCM 160 \$00 (\$2D) USRB RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 161 \$00 (\$29) UBRRL USART BAUAR ABER REGISTE LOW BYE \$00 (\$2F) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 214 \$00 (\$27) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 214 \$00 (\$26) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 216											
\$16 (\$36) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 65 \$15 (\$35) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 65 \$14 (\$34) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 65 \$13 (\$33) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 65 \$12 (\$32) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 65 \$11 (\$31) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 65 \$10 (\$30) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 65 \$0F (\$2F) SPDR SPI Data Register 138 \$0E (\$2E) SPSR SPIF WCOL SPI2X 138 \$0D (\$2D) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 136 \$0C (\$2C) UDR USART I/O Data Register 159 \$0B (\$2B) UCSRA RXC TXC UDRE FE DOR PE U2X MPCM 160 \$0A (\$2A) UCSRB RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 161 \$08 (\$28) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 199 \$07 (\$27) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 214 \$06 (\$26) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 216								1			
\$15 (\$35) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 65 \$14 (\$34) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 65 \$13 (\$33) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 65 \$12 (\$32) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 65 \$11 (\$31) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 65 \$10 (\$30) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 65 \$0F (\$2F) SPDR SPI Data Register 138 \$0E (\$2E) SPSR SPIF WCOL SPI2X 138 \$0D (\$2D) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 136 \$0C (\$2C) UDR USART I/O Data Register 159 \$0B (\$2B) UCSRA RXC TXC UDRE FE DOR PE U2X MPCM 160 \$08 (\$2B) USRB RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 161 \$08 (\$28) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 199 \$07 (\$27) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 214 \$06 (\$26) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 216											
\$14 (\$34) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 65 \$13 (\$33) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 65 \$12 (\$32) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 65 \$11 (\$31) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 65 \$10 (\$30) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 65 \$0F (\$2F) SPDR SPI Data Register 138 \$0E (\$2E) SPSR SPIF WCOL SPI2X 138 \$0D (\$2D) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 136 \$0C (\$2C) UDR USART I/O Data Register 159 \$0B (\$2B) UCSRA RXC TXC UDRE FE DOR PE U2X MPCM 160 \$0A (\$2A) UCSRB RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 161 \$09 (\$29) UBRRL USART Baud Rate Register Low Byte 164 \$08 (\$28) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACISO 199 \$07 (\$27) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 214 \$06 (\$26) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS0 216											
\$13 (\$33) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 65 \$12 (\$32) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 65 \$11 (\$31) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 65 \$10 (\$30) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 65 \$0F (\$2F) SPDR SPI Data Register 138 \$0E (\$2E) SPSR SPIF WCOL SPI2X 138 \$0D (\$2D) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 136 \$0C (\$2C) UDR USART I/O Data Register 159 \$0B (\$2B) UCSRA RXC TXC UDRE FE DOR PE U2X MPCM 160 \$0A (\$2A) UCSRB RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 161 \$09 (\$29) UBRRL USART Baud Rate Register Low Byte 164 \$08 (\$28) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 199 \$07 (\$27) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 214 \$06 (\$26) ADCSRA ADEN ADSC ADATE ADIF ADIF ADIE ADPS2 ADPS1 ADPS0 216								1	1	1	
\$11 (\$31) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 65 \$10 (\$30) PIND PIND7 PIND6 PIND5 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 65 \$0F (\$2F) SPDR SPI Data Register 138 \$0E (\$2E) SPSR SPIF WCOL SPI2X 138 \$0D (\$2D) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 136 \$0C (\$2C) UDR USART I/O Data Register 159 \$0B (\$2B) UCSRA RXC TXC UDRE FE DOR PE U2X MPCM 160 \$0A (\$2A) UCSRB RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 161 \$09 (\$29) UBRRL USART Baud Rate Register Low Byte 164 \$08 (\$28) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 199 \$07 (\$27) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 214 \$06 (\$26) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 216											
\$10 (\$30) PIND PIND PIND6 PIND5 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 65 \$0F (\$2F) SPDR SPI Data Register 138 \$0E (\$2E) SPSR SPIF WCOL SPI2X 138 \$0D (\$2D) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 136 \$0C (\$2C) UDR USART I/O Data Register 159 \$0B (\$2B) UCSRA RXC TXC UDRE FE DOR PE U2X MPCM 160 \$0A (\$2A) UCSRB RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 161 \$09 (\$29) UBRRL USART Baud Rate Register Low Byte 164 \$08 (\$28) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 199 \$07 (\$27) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 214 \$06 (\$26) ADCSRA ADEN ADSC ADATE ADIF ADIF ADIE ADPS2 ADPS1 ADPS0 216										1	
\$0F (\$2F)											
\$0E (\$2E)					PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	
\$0D (\$2D)			·							eniav	
\$0C (\$2C)					DORD.	MSTR	CPOL	CPHA	SPR1		
\$0B (\$2B)					BOND	WOTE	01 02	01117	01111	01110	
\$0A (\$2A)					UDRE	FE	DOR	PE	U2X	MPCM	
\$08 (\$28) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 199 \$07 (\$27) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 214 \$06 (\$26) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 216											
\$07 (\$27) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 214 \$06 (\$26) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 216	\$09 (\$29)	UBRRL	USART Baud	Rate Register Lo	w Byte						164
\$06 (\$26) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 216											
I \$05 (\$25) I ADCH I ADC Data Register High Byte					ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	
	\$05 (\$25)	ADCH	,								217
\$04 (\$24) ADCL ADC Data Register Low Byte 217					Pogintor						
\$03 (\$23) TWDR Two-wire Serial Interface Data Register 179 \$02 (\$22) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 179					, ·	T\A/A?	TMA2	T\A/A 4	TMAA	TWCCE	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
\$01 (\$21)	TWSR	TWS7	TWS6	TWS5	TWS4	TWS3	-	TWPS1	TWPS0	178
\$00 (\$20) TWBR Two-wire Serial Interface Bit Rate Register							177			

Notes:

- 1. When the OCDEN Fuse is unprogrammed, the OSCCAL Register is always accessed on this address. Refer to the debugger specific documentation for details on how to use the OCDR Register.
- 2. Refer to the USART description for details on how to access UBRRH and UCSRC.
- 3. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
- 4. Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O Register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.

Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AND	LOGIC INSTRUCTIONS	S			
ADD	Rd, Rr	Add two Registers	Rd ← Rd + Rr	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl,K	Add Immediate to Word	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	Rd ← Rd - Rr	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \leftarrow Rd - K - C$	Z,C,N,V,H	1
SBIW	Rdl,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$Rd \leftarrow Rd \vee Rr$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \vee K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	$Rd \leftarrow \$FF - Rd$	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← \$00 – Rd	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	$Rd \leftarrow Rd \vee K$	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (\$FF - K)$	Z,N,V	1
INC	Rd	Increment	Rd ← Rd + 1	Z,N,V	1
DEC	Rd	Decrement	Rd ← Rd − 1	Z,N,V	1
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \bullet Rd$	Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1
SER	Rd	Set Register	Rd ← \$FF	None	1
MUL	Rd, Rr	Multiply Unsigned	R1:R0 ← Rd x Rr	Z,C	2
MULS	Rd, Rr	Multiply Signed	R1:R0 ← Rd x Rr	Z,C	2
MULSU	Rd, Rr	Multiply Signed with Unsigned	R1:R0 ← Rd x Rr	Z,C	2
FMUL	Rd, Rr	Fractional Multiply Unsigned	R1:R0 ← (Rd x Rr) << 1	Z,C	2
FMULS	Rd, Rr	Fractional Multiply Signed	R1:R0 ← (Rd x Rr) << 1	Z,C	2
FMULSU	Rd, Rr	Fractional Multiply Signed with Unsigned	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2
RJMP		Polativa luma	PC ← PC + k + 1	None	2
IJMP	k	Relative Jump	PC ← Z		2
JMP	k	Indirect Jump to (Z) Direct Jump	PC ← k	None None	3
RCALL	k	Relative Subroutine Call	PC ← PC + k + 1	None	3
ICALL	N.	Indirect Call to (Z)	PC ← Z	None	3
CALL	k	Direct Subroutine Call	PC ← k	None	4
RET	K	Subroutine Return	PC ← Stack	None	4
RETI		Interrupt Return	PC ← Stack	I	4
CPSE	Rd,Rr	Compare, Skip if Equal	if (Rd = Rr) PC ← PC + 2 or 3	None	1/2/3
CP	Rd,Rr	Compare	Rd – Rr	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	Rd – Rr – C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if (Rr(b)=1) PC ← PC + 2 or 3	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if (P(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if (P(b)=1) PC ← PC + 2 or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC←PC+k + 1	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC←PC+k + 1	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC ← PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if (Z = 0) then PC ← PC + k + 1	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC ← PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC ← PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC ← PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC ← PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC ← PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC ← PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if (N \oplus V= 0) then PC \leftarrow PC + k + 1	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if (N \oplus V= 1) then PC \leftarrow PC + k + 1	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC ← PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC ← PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC \leftarrow PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC ← PC + k + 1	None	1/2
DDV0	k	Branch if Overflow Flag is Set	if (V = 1) then PC ← PC + k + 1	None	1/2
BRVS	- "	Š			

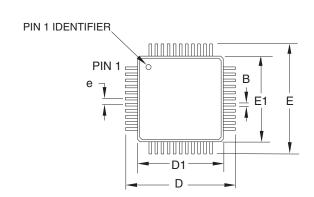
Mnemonics	Operands	Description	Operation	Flags	#Clocks
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC ← PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC ← PC + k + 1	None	1/2
DATA TRANSFER	INSTRUCTIONS				
MOV	Rd, Rr	Move Between Registers	Rd ← Rr	None	1
MOVW	Rd, Rr	Copy Register Word	Rd+1:Rd ← Rr+1:Rr	None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1$, $Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect and Post Inc	Rd ← (Y)	None	2 2
LD	Rd, Y+ Rd, - Y	Load Indirect and Post-Inc. Load Indirect and Pre-Dec.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$ $Y \leftarrow Y - 1, Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect and Pre-Dec. Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (1 + q)$ $Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	Rd ← (k)	None	2
ST	X, Rr	Store Indirect	(X) ← Rr	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1$, $(X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	(Y) ← Rr	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$Y \leftarrow Y - 1$, $(Y) \leftarrow Rr$	None	2
STD	Y+q,Rr	Store Indirect with Displacement	$(Y + q) \leftarrow Rr$	None	2
ST	Z, Rr	Store Indirect	(Z) ← Rr	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $(Z) \leftarrow Rr$	None	2
STD	Z+q,Rr	Store Indirect with Displacement	$(Z + q) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	(k) ← Rr	None	2
LPM		Load Program Memory	R0 ← (Z)	None	3
LPM	Rd, Z	Load Program Memory	$Rd \leftarrow (Z)$	None	3
LPM	Rd, Z+	Load Program Memory and Post-Inc	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	3
SPM		Store Program Memory	(Z) ← R1:R0	None	-
IN	Rd, P	In Port	Rd ← P	None	1
OUT	P, Rr	Out Port	P ← Rr	None	1
PUSH	Rr Rd	Push Register on Stack	Stack ← Rr	None	2 2
BIT AND BIT-TEST		Pop Register from Stack	Rd ← Stack	None	
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	$I/O(P,b) \leftarrow 1$ $I/O(P,b) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BSET	s	Flag Set	SREG(s) ← 1	SREG(s)	1
BCLR	s	Flag Clear	SREG(s) ← 0	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	Т	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	C ← 0	С	1
SEN		Set Negative Flag	N ← 1	N	1
CLN	1	Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ	1	Clear Zero Flag	Z ← 0	Z	1
SEI	1	Global Interrupt Enable	← 1	1	1
CLI	1	Global Interrupt Disable	1←0	1	1
SES	1	Set Signed Test Flag	S ← 1	S	1
CLS	1	Clear Signed Test Flag	S ← 0	S	1 1
SEV	1	Set Twos Complement Overflow	V ← 1	V	1
CLV SET	-	Clear Twos Complement Overflow	V ← 0	V T	1
3E1	I	Set T in SREG	T ← 1	1	1
CLT		Clear T in SREG	T ← 0	T	1

Mnemonics	Operands	Description	Operation	Flags	#Clocks		
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1		
MCU CONTROL I	MCU CONTROL INSTRUCTIONS						
NOP		No Operation		None	1		
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1		
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1		
BREAK		Break	For On-Chip Debug Only	None	N/A		

Ordering Information

Speed (MHz)	Power Supply	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range	
8	2.7V - 5.5V	ATmega32L-8AU ATmega32L-8AUR ⁽³⁾ ATmega32L-8PU ATmega32L-8MU ATmega32L-8MUR ⁽³⁾	44A 44A 40P6 44M1 44M1	Industrial	
16	4.5V - 5.5V	ATmega32-16AU ATmega32-16AUR ⁽³⁾ ATmega32-16PU ATmega32-16MU ATmega32-16MUR ⁽³⁾	44A 44A 40P6 44M1 44M1	(-40°C to 85°C)	

Notes:


- 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
- 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
- 3. Tape & Reel

	Package Type					
44 A	44-lead, 10 × 10 × 1.0mm, Thin Profile Plastic Quad Flat Package (TQFP)					
40P6	40-pin, 0.600" Wide, Plastic Dual Inline Package (PDIP)					
44M1	44-pad, 7 × 7 × 1.0mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)					

Packaging Information

44A

COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	_	_	1.20	
A1	0.05	_	0.15	
A2	0.95	1.00	1.05	
D	11.75	12.00	12.25	
D1	9.90	10.00	10.10	Note 2
Е	11.75	12.00	12.25	
E1	9.90	10.00	10.10	Note 2
В	0.30	_	0.45	
С	0.09	_	0.20	
L	0.45	_	0.75	
е	0.80 TYP			

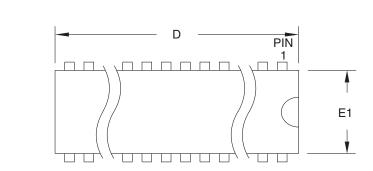
2010-10-20

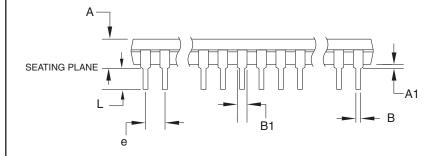
Notes

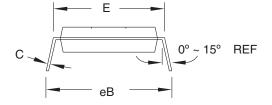
- 1. This package conforms to JEDEC reference MS-026, Variation ACB.
- Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.

TITLE

3. Lead coplanarity is 0.10 mm maximum.


4Imei	2325 Orchard	Parkway
AIIIIEL	2325 Orchard San Jose, CA	95131


44A, 44-lead, 10 x 10 mm Body Size, 1.0 mm Body Thickness, 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)


DRAWING NO.	REV.
44A	С

40P6

Notes:

- 1. This package conforms to JEDEC reference MS-011, Variation AC.
- Dimensions D and E1 do not include mold Flash or Protrusion. Mold Flash or Protrusion shall not exceed 0.25 mm (0.010").

COMMON DIMENSIONS

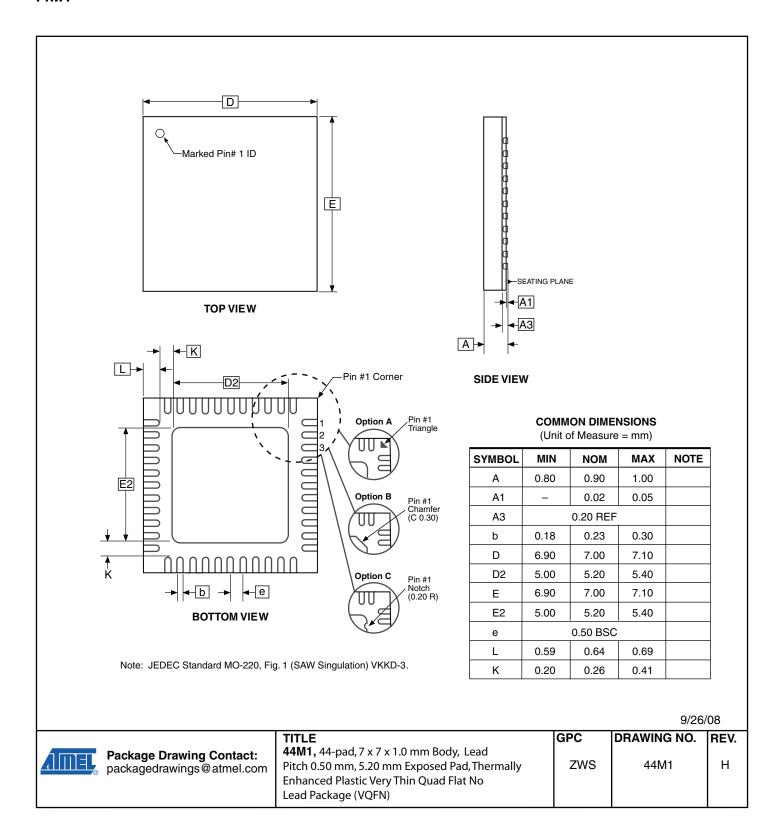
(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	_	_	4.826	
A1	0.381	_	_	
D	52.070	_	52.578	Note 2
Е	15.240	_	15.875	
E1	13.462	_	13.970	Note 2
В	0.356	_	0.559	
B1	1.041	_	1.651	
L	3.048	_	3.556	
С	0.203	_	0.381	
eB	15.494	_	17.526	
е	2.540 TYP			

09/28/01

REV.

<u>AIMEL</u>	2325 Orchard	Parkwa
	San Jose, CA	95131


TITLE 40P6, 40-lead (0.600"/15.24 mm Wide) Plastic Dual Inline Package (PDIP)

DRAWING NO. 40P6

P6 B

44M1

Errata

ATmega32, rev. A to F

- First Analog Comparator conversion may be delayed
- Interrupts may be lost when writing the timer registers in the asynchronous timer
- IDCODE masks data from TDI input
- Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt request.

1. First Analog Comparator conversion may be delayed

If the device is powered by a slow rising V_{CC} , the first Analog Comparator conversion will take longer than expected on some devices.

Problem Fix/Workaround

When the device has been powered or reset, disable then enable the Analog Comparator before the first conversion.

2. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem Fix/Workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous-Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

3. IDCODE masks data from TDI input

The JTAG instruction IDCODE is not working correctly. Data to succeeding devices are replaced by all-ones during Update-DR.

Problem Fix / Workaround

- If ATmega32 is the only device in the scan chain, the problem is not visible.
- Select the Device ID Register of the ATmega32 by issuing the IDCODE instruction or by entering the Test-Logic-Reset state of the TAP controller to read out the contents of its Device ID Register and possibly data from succeeding devices of the scan chain. Issue the BYPASS instruction to the ATmega32 while reading the Device ID Registers of preceding devices of the boundary scan chain.
- If the Device IDs of all devices in the boundary scan chain must be captured simultaneously, the ATmega32 must be the fist device in the chain.

4. Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt request.

Reading EEPROM by using the ST or STS command to set the EERE bit in the EECR register triggers an unexpected EEPROM interrupt request.

Problem Fix / Workaround

Always use OUT or SBI to set EERE in EECR.

Datasheet Revision **History**

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

Changes from Rev. 2503P-07/09 to Rev. 2503Q-02/11

- 1. Updated "Packaging Information" on page 333, by replacing the package 44A by a correct one.
- 2. Updated the datasheet according to the Atmel new Brand Style Guide.
- 3. Updated "Ordering Information" on page 332 to include Tape & Reel devices.

Changes from Rev. 2503O-07/09 to Rev. 2503P-07/10

- 1. Inserted Note in "Performing Page Erase by SPM" on page 251.
- 2. Note 6 and Note 7 in Table 119 on page 290 have been removed.
- 3. Updated "Performing Page Erase by SPM" on page 251.

Changes from Rev. 2503N-06/08 to

1. Updated "Errata" on page 336.

Rev.

2. Updated the TOC with new template (version 5.10)

2503M-05/08 to

Rev.

2503N-06/08

25030-07/09

Changes from Rev. 1. Added the note "Not recommended for new designs" on "Features" on page 1.

Changes from Rev. 1. Updated "Ordering Information" on page 12: 2503L-05/08 to Rev.

- Commercial ordering codes removed.

2503M-05/08

- Non Pb-free package option removed.
- 2. Removed note from Feature list in "Analog to Digital Converter" on page 201.
- 3. Removed note from Table 84 on page 215.

Changes from Rev. 2503K-08/07 to

Rev.

1. Updated "Fast PWM Mode" on page 75 in "8-bit Timer/Counter0 with PWM" on page

2503L-05/08

- Removed the last section describing how to achieve a frequency with 50% duty cycle waveform output in fast PWM mode.

Changes from Rev. 2503J-10/06 to

Rev. 2503K-08/07

- 1. Renamed "Input Capture Trigger Source" to "Input Capture Pin Source" on page 94.
- 2. Updated "Features" on page 1.
- 3. Added "Data Retention" on page 6.
- 4. Updated "Errata" on page 336.

5. Updated "Slave Mode" on page 136.

Changes from Rev. 2503I-04/06 to Rev. 2503J-10/06

- Updated "Fast PWM Mode" on page 99.
- 2. Updated Table 38 on page 80, Table 40 on page 81, Table 45 on page 108, Table 47 on page 109, Table 50 on page 125 and Table 52 on page 126.
- 3. Updated typo in table note 6 in "DC Characteristics" on page 287.
- 4. Updated "Errata" on page 336.

Changes from Rev. 2503H-03/05 to Rev. 2503I-04/06

- 1. Updated Figure 1 on page 2.
- 2. Added "Resources" on page 6.
- 3. Added note to "Timer/Counter Oscillator" on page 31.
- 4. Updated "Serial Peripheral Interface SPI" on page 132.
- 5. Updated note in "Bit Rate Generator Unit" on page 175.
- 6. Updated Table 86 on page 218.
- 7. Updated "DC Characteristics" on page 287.

Changes from Rev. 2503G-11/04 to Rev. 2503H-03/05

- 1. MLF-package alternative changed to "Quad Flat No-Lead/Micro Lead Frame Package QFN/MLF".
- 2. Updated "Electrical Characteristics" on page 287
- 3. Updated "Ordering Information" on page 332.

Changes from Rev. 2503F-12/03 to Rev. 2503G-11/04

- 1. "Channel" renamed "Compare unit" in Timer/Counter sections, ICP renamed ICP1.
- 2. Updated Table 7 on page 29, Table 15 on page 37, Table 81 on page 206, Table 114 on page 272, Table 115 on page 273, and Table 118 on page 289.
- Updated Figure 1 on page 2, Figure 46 on page 100.
- 4. Updated "Version" on page 226.
- 5. Updated "Calibration Byte" on page 258.
- Added section "Page Size" on page 258.
- 7. Updated "ATmega32 Typical Characteristics" on page 296.
- 8. Updated "Ordering Information" on page 332.

Changes from Rev. 2503E-09/03 to Rev. 2503F-12/03

1. Updated "Calibrated Internal RC Oscillator" on page 29.

Changes from Rev. 2503D-02/03 to Rev. 2503E-09/03

- 1. Updated and changed "On-chip Debug System" to "JTAG Interface and On-chip Debug System" on page 35.
- 2. Updated Table 15 on page 37.
- 3. Updated "Test Access Port TAP" on page 219 regarding the JTAGEN fuse.
- 4. Updated description for Bit 7 JTD: JTAG Interface Disable on page 228.
- 5. Added a note regarding JTAGEN fuse to Table 104 on page 257.
- 6. Updated Absolute Maximum Ratings*, DC Characteristics and ADC Characteristics in "Electrical Characteristics" on page 287.
- 7. Added a proposal for solving problems regarding the JTAG instruction IDCODE in "Errata" on page 336.

Changes from Rev. 2503C-10/02 to Rev. 2503D-02/03

- 1. Added EEAR9 in EEARH in "Register Summary" on page 327.
- Added Chip Erase as a first step in "Programming the Flash" on page 284 and "Programming the EEPROM" on page 285.
- 3. Removed reference to "Multi-purpose Oscillator" application note and "32 kHz Crystal Oscillator" application note, which do not exist.
- 4. Added information about PWM symmetry for Timer0 and Timer2.
- 5. Added note in "Filling the Temporary Buffer (Page Loading)" on page 251 about writing to the EEPROM during an SPM Page Load.
- 6. Added "Power Consumption" data in "Features" on page 1.
- 7. Added section "EEPROM Write During Power-down Sleep Mode" on page 22.
- 8. Added note about Differential Mode with Auto Triggering in "Prescaling and Conversion Timing" on page 204.
- 9. Updated Table 89 on page 232.
- 10.Added updated "Packaging Information" on page 333.

Changes from Rev. 2503B-10/02 to Rev. 2503C-10/02

1. Updated the "DC Characteristics" on page 287.

Changes from Rev. 2503A-03/02 to Rev. 2503B-10/02

- 1. Canged the endurance on the Flash to 10,000 Write/Erase Cycles.
- 2. Bit nr.4 ADHSM in SFIOR Register removed.
- 3. Added the section "Default Clock Source" on page 25.
- 4. When using External Clock there are some limitations regards to change of frequency. This is described in "External Clock" on page 31 and Table 117 on page 289.

- 5. Added a sub section regarding OCD-system and power consumption in the section "Minimizing Power Consumption" on page 34.
- 6. Corrected typo (WGM-bit setting) for:
 - "Fast PWM Mode" on page 75 (Timer/Counter0)
 - "Phase Correct PWM Mode" on page 76 (Timer/Counter0)
 - "Fast PWM Mode" on page 120 (Timer/Counter2)
 - "Phase Correct PWM Mode" on page 121 (Timer/Counter2)
- 7. Corrected Table 67 on page 164 (USART).
- 8. Updated V_{IL} , I_{IL} , and I_{IH} parameter in "DC Characteristics" on page 287.
- 9. Updated Description of OSCCAL Calibration Byte.

In the datasheet, it was not explained how to take advantage of the calibration bytes for 2, 4, and 8 MHz Oscillator selections. This is now added in the following sections:

Improved description of "Oscillator Calibration Register – OSCCAL" on page 30 and "Calibration Byte" on page 258.

- 10. Corrected typo in Table 42.
- 11. Corrected description in Table 45 and Table 46.
- 12. Updated Table 118, Table 120, and Table 121.
- 13. Added "Errata" on page 336.

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 USA

Tel: (+1)(408) 441-0311 **Fax**: (+1)(408) 487-2600

www.atmel.com

Atmel Asia Limited

Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon HONG KONG

Tel: (+852) 2245-6100 **Fax**: (+852) 2722-1369

Atmel Munich GmbH

Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY

Tel: (+49) 89-31970-0 **Fax**: (+49) 89-3194621

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033

JAPAN

Tel: (+81)(3) 3523-3551 **Fax**: (+81)(3) 3523-7581

© 2011 Atmel Corporation. All rights reserved. / Rev. CORP0XXXX

Atmel[®], Atmel logo and combinations thereof, AVR[®] and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.