

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	Coldfire V2
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, UART/USART
Peripherals	DMA, WDT
Number of I/O	61
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	<u> </u>
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.4V ~ 1.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	196-LBGA
Supplier Device Package	196-LBGA (15x15)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf5270vm100j

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features

3 Features

For a detailed feature list see the MCF5271 Reference Manual (MCF5271RM).

4 Signal Descriptions

This section describes signals that connect off chip, including a table of signal properties. For a more detailed discussion of the MCF5271 signals, consult the *MCF5271 Reference Manual* (MCF5271RM).

4.1 Signal Properties

Table 4 lists all of the signals grouped by function. The "Dir" column is the direction for the primary function of the pin. Refer to Section 6, "Mechanicals/Pinouts and Part Numbers," for package diagrams.

NOTE

In this table and throughout this document a single signal within a group is designated without square brackets (i.e., A24), while designations for multiple signals within a group use brackets (i.e., A[23:21]) and is meant to include all signals within the two bracketed numbers when these numbers are separated by a colon.

NOTE

The primary functionality of a pin is not necessarily its default functionality. Pins that are muxed with GPIO will default to their GPIO functionality.

Signal Name	GPIO	Alternate 1	Alternate 1 Alternate 2		MCF5270 MCF5271 160 QFP	MCF5270 MCF5271 196 MAPBGA				
Reset										
RESET — — — I 83 N13										
RSTOUT	_	_		0	82	P13				
Clock										
EXTAL	_	—	_	I	86	M14				
XTAL	_	_	_	0	85	N14				
CLKOUT	_	_	_	0	89	K14				
		Мс	ode Selection	n						
CLKMOD[1:0]	_	—	_	I	20,21	G5,H5				
RCON	_	—	_	Ι	79	K10				
	External Memory Interface and Ports									
A[23:21]	PADDR[7:5]	<u>CS</u> [6:4]		0	126, 125, 124	B11, C11, D11				

Table 2. MCF5270 and MCF5271 Signal Information and Muxing

Signal Name	GPIO	Alternate 1	Alternate 2	Dir. ¹	MCF5270 MCF5271 160 QFP	MCF5270 MCF5271 196 MAPBGA					
A[20:0]		Ι	Ι	0	123:115, 112:106, 102:98	A12, B12, C12, A13, B13, B14, C13, C14, D12, D13, D14, E11, E12, E13, E14, F12, F13, F14, G11, G12, G13					
D[31:16]	_	_	_	0	22:30, 33:39	G1, G2, H1, H2, H3, H4, J1, J2, J3, J4, K1, K2, K3, K4, L1, L2					
D[15:8]	PDATAH[7:0]	_	_	0	42:49	M1, N1, M2, N2, P2, L3, M3, N3					
D[7:0]	PDATAL[7:0]	_	_	0	50:52, 56:60	P3, M4, N4, P4, L5, M5, N5, P5					
BS[3:0]	PBS[7:4]	CAS[3:0]	_	0	143:140	B6, C6, D7, C7					
OE	PBUSCTL7	_	_	0	62	N6					
TA	PBUSCTL6	_	_	Ι	96	H11					
TEA	PBUSCTL5	DREQ1		Ι	—	J14					
R/W	PBUSCTL4	_	_	0	95	J13					
TSIZ1	PBUSCTL3	DACK1		0	—	P6					
TSIZ0	PBUSCTL2	DACK0		0	—	P7					
TS	PBUSCTL1	DACK2	_	0	97	H13					
TIP	PBUSCTL0	DREQ0		0		H12					
		C	hip Selects								
<u>CS</u> [7:4]	PCS[7:4]	_	_	0	_	B9, A10, C10, A11					
<u>CS</u> [3:2]	PCS[3:2]	SD_CS[1:0]	-	0	132,131	A9, C9					
CS1	PCS1	_	_	0	130	B10					
CS0				0	129	D10					
		SDR	AM Control	ler							
SD_WE	PSDRAM5		—	0	92	K13					
SD_SCAS	PSDRAM4	—	—	0	91	K12					
SD_SRAS	PSDRAM3	—	—	0	90	K11					
SD_CKE	PSDRAM2	—	_	0	—	E8					
SD_CS[1:0]	PSDRAM[1:0]			0	_	L12, L13					

Table 2. MCF5270 and MCF5271 Signal Information and Muxing (continued)

Signal Descriptions

			-		MCF5270	MCF5270
Signal Name	GPIO	Alternate 1	Alternate 2	Dir. ¹		MCF5271 196 MAPBGA
		·	UARTs			
U2TXD	PUARTH1	—	—	0		A8
U2RXD	PUARTH0	—	—	Ι	_	A7
U1CTS	PUARTL7	U2CTS	—	I	136	B8
U1RTS	PUARTL6	U2RTS	—	0	135	C8
U1TXD	PUARTL5	—	—	0	133	D9
U1RXD	PUARTL4	—	—	I	134	D8
UOCTS	PUARTL3	—	—	Ι	12	F3
UORTS	PUARTL2	—	—	0	15	G3
U0TXD	PUARTL1	—	—	0	14	F1
U0RXD	PUARTL0	—	—	Ι	13	F2
		C	MA Timers			
DT3IN	PTIMER7	U2CTS	QSPI_CS2	Ι		H14
DT3OUT	PTIMER6	U2RTS	QSPI_CS3	0	_	G14
DT2IN	PTIMER5	DREQ2	DT2OUT	Ι	66	M9
DT2OUT	PTIMER4	DACK2	—	0	_	L9
DT1IN	PTIMER3	DREQ1	DT1OUT	Ι	61	L6
DT1OUT	PTIMER2	DACK1	—	0	_	M6
DT0IN	PTIMER1	DREQ0	—	I	10	E4
DT0OUT	PTIMER0	DACK0		0	11	F4
		Ē	BDM/JTAG ²			
DSCLK		TRST	_	0	70	N9
PSTCLK		TCLK	—	0	68	P9
BKPT		TMS	—	0	71	P10
DSI		TDI	—	Ι	73	M10
DSO		TDO	—	0	72	N10
JTAG_EN		—	—	Ι	78	K9
DDATA[3:0]		_	—	0		M12, N12, P12, L11
PST[3:0]		—	—	0	77:74	M11, N11, P11, L10

Table 2. MCF5270 and MCF5271 Signal Information and Muxing (continued)

Design Recommendations

will be undesired high current in the ESD protection diodes. There are no requirements for the fall times of the power supplies.

The recommended power down sequence is as follows:

- 1. Drop V_{DD} to 0 V.
- 2. Drop OV_{DD}/V_{DDPLL} supplies.

5.3 Decoupling

- Place the decoupling caps as close to the pins as possible, but they can be outside the footprint of the package.
- 0.1 μ F and 0.01 μ F at each supply input

5.4 Buffering

• Use bus buffers on all data/address lines for all off-board accesses and for all on-board accesses when excessive loading is expected. See Section 7, "Electrical Characteristics."

5.5 Pull-up Recommendations

• Use external pull-up resistors on unused inputs. See pin table.

5.6 Clocking Recommendations

- Use a multi-layer board with a separate ground plane.
- Place the crystal and all other associated components as close to the EXTAL and XTAL (oscillator pins) as possible.
- Do not run a high frequency trace around crystal circuit.
- Ensure that the ground for the bypass capacitors is connected to a solid ground trace.
- Tie the ground trace to the ground pin nearest EXTAL and XTAL. This prevents large loop currents in the vicinity of the crystal.
- Tie the ground pin to the most solid ground in the system.
- Do not connect the trace that connects the oscillator and the ground plane to any other circuit element. This tends to make the oscillator unstable.
- Tie XTAL to ground when an external oscillator is clocking the device.

5.7 Interface Recommendations

5.7.1 SDRAM Controller

5.7.1.1 SDRAM Controller Signals in Synchronous Mode

Table 3 shows the behavior of SDRAM signals in synchronous mode.

r	
Signal	Description
SD_SRAS	Synchronous row address strobe. Indicates a valid SDRAM row address is present and can be latched by the SDRAM. SD_SRAS should be connected to the corresponding SDRAM SD_SRAS. Do not confuse SD_SRAS with the DRAM controller's SD_CS[1:0], which should not be interfaced to the SDRAM SD_SRAS signals.
SD_SCAS	Synchronous column address strobe. Indicates a valid column address is present and can be latched by the SDRAM. SD_SCAS should be connected to the corresponding signal labeled SD_SCAS on the SDRAM.
DRAMW	DRAM read/write. Asserted for write operations and negated for read operations.
SD_CS[1:0]	Row address strobe. Select each memory block of SDRAMs connected to the MCF5271. One SD_CS signal selects one SDRAM block and connects to the corresponding \overline{CS} signals.
SD_CKE	Synchronous DRAM clock enable. Connected directly to the CKE (clock enable) signal of SDRAMs. Enables and disables the clock internal to SDRAM. When CKE is low, memory can enter a power-down mode where operations are suspended or they can enter self-refresh mode. SD_CKE functionality is controlled by DCR[COC]. For designs using external multiplexing, setting COC allows SD_CKE to provide command-bit functionality.
BS[3:0]	Column address strobe. For synchronous operation, $\overline{\text{BS}}$ [3:0] function as byte enables to the SDRAMs. They connect to the DQM signals (or mask qualifiers) of the SDRAMs.
CLKOUT	Bus clock output. Connects to the CLK input of SDRAMs.

Table 3. Synchronous DRAM Signal Connections

5.7.1.2 Address Multiplexing

See the SDRAM controller module chapter in the *MCF5271 Reference Manual* for details on address multiplexing.

5.7.2 Ethernet PHY Transceiver Connection

The FEC supports both an MII interface for 10/100 Mbps Ethernet and a seven-wire serial interface for 10 Mbps Ethernet. The interface mode is selected by R_CNTRL[MII_MODE]. In MII mode, the 802.3 standard defines and the FEC module supports 18 signals. These are shown in Table 4.

Signal Description	MCF5271 Pin
Transmit clock	ETXCLK
Transmit enable	ETXEN
Transmit data	ETXD[3:0]
Transmit error	ETXER
Collision	ECOL
Carrier sense	ECRS
Receive clock	ERXCLK
Receive enable	ERXDV
Receive data	ERXD[3:0]

Table 4. MII Mode

6.1 Pinout—196 MAPBGA

The following figure shows a pinout of the MCF5270/71CVMxxx package.

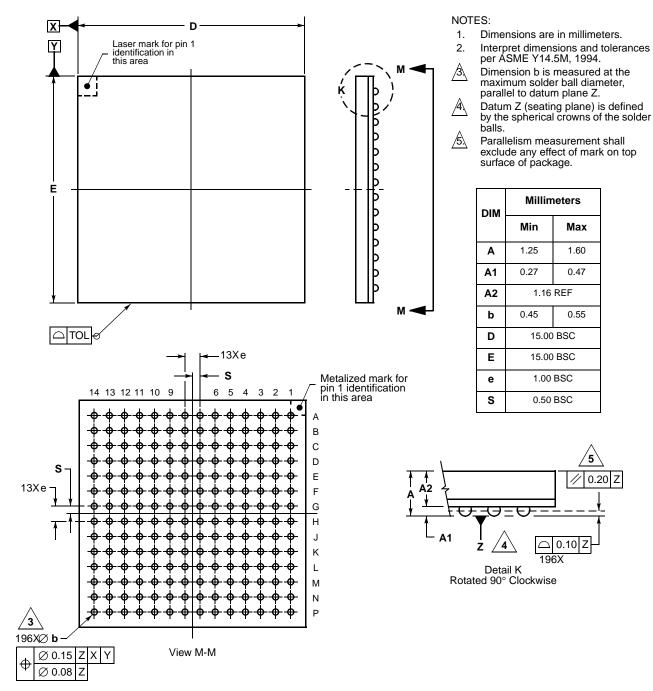
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
A		ETXCLK	ETXD3	ETXD2	QSPI_ DOUT	QSPI_CS0	U2RXD	U2TXD	CS3	CS6	CS4	A20	A17		А
В	ERXD0	ERXER	ETXER	ETXD0	QSPI_DIN	BS3	QSPI_CS1	U1CTS	CS7	CS1	A23	A19	A16	A15	в
С	ERXD2	ERXD1	ETXEN	ETXD1	QSCK	BS2	BSO	RTS1	CS2	CS5	A22	A18	A14	A13	с
D	ERXCLK	ERXDV	ERXD3	EMDC	EMDIO	Core VDD_4	BS1	U1RXD1	U1TXD	CS0	A21	A12	A11	A10	D
E	ECRS	ECOL	NC	TIN0	VDD	VSS	VDD	SD_CKE	VSS	VDD	A9	A8	A7	A6	E
F	U0TXD	U0RXD	U0CTS	DTOUT0	TEST		VDD	VSS	VDD	VSS	Core VDD_3	A5	A4	A3	F
G	D31	D30	UORTS	Core VDD_1	CLK MOD1	VDD	VSS	VDD	VSS	NC	A2	A1	A0	DTOUT3	G
Н	D29	D28	D27	D26	CLK MOD0	VSS	VDD	VDD	VDD	NC	TA	TIP	TS	DTIN3	н
J	D25	D24	D23	D22	VSS	VDD	VSS	VDD	VSS	VDD	I2C_SCL	I2C_SDA	R/W	TEA	J
к	D21	D20	D19	D18	VDD	VDD		VDD	JTAG_EN	RCON	SD_ RAS	SD_CAS	SD_WE	CLKOUT	к
L	D17	D16	D10	Core VDD_2	D3	DTIN1	IRQ5	IRQ1	DTOUT2	PST0	DDATA0	SD_CS1	SD_CS0	VSSPLL	L
М	D15	D13	D9	D6	D2	DTOUT1	IRQ6	IRQ2	DTIN2	TDI/DSI	PST3	DDATA3	VDDPLL	EXTAL	м
N	D14	D12	D8	D5	D1	OE	IRQ7	IRQ3	TRST/ DSCLK	TDO/DSO	PST2	DDATA2	RESET	XTAL	N
Ρ	VSS	D11	D7	D4	D0	TSIZ1	TSIZ0	IRQ4	TCLK/ PSTCLK	<u>TMS/</u> BKPT	PST1	DDATA1	RSTOUT	VSS	Р
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	

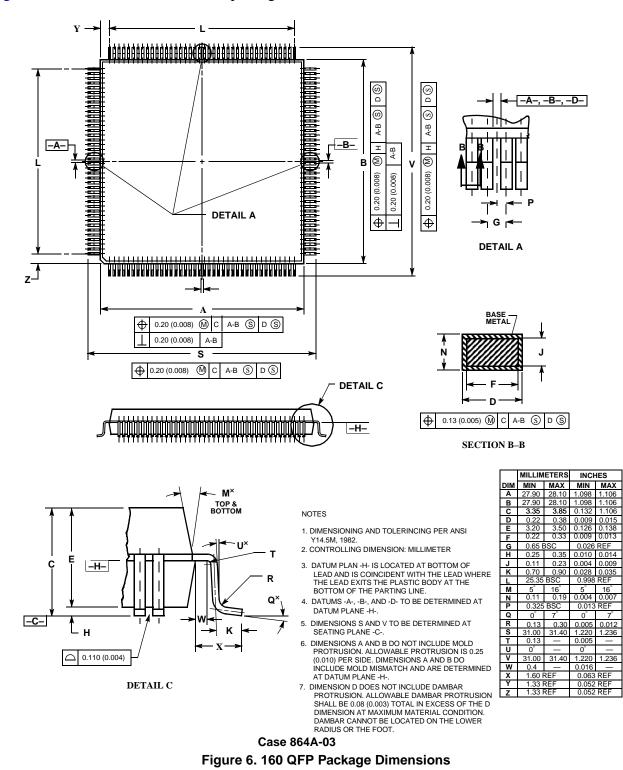
Figure 3. MCF5270/71CVMxxx Pinout (196 MAPBGA)

Mechanicals/Pinouts and Part Numbers

6.2 Package Dimensions—196 MAPBGA

Figure 4 shows MCF5270/71CVMxxx package dimensions.




Figure 4. 196 MAPBGA Package Dimensions (Case No. 1128A-01)

Mechanicals/Pinouts and Part Numbers

6.4 Package Dimensions—160 QFP

Figure 6 shows MCF5270/71CAB80 package dimensions.

6.5 Ordering Information

 Table 6. Orderable Part Numbers

Freescale Part Number	Description	Package	Speed	Lead-Free?	Temperature
MCF5270AB100	MCF5270 RISC Microprocessor	160 QFP	100MHz	Yes	0° to +70° C
MCF5270CAB100	MCF5270 RISC Microprocessor	160 QFP	100MHz	Yes	-40° to +85° C
MCF5270VM100	MCF5270 RISC Microprocessor	196 MAPBGA	100MHz	Yes	0° to +70° C
MCF5270CVM150	MCF5270 RISC Microprocessor	196 MAPBGA	150MHz	Yes	-40° to +85° C
MCF5271CAB100	MCF5271 RISC Microprocessor	160 QFP	100MHz	Yes	-40° to +85° C
MCF5271CVM100	MCF5271 RISC Microprocessor	196 MAPBGA	100MHz	Yes	-40° to +85° C
MCF5271CVM150	MCF5271 RISC Microprocessor	196 MAPBGA	150MHz	Yes	-40° to +85° C

7 Electrical Characteristics

This chapter contains electrical specification tables and reference timing diagrams for the MCF5271 microcontroller unit. This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications of MCF5271.

NOTE

The parameters specified in this processor document supersede any values found in the module specifications.

7.1 Maximum Ratings

 Table 7. Absolute Maximum Ratings^{1, 2}

Rating	Symbol	Value	Unit
Core Supply Voltage	V _{DD}	- 0.5 to +2.0	V
Pad Supply Voltage	OV _{DD}	– 0.3 to +4.0	V
PLL Supply Voltage	V _{DDPLL}	– 0.3 to +4.0	V
Digital Input Voltage ³	V _{IN}	– 0.3 to + 4.0	V
Instantaneous Maximum Current Single pin limit (applies to all pins) ^{3,4,5}	Ι _D	25	mA
Operating Temperature Range (Packaged)	T _A (T _L - T _H)	– 40 to 85	°C
Storage Temperature Range	T _{stg}	– 65 to 150	°C

Functional operating conditions are given in DC Electrical Specifications. Absolute Maximum Ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Continued operation at these levels may affect device reliability or cause permanent damage to the device.

1

7.5 External Interface Timing Characteristics

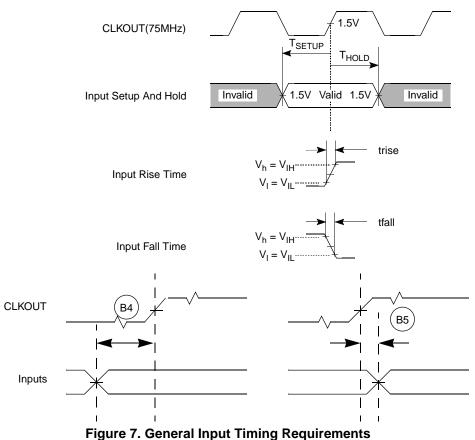
Table 11 lists processor bus input timings.

NOTE

All processor bus timings are synchronous; that is, input setup/hold and output delay with respect to the rising edge of a reference clock. The reference clock is the CLKOUT output.

All other timing relationships can be derived from these values.

Name	Characteristic ¹	Symbol	Min	Max	Unit					
freq	System bus frequency	f _{sys/2}	50	75	MHz					
B0	CLKOUT period	t _{cyc}	_	1/75	ns					
	Control Inputs									
B1a	Control input valid to CLKOUT high ²	t _{CVCH}	9	—	ns					
B1b	BKPT valid to CLKOUT high ³	t _{BKVCH}	9		ns					
B2a	CLKOUT high to control inputs invalid ²	t _{CHCII}	0		ns					
B2b	CLKOUT high to asynchronous control input BKPT invalid ³	t _{BKNCH}	0	—	ns					
	Data Inputs									
B4	Data input (D[31:0]) valid to CLKOUT high	t _{DIVCH}	4		ns					
B5	CLKOUT high to data input (D[31:0]) invalid	t _{CHDII}	0	_	ns					


Table 11. Processor Bus Input Timing Specifications

¹ Timing specifications are tested using full drive strength pad configurations in a 50ohm transmission line environment..

 2 TEA and TA pins are being referred to as control inputs.

³ Refer to figure A-19.

Timings listed in Table 11 are shown in Figure 7.

* The timings are also valid for inputs sampled on the negative clock edge.

7.6 **Processor Bus Output Timing Specifications**

Table 12 lists processor bus output timings.

Name	Characteristic	Symbol	Min	Max	Unit					
	Control Outputs									
B6a	CLKOUT high to chip selects valid ¹	t _{CHCV}	_	0.5t _{CYC} +5	ns					
B6b	CLKOUT high to byte enables (BS[3:0]) valid ²	t _{CHBV}	_	0.5t _{CYC} +5	ns					
B6c	CLKOUT high to output enable (\overline{OE}) valid ³	t _{CHOV}	_	0.5t _{CYC} +5	ns					
B7	CLKOUT high to control output (BS[3:0], OE) invalid	t _{CHCOI}	0.5t _{CYC} +1.5		ns					
B7a	CLKOUT high to chip selects invalid	t _{CHCI}	0.5t _{CYC} +1.5	—	ns					

Name	Characteristic	Symbol	Min	Мах	Unit		
	Address and Attribute Outputs						
B8	CLKOUT high to address (A[23:0]) and control (\overline{TS} , TSIZ[1:0], TIP, R/W) valid	t _{CHAV}	—	9	ns		
B9	CLKOUT high to address (A[23:0]) and control (\overline{TS} , TSIZ[1:0], TIP, R/W) invalid	t _{CHAI}	1.5	_	ns		
	Data Outputs						
B11	CLKOUT high to data output (D[31:0]) valid	t _{CHDOV}		9	ns		
B12	CLKOUT high to data output (D[31:0]) invalid	t _{CHDOI}	1.5	—	ns		
B13	CLKOUT high to data output (D[31:0]) high impedance	t _{CHDOZ}		9	ns		

Table 12. External Bus Output Timing Specifications (continued)

CS transitions after the falling edge of CLKOUT.
 BS transitions after the falling edge of CLKOUT.
 OE transitions after the falling edge of CLKOUT.

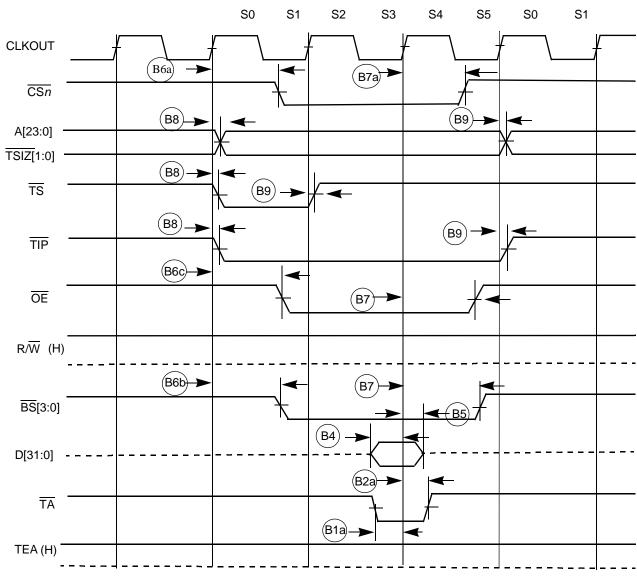
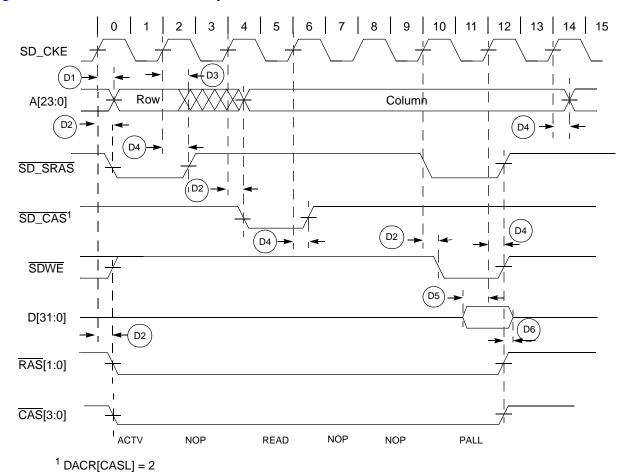



Figure 9 shows a bus cycle terminated by \overline{TA} showing timings listed in Table 12.

Figure 9. SRAM Read Bus Cycle Terminated by \overline{TA}

Figure 11 shows an SDRAM read cycle.

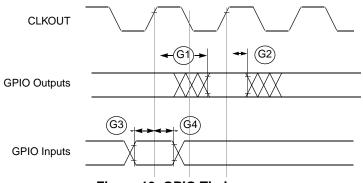


Figure	11.	SDRAM	Read	Cycle
--------	-----	-------	------	-------

NUM	Characteristic	Symbol	Min	Max	Unit
D1	CLKOUT high to SDRAM address valid	t _{CHDAV}	—	9	ns
D2	CLKOUT high to SDRAM control valid	t _{CHDCV}	_	9	ns
D3	CLKOUT high to SDRAM address invalid	t _{CHDAI}	1.5	—	ns
D4	CLKOUT high to SDRAM control invalid	t _{CHDCI}	1.5	—	ns
D5	SDRAM data valid to CLKOUT high	t _{DDVCH}	4	—	ns
D6	CLKOUT high to SDRAM data invalid	t _{CHDDI}	1.5	—	ns
D7 ¹	CLKOUT high to SDRAM data valid	t _{CHDDVW}	_	9	ns
D8 ¹	CLKOUT high to SDRAM data invalid	t _{CHDDIW}	1.5	_	ns

¹ D7 and D8 are for write cycles only.

Figure 13. GPIO Timing

7.8 Reset and Configuration Override Timing

Table 15. Reset and Configuration Override Timing $(V_{DD} = 2.7 \text{ to } 3.6 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ T}_{A} = \text{T}_{L} \text{ to } \text{T}_{H})^{1}$

NUM	Characteristic	Symbol	Min	Max	Unit
R1	RESET Input valid to CLKOUT High	t _{RVCH}	9		ns
R2	CLKOUT High to RESET Input invalid	t _{CHRI}	1.5		ns
R3	RESET Input valid Time ²	t _{RIVT}	5	—	t _{CYC}
R4	CLKOUT High to RSTOUT Valid	t _{CHROV}	_	10	ns
R5	RSTOUT valid to Config. Overrides valid	t _{ROVCV}	0	—	ns
R6	Configuration Override Setup Time to RSTOUT invalid	t _{cos}	20	—	t _{CYC}
R7	Configuration Override Hold Time after RSTOUT invalid	t _{COH}	0		ns
R8	RSTOUT invalid to Configuration Override High Impedance	t _{ROICZ}	_	1	t _{CYC}

¹ All AC timing is shown with respect to 50% V_{DD} levels unless otherwise noted.

² During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to the system. Thus, RESET must be held a minimum of 100 ns.

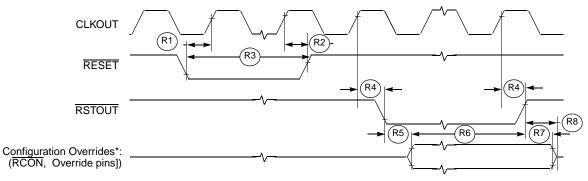
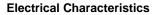



Figure 14. RESET and Configuration Override Timing

Refer to the chip configuration module (CCM) chapter in the device's reference manual for more information.

7.9 I²C Input/Output Timing Specifications

Table 16 lists specifications for the I^2C input timing parameters shown in Figure 15.

Table 16. I ² C Input Timing	Specifications between I2C	_SCL and I2C_SDA
---	----------------------------	------------------

Num	Characteristic	Min	Max	Units
11	Start condition hold time	2	—	t _{cyc}
12	Clock low period	8	—	t _{cyc}
13	I2C_SCL/I2C_SDA rise time ($V_{IL} = 0.5 \text{ V to } V_{IH} = 2.4 \text{ V}$)	—	1	ms
14	Data hold time	0	—	ns
15	I2C_SCL/I2C_SDA fall time ($V_{IH} = 2.4$ V to $V_{IL} = 0.5$ V)	—	1	ms
16	Clock high time	4	—	t _{cyc}
17	Data setup time	0	—	ns
18	Start condition setup time (for repeated start condition only)	2	—	t _{cyc}
19	Stop condition setup time	2	_	t _{cyc}

Table 17 lists specifications for the I^2C output timing parameters shown in Figure 15.

Table 17. I ² C Output Timing Specifications between I2C	SCL and I2C_SDA
---	-----------------

Num	Characteristic	Min	Max	Units
11 ¹	Start condition hold time	6	—	t _{cyc}
l2 ¹	Clock low period	10	—	t _{cyc}
13 ²	I2C_SCL/I2C_SDA rise time (V _{IL} = 0.5 V to V _{IH} = 2.4 V)		_	μs
14 ¹	Data hold time	7	—	t _{cyc}
15 ³	I2C_SCL/I2C_SDA fall time (V_{IH} = 2.4 V to V_{IL} = 0.5 V)	_	3	ns
l6 ¹	Clock high time	10	—	t _{cyc}
17 ¹	Data setup time	2	—	t _{cyc}
18 ¹	Start condition setup time (for repeated start condition only)	20	—	t _{cyc}
19 ¹	Stop condition setup time	10	—	t _{cyc}

Note: Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 17. The I^2C interface is designed to scale the actual data transition time to move it to the middle of the I2C_SCL low period. The actual position is affected by the prescale and division values programmed into the IFDR; however, the numbers given in Table 17 are minimum values.

² Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively drive low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance and pull-up resistor values.

³ Specified at a nominal 50-pF load.

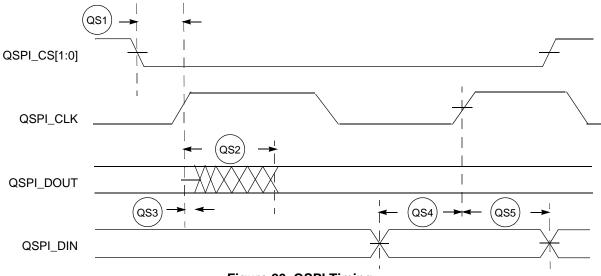
Figure 15 shows timing for the values in Table 16 and Table 17.

1

7.11 32-Bit Timer Module AC Timing Specifications

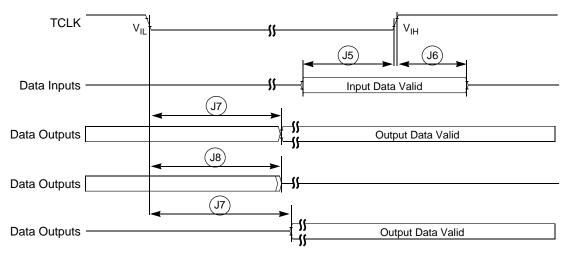
Table 22 lists timer module AC timings.

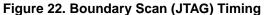
Table 22. Timer Module AC Timing Specifications


Name	Characteristic	0–66 MHz		–66 MHz Unit
		Min	Max	Onit
T1	DT0IN / DT1IN / DT2IN / DT3IN cycle time	3		t _{CYC}
T2	DT0IN / DT1IN / DT2IN / DT3IN pulse width	1	_	t _{CYC}

7.12 **QSPI Electrical Specifications**

Table 23 lists QSPI timings.


Name	Characteristic	Min	Max	Unit
QS1	QSPI_CS[1:0] to QSPI_CLK	1	510	tcyc
QS2	QSPI_CLK high to QSPI_DOUT valid.	_	10	ns
QS3	QSPI_CLK high to QSPI_DOUT invalid. (Output hold)	2	_	ns
QS4	QSPI_DIN to QSPI_CLK (Input setup)	9	_	ns
QS5	QSPI_DIN to QSPI_CLK (Input hold)	9	_	ns


The values in Table 23 correspond to Figure 20.

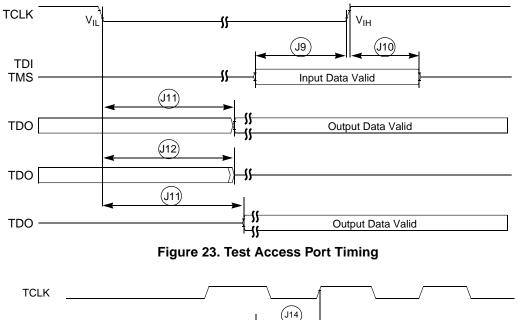


Figure 20. QSPI Timing

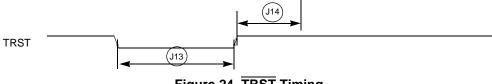


Figure 24. TRST Timing

Document Revision History

Rev. No.	Substantive Change(s)	
1.3	 Device is now available in 150 MHz versions. Updated specs where necessary to reflect this improvement. Added 2 new part numbers to Table 6: MCF5270CVM150 and MCF5271CVM150. Removed features list. This information can be found in the MCF5271RM. Removed SDRAM address multiplexing section. This information can be found in the MCF5271RM. 	
1.4	 Added Section 5.2.1, "Supply Voltage Sequencing and Separation Cautions." Updated 196MAPBGA package dimensions, Figure 4. 	
2	 Table 2: Changed SD_CKE pin location from 139 to "—" for the 160QFP device. Table 2: Changed QSPI_CS1 pin location from "—" to 139 for the 160QFP device. Table 2: Changed DT3IN pin's alternate 2 function from "—" to QSPI_CS2. Table 2: Changed DT3OUT pin's alternate 2 function from "—" to QSPI_CS3. Figure 5: Changed pin 139 label from "SD_CKE/QSPI_CS1" to "QSPI_CS1/SD_CKE". Removed second sentence from Section 7.10.1, "MII Receive Signal Timing (ERXD[3:0], ERXDV, ERXER, and ERXCLK)," and Section 7.10.2, "MII Transmit Signal Timing (ETXD[3:0], ETXEN, ETXER, ETXCLK)," regarding no minimum frequency requirement for TXCLK. Removed third and fourth paragraphs from Section 7.10.2, "MII Transmit Signal Timing (ETXD[3:0], ETXD[3:0], ETXEN, ETXER, ETXCLK)," as this feature is not supported on this device. 	
3	 Section 5.2.1, "Supply Voltage Sequencing and Separation Cautions" changed PLLV_{DD} to V_{DDPLL} to match rest of document. Section 5.2.1, "Supply Voltage Sequencing and Separation Cautions" Changed V_{DDPLL} voltage level from 1.5V to 3.3V throughout section. Section 5.2.1.1, "Power Up Sequence" first bullet, changed "Use 1 µs" to "Use 1 ms". Corrected position of spec D5 in Figure 11. Figure 3: Corrected M4 ball location from DATA5 to DATA6, changed DATA<i>n</i> labels to D<i>n</i> for consistency Table 14: Added DACK<i>n</i> and DREQ<i>n</i> to footnote. Table 9, added PLL supply voltage row 	
4	Added part number MCF5270CAB100 in Table 6	

Table 26. MCF5271EC Revisi	on History (continued)
----------------------------	------------------------

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH

Freescale Habietter Deutschland Gmt Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCF5271EC Rev. 4 08/2009 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2009. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

