NXP USA Inc. - MCF5271CAB100 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Coldfire V2
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, UART/USART
Peripherals	DMA, WDT
Number of I/O	39
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.4V ~ 3.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	160-BQFP
Supplier Device Package	160-QFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf5271cab100

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MCF5271 Family Configurations

1 MCF5271 Family Configurations

Table 1. MCF5271 Family Configurations

Module	MCE5270	MCE5271	
module	101 3270		
ColdFire V2 Core with EMAC and Hardware Divide	×	x	
System Clock	150 MHz		
Performance (Dhrystone/2.1 MIPS)	14	14	
Instruction/Data Cache	8 Kb	oytes	
Static RAM (SRAM)	64 K	bytes	
Interrupt Controllers (INTC)	2	2	
Edge Port Module (EPORT)	х	х	
External Interface Module (EIM)	х	х	
4-channel Direct-Memory Access (DMA)	х	х	
SDRAM Controller	х	х	
Fast Ethernet Controller (FEC)	х	х	
Hardware Encryption	_	х	
Watchdog Timer (WDT)	х	х	
Four Periodic Interrupt Timers (PIT)	х	x	
32-bit DMA Timers	4	4	
QSPI	х	x	
UART(s)	3	3	
l ² C	х	х	
General Purpose I/O Module (GPIO)	х	x	
JTAG - IEEE 1149.1 Test Access Port	х	х	
Package	160 QFP, 196 MAPBGA	160 QFP, 196 MAPBGA	

2 Block Diagram

The superset device in the MCF5271 family comes in a 196 mold array plastic ball grid array (MAPBGA) package. Figure 1 shows a top-level block diagram of the MCF5271.

Block Diagram

Figure 1. MCF5271 Block Diagram

Signal Name	GPIO	Alternate 1	Alternate 2	Dir. ¹	MCF5270 MCF5271 160 QFP	MCF5270 MCF5271 196 MAPBGA
A[20:0]	_	_	_	0	123:115, 112:106, 102:98	A12, B12, C12, A13, B13, B14, C13, C14, D12, D13, D14, E11, E12, E13, E14, F12, F13, F14, G11, G12, G13
D[31:16]	_	_	_	0	22:30, 33:39	G1, G2, H1, H2, H3, H4, J1, J2, J3, J4, K1, K2, K3, K4, L1, L2
D[15:8]	PDATAH[7:0]	—	—	0	42:49	M1, N1, M2, N2, P2, L3, M3, N3
D[7:0]	PDATAL[7:0]	_	_	0	50:52, 56:60	P3, M4, N4, P4, L5, M5, N5, P5
BS[3:0]	PBS[7:4]	CAS[3:0]	_	0	143:140	B6, C6, D7, C7
OE	PBUSCTL7	—	—	0	62	N6
TA	PBUSCTL6	_	_	Ι	96	H11
TEA	PBUSCTL5	DREQ1	—	Ι	—	J14
R/W	PBUSCTL4	—	—	0	95	J13
TSIZ1	PBUSCTL3	DACK1	—	0	—	P6
TSIZ0	PBUSCTL2	DACK0	_	0	—	P7
TS	PBUSCTL1	DACK2	_	0	97	H13
TIP	PBUSCTL0	DREQ0	—	0	—	H12
		c	hip Selects			
<u>CS</u> [7:4]	PCS[7:4]	_	_	0	_	B9, A10, C10, A11
<u>CS</u> [3:2]	PCS[3:2]	SD_CS[1:0]	—	0	132,131	A9, C9
CS1	PCS1	—	—	0	130	B10
CS0	—	—	—	0	129	D10
		SDR	AM Control	ler		
SD_WE	PSDRAM5	_	_	0	92	K13
SD_SCAS	PSDRAM4	—	_	0	91	K12
SD_SRAS	PSDRAM3			0	90	K11
SD_CKE	PSDRAM2			0	_	E8
SD_CS[1:0]	PSDRAM[1:0]			0		L12, L13

Table 2. MCF5270 and MCF5271 Signal Information and Muxing (continued)

5.2.1 Supply Voltage Sequencing and Separation Cautions

Figure 2 shows situations in sequencing the I/O V_{DD} (OV_{DD}), PLL V_{DD} (V_{DDPLL}), and Core V_{DD} (V_{DD}). OV_{DD} is specified relative to V_{DD} .

5.2.1.1 Power Up Sequence

If OV_{DD} is powered up with V_{DD} at 0 V, then the sense circuits in the I/O pads cause all pad output drivers connected to the OV_{DD} to be in a high impedance state. There is no limit on how long after OV_{DD} powers up before V_{DD} must power up. V_{DD} should not lead the OV_{DD} or V_{DDPLL} by more than 0.4 V during power ramp-up, or there will be high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than 1 µs to avoid turning on the internal ESD protection clamp diodes.

The recommended power up sequence is as follows:

- 1. Use 1 ms or slower rise time for all supplies.
- 2. V_{DD} and OV_{DD}/V_{DDPLL} should track up to 0.9 V, then separate for the completion of ramps with OV_{DD} going to the higher external voltages. One way to accomplish this is to use a low drop-out voltage regulator.

5.2.1.2 Power Down Sequence

If V_{DD} is powered down first, then sense circuits in the I/O pads cause all output drivers to be in a high impedance state. There is no limit on how long after V_{DD} powers down before OV_{DD}/V_{DDPLL} must power down. V_{DD} should not lag OV_{DD} or V_{DDPLL} going low by more than 0.4 V during power down or there

Signal	Description
SD_SRAS	Synchronous row address strobe. Indicates a valid SDRAM row address is present and can be latched by the SDRAM. SD_SRAS should be connected to the corresponding SDRAM SD_SRAS. Do not confuse SD_SRAS with the DRAM controller's SD_CS[1:0], which should not be interfaced to the SDRAM SD_SRAS signals.
SD_SCAS	Synchronous column address strobe. Indicates a valid column address is present and can be latched by the SDRAM. SD_SCAS should be connected to the corresponding signal labeled SD_SCAS on the SDRAM.
DRAMW	DRAM read/write. Asserted for write operations and negated for read operations.
SD_CS[1:0]	Row address strobe. Select each memory block of SDRAMs connected to the MCF5271. One \overline{SD}_{CS} signal selects one SDRAM block and connects to the corresponding \overline{CS} signals.
SD_CKE	Synchronous DRAM clock enable. Connected directly to the CKE (clock enable) signal of SDRAMs. Enables and disables the clock internal to SDRAM. When CKE is low, memory can enter a power-down mode where operations are suspended or they can enter self-refresh mode. SD_CKE functionality is controlled by DCR[COC]. For designs using external multiplexing, setting COC allows SD_CKE to provide command-bit functionality.
<u>BS</u> [3:0]	Column address strobe. For synchronous operation, $\overline{\text{BS}}$ [3:0] function as byte enables to the SDRAMs. They connect to the DQM signals (or mask qualifiers) of the SDRAMs.
CLKOUT	Bus clock output. Connects to the CLK input of SDRAMs.

Table 3. Synchronous DRAM Signal Connections

5.7.1.2 Address Multiplexing

See the SDRAM controller module chapter in the *MCF5271 Reference Manual* for details on address multiplexing.

5.7.2 Ethernet PHY Transceiver Connection

The FEC supports both an MII interface for 10/100 Mbps Ethernet and a seven-wire serial interface for 10 Mbps Ethernet. The interface mode is selected by R_CNTRL[MII_MODE]. In MII mode, the 802.3 standard defines and the FEC module supports 18 signals. These are shown in Table 4.

Signal Description	MCF5271 Pin
Transmit clock	ETXCLK
Transmit enable	ETXEN
Transmit data	ETXD[3:0]
Transmit error	ETXER
Collision	ECOL
Carrier sense	ECRS
Receive clock	ERXCLK
Receive enable	ERXDV
Receive data	ERXD[3:0]

Table 4. MII Mode

Mechanicals/Pinouts and Part Numbers

Signal Description	MCF5271 Pin
Receive error	ERXER
Management channel clock	EMDC
Management channel serial data	EMDIO

Table 4. MII Mode (continued)

The serial mode interface operates in what is generally referred to as AMD mode. The MCF5271 configuration for seven-wire serial mode connections to the external transceiver are shown in Table 5.

Signal Description	MCF5271 Pin
Transmit clock	ETXCLK
Transmit enable	ETXEN
Transmit data	ETXD[0]
Collision	ECOL
Receive clock	ERXCLK
Receive enable	ERXDV
Receive data	ERXD[0]
Unused, configure as PB14	ERXER
Unused input, tie to ground	ECRS
Unused, configure as PB[13:11]	ERXD[3:1]
Unused output, ignore	ETXER
Unused, configure as PB[10:8]	ETXD[3:1]
Unused, configure as PB15	EMDC
Input after reset, connect to ground	EMDIO

Table 5. Seven-Wire Mode Configuration

Refer to the M5271EVB evaluation board user's manual for an example of how to connect an external PHY. Schematics for this board are accessible at the MCF5271 site by navigating to: http://www.freescale.com/coldfire.

5.7.3 BDM

Use the BDM interface as shown in the M5271EVB evaluation board user's manual. The schematics for this board are accessible at the Freescale website at: http://www.freescale.com/coldfire.

6 Mechanicals/Pinouts and Part Numbers

This section contains drawings showing the pinout and the packaging and mechanical characteristics of the MCF5271 devices. See Table 4 for a list the signal names and pin locations for each device.

6.5 Ordering Information

 Table 6. Orderable Part Numbers

Freescale Part Number	Description	Package	Speed	Lead-Free?	Temperature
MCF5270AB100	MCF5270 RISC Microprocessor	160 QFP	100MHz	Yes	0° to +70° C
MCF5270CAB100	MCF5270 RISC Microprocessor	160 QFP	100MHz	Yes	-40° to +85° C
MCF5270VM100	MCF5270 RISC Microprocessor	196 MAPBGA	100MHz	Yes	0° to +70° C
MCF5270CVM150	MCF5270 RISC Microprocessor	196 MAPBGA	150MHz	Yes	-40 $^{\circ}$ to +85 $^{\circ}$ C
MCF5271CAB100	MCF5271 RISC Microprocessor	160 QFP	100MHz	Yes	-40° to +85° C
MCF5271CVM100	MCF5271 RISC Microprocessor	196 MAPBGA	100MHz	Yes	-40° to +85° C
MCF5271CVM150	MCF5271 RISC Microprocessor	196 MAPBGA	150MHz	Yes	-40 $^{\circ}$ to +85 $^{\circ}$ C

7 Electrical Characteristics

This chapter contains electrical specification tables and reference timing diagrams for the MCF5271 microcontroller unit. This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications of MCF5271.

NOTE

The parameters specified in this processor document supersede any values found in the module specifications.

7.1 Maximum Ratings

 Table 7. Absolute Maximum Ratings^{1, 2}

Rating	Symbol	Value	Unit
Core Supply Voltage	V _{DD}	– 0.5 to +2.0	V
Pad Supply Voltage	OV _{DD}	– 0.3 to +4.0	V
PLL Supply Voltage	V _{DDPLL}	– 0.3 to +4.0	V
Digital Input Voltage ³	V _{IN}	– 0.3 to + 4.0	V
Instantaneous Maximum Current Single pin limit (applies to all pins) ^{3,4,5}	Ι _D	25	mA
Operating Temperature Range (Packaged)	T _A (T _L - T _H)	- 40 to 85	°C
Storage Temperature Range	T _{stg}	– 65 to 150	°C

Functional operating conditions are given in DC Electrical Specifications. Absolute Maximum Ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Continued operation at these levels may affect device reliability or cause permanent damage to the device.

1

- ² This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either V_{SS} or OV_{DD}).
- ³ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- ⁴ All functional non-supply pins are internally clamped to V_{SS} and OV_{DD}.
- ⁵ Power supply must maintain regulation within operating OV_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > OV_{DD}$) is greater than I_{DD} , the injection current may flow out of OV_{DD} and could result in external power supply going out of regulation. Insure external OV_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the processor is not consuming power (ex; no clock).Power supply must maintain regulation within operating OV_{DD} range during instantaneous and operating maximum current conditions.

7.2 Thermal Characteristics

The below table lists thermal resistance values.

Characteristic		Symbol	196 MAPBGA	160QFP	Unit
Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JMA}	32 ^{1,2}	40 ^{1,2}	°C/W
Junction to ambient (@200 ft/min)	Four layer board (2s2p)	θ_{JMA}	29 ^{1,2}	36 ^{1,2}	°C/W
Junction to board		θ_{JB}	20 ³	25 ³	°C/W
Junction to case		θ_{JC}	10 ⁴	10 ⁴	°C/W
Junction to top of package		Ψ_{jt}	2 ^{1,5}	2 ^{1,5}	°C/W
Maximum operating junction temperature		Тj	104	105	°C

Table 8. Thermal Characteristics

 θ_{JMA} and Ψ_{jt} parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Motorola recommends the use of θ_{JmA} and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the Ψ_{jt} parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.

- ² Per JEDEC JESD51-6 with the board horizontal.
- ³ Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- ⁴ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- ⁵ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.

The average chip-junction temperature (T_1) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \Theta_{JMA}) (1)$$

Where:

 T_A = Ambient Temperature, °C Θ_{JMA} = Package Thermal Resistance, Junction-to-Ambient, °C/W $P_D = P_{INT} + P_{I/O}$ $P_{INT} = I_{DD} \times V_{DD}$, Watts - Chip Internal Power $P_{I/O}$ = Power Dissipation on Input and Output Pins — User Determined

For most applications $P_{I/O} < P_{INT}$ and can be ignored. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

 $P_{\rm D} = \mathbf{K} \div (\mathbf{T}_{\rm J} + 273^{\circ}C) \quad (2)$

Solving equations 1 and 2 for K gives:

 $K = P_D \times (T_A + 273 \text{ °C}) + \Theta_{JMA} \times P_D^2 (3)$

where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations (1) and (2) iteratively for any value of T_A .

7.3 DC Electrical Specifications

Table 9. DC Electrical Specifications¹

Characteristic	Symbol	Min	Typical	Max	Unit
Core Supply Voltage	V _{DD}	1.4	—	1.6	V
Pad Supply Voltage	OV _{DD}	3.0		3.6	V
PLL Supply Voltage	V _{DDPLL}	3.0		3.6	V
Input High Voltage	V _{IH}	$0.7 \times \text{OV}_{\text{DD}}$		3.65	V
Input Low Voltage	V _{IL}	V _{SS} – 0.3	_	$0.35\times\text{OV}_\text{DD}$	V
Input Hysteresis	V _{HYS}	$0.06\times\text{OV}_\text{DD}$	_	—	mV
Input Leakage Current $V_{in} = V_{DD}$ or V_{SS} , Input-only pins	l _{in}	-1.0	_	1.0	μA
High Impedance (Off-State) Leakage Current $V_{in} = V_{DD}$ or V_{SS} , All input/output and output pins	I _{OZ}	-1.0	_	1.0	μΑ
Output High Voltage (All input/output and all output pins) I _{OH} = -5.0 mA	V _{OH}	OV _{DD} - 0.5	_	—	V
Output Low Voltage (All input/output and all output pins) $I_{OL} = 5.0 \text{mA}$	V _{OL}	_	_	0.5	V
Weak Internal Pull Up Device Current, tested at V_{IL} Max. ²	I _{APU}	-10		- 130	μA
Input Capacitance ³ All input-only pins All input/output (three-state) pins	C _{in}		_	7 7	pF

Characteristic	Symbol	Min	Typical	Мах	Unit
Load Capacitance ⁴ Low drive strength High drive strength	CL			25 50	pF pF
Core Operating Supply Current ⁵ Master Mode	I _{DD}	_	135	150	mA
Pad Operating Supply Current Master Mode Low Power Modes	OI _{DD}		100 TBD		mA μA
DC Injection Current ^{3, 6, 7, 8} $V_{NEGCLAMP} = V_{SS} - 0.3 V$, $V_{POSCLAMP} = V_{DD} + 0.3$ Single Pin Limit Total processor Limit, Includes sum of all stressed pins	I _{IC}	-1.0 -10		1.0 10	mA mA

Table 9. DC Electrical Specifications¹ (continued)

¹ Refer to Table 10 for additional PLL specifications.

² Refer to the MCF5271 signals section for pins having weak internal pull-up devices.

³ This parameter is characterized before qualification rather than 100% tested.

⁴ pF load ratings are based on DC loading and are provided as an indication of driver strength. High speed interfaces require transmission line analysis to determine proper drive strength and termination. See <u>High Speed Signal Propagation:</u> <u>Advanced Black Magic</u> by Howard W. Johnson for design guidelines.

⁵ Current measured at maximum system clock frequency, all modules active, and default drive strength with matching load.

 6 All functional non-supply pins are internally clamped to V_{SS} and their respective V_{DD}.

⁷ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

⁸ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Insure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the processor is not consuming power. Examples are: if no system clock is present, or if clock rate is very low which would reduce overall power consumption. Also, at power-up, system clock is not present during the power-up sequence until the PLL has attained lock.

7.4 Oscillator and PLLMRFM Electrical Characteristics

Table 10. HiP7 PLLMRFM Electrical Specifications¹

Num	Characteristic	Symbol	Min. Value	Max. Value	Unit
1	PLL Reference Frequency Range Crystal reference External reference 1:1 mode (NOTE: $f_{sys/2} = 2 \times f_{ref_1:1}$)	f _{ref_crystal} f _{ref_ext} f _{ref_1:1}	8 8 24	25 25 75	MHz
2	Core frequency CLKOUT Frequency ² External reference On-Chip PLL Frequency	f _{sys} f _{sys/2}	0 f _{ref} ÷ 32	150 75 75	MHz MHz MHz
3	Loss of Reference Frequency 3, 5	f _{LOR}	100	1000	kHz
4	Self Clocked Mode Frequency ^{4, 5}	f _{SCM}	10.25	15.25	MHz
5	Crystal Start-up Time ^{5, 6}	t _{cst}		10	ms

Num	Characteristic	Symbol	ol Min. M Value Va		Unit
6	XTAL Load Capacitance ⁵		5	30	pF
7	PLL Lock Time ^{5, 7,13}	t _{lpll}		750	μs
8	Power-up To Lock Time ^{5, 6,8} With Crystal Reference (includes 5 time) Without Crystal Reference ⁹	t _{lplk}		11 750	ms μs
9	1:1 Mode Clock Skew (between CLKOUT and EXTAL) ¹⁰	t _{skew}	-1	1	ns
10	Duty Cycle of reference ⁵	t _{dc}	40	60	%
11	Frequency un-LOCK Range	f _{UL}	-3.8	4.1	% f _{sys/2}
12	Frequency LOCK Range	f _{LCK}	-1.7	2.0	% f _{sys/2}
13	CLKOUT Period Jitter, ^{5, 6, 8,11, 12} Measured at f _{sys/2} Max Peak-to-peak Jitter (Clock edge to clock edge) Long Term Jitter (Averaged over 2 ms interval)	C _{jitter}		5.0 .01	% f _{sys/2}
14	Frequency Modulation Range Limit ^{13,14} (f _{sys/2} Max must not be exceeded)	C _{mod}	0.8	2.2	%f _{sys/2}
15	ICO Frequency. $f_{ico} = f_{ref} \times 2 \times (MFD+2)^{15}$	f _{ico}	48	150	MHz

Table 10. HiP7 PLLMRFM Electrical Spe	ecifications ¹ (continued)
---------------------------------------	---------------------------------------

1 All values given are initial design targets and subject to change.

2 All internal registers retain data at 0 Hz.

³ "Loss of Reference Frequency" is the reference frequency detected internally, which transitions the PLL into self clocked mode.

- 4 Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls below fLOR with default MFD/RFD settings.
- ⁵ This parameter is guaranteed by characterization before qualification rather than 100% tested.
- ⁶ Proper PC board layout procedures must be followed to achieve specifications.
- 7 This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR).
- 8 Assuming a reference is available at power up, lock time is measured from the time V_{DD} and V_{DDSYN} are valid to RSTOUT negating. If the crystal oscillator is being used as the reference for the PLL, then the
- crystal start up time must be added to the PLL lock time to determine the total start-up time. $t_{ipli} = (64 * 4 * 5 + 5 \tau) T_{ref}$, where $T_{ref} = 1/F_{ref_crystal} = 1/F_{ref_ext} = 1/F_{ref_1:1}$, and $\tau = 1.57 \times 10^{-6} 2(MFD + 10^{-6} T_{ref})$ 9 2).
- ¹⁰ PLL is operating in 1:1 PLL mode.
- ¹¹ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{sys/2}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via VDDSYN and VSSSYN and variation in crystal oscillator frequency increase the Cjitter percentage for a given interval.
- ¹² Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of Cjitter+Cmod.
- ¹³ Modulation percentage applies over an interval of 10µs, or equivalently the modulation rate is 100KHz. ¹⁴ Modulation rate selected must not result in $f_{svs/2}$ value greater than the $f_{svs/2}$ maximum specified value.
- Modulation range determined by hardware design. ¹⁵ $f_{sys/2} = f_{ico} / (2 * 2^{RFD})$

Timings listed in Table 11 are shown in Figure 7.

* The timings are also valid for inputs sampled on the negative clock edge.

7.6 **Processor Bus Output Timing Specifications**

Table 12 lists processor bus output timings.

Table 12	. External	Bus	Output	Timing	Specifications
----------	------------	-----	--------	--------	-----------------------

Name	Characteristic	Symbol	Min	Max	Unit			
Control Outputs								
B6a	CLKOUT high to chip selects valid ¹	t _{CHCV}	—	0.5t _{CYC} +5	ns			
B6b	CLKOUT high to byte enables (BS[3:0]) valid ²	t _{CHBV}	_	0.5t _{CYC} +5	ns			
B6c	CLKOUT high to output enable (\overline{OE}) valid ³	t _{CHOV}	_	0.5t _{CYC} +5	ns			
B7	CLKOUT high to control output ($\overline{BS}[3:0], \overline{OE}$) invalid	t _{CHCOI}	0.5t _{CYC} +1.5	—	ns			
B7a	CLKOUT high to chip selects invalid	t _{CHCI}	0.5t _{CYC} +1.5	_	ns			

Read/write bus timings listed in Table 12 are shown in Figure 8, Figure 9, and Figure 10.

Figure 8. Read/Write (Internally Terminated) SRAM Bus Timing

Figure 9 shows a bus cycle terminated by \overline{TA} showing timings listed in Table 12.

Figure 9. SRAM Read Bus Cycle Terminated by \overline{TA}

Figure 10 shows an SRAM bus cycle terminated by $\overline{\text{TEA}}$ showing timings listed in Table 12.

Figure 15. I²C Input/Output Timings

7.10 Fast Ethernet AC Timing Specifications

MII signals use TTL signal levels compatible with devices operating at either 5.0 V or 3.3 V.

7.10.1 MII Receive Signal Timing (ERXD[3:0], ERXDV, ERXER, and ERXCLK)

The receiver functions correctly up to a ERXCLK maximum frequency of 25 MHz +1%. The processor clock frequency must exceed twice the ERXCLK frequency.

Table 18 lists MII receive channel timings.

Table 18. MII Receive Signal Timing

Num	Characteristic		Max	Unit	
M1	ERXD[3:0], ERXDV, ERXER to ERXCLK setup	5	—	ns	
M2	ERXCLK to ERXD[3:0], ERXDV, ERXER hold	5	—	ns	
M3	ERXCLK pulse width high	35%	65%	ERXCLK period	
M4	ERXCLK pulse width low	35%	65%	ERXCLK period	

Figure 16 shows MII receive signal timings listed in Table 18.

Figure 16. MII Receive Signal Timing Diagram

7.13 JTAG and Boundary Scan Timing

Table 24. JTAG and Boundary Scan Timing

Num	n Characteristics ¹		Min	Max	Unit
J1	TCLK Frequency of Operation	f _{JCYC}	DC	1/4	f _{sys/2}
J2	TCLK Cycle Period	t _{JCYC}	4	—	t _{CYC}
J3	TCLK Clock Pulse Width	t _{JCW}	26	—	ns
J4	TCLK Rise and Fall Times	t _{JCRF}	0	3	ns
J5	Boundary Scan Input Data Setup Time to TCLK Rise	t _{BSDST}	4	—	ns
J6	Boundary Scan Input Data Hold Time after TCLK Rise	t _{BSDHT}	26	—	ns
J7	TCLK Low to Boundary Scan Output Data Valid	t _{BSDV}	0	33	ns
J8	TCLK Low to Boundary Scan Output High Z	t _{BSDZ}	0	33	ns
J9	TMS, TDI Input Data Setup Time to TCLK Rise	t _{TAPBST}	4	—	ns
J10	TMS, TDI Input Data Hold Time after TCLK Rise	t _{TAPBHT}	10	—	ns
J11	TCLK Low to TDO Data Valid	t _{TDODV}	0	26	ns
J12	TCLK Low to TDO High Z	t _{TDODZ}	0	8	ns
J13	TRST Assert Time	t _{TRSTAT}	100		ns
J14	TRST Setup Time (Negation) to TCLK High	t _{TRSTST}	10	_	ns

¹ JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.

Figure 21. Test Clock Input Timing

Figure 24. TRST Timing

Document Revision History

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH

Freescale Habietter Deutschland Gmt Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCF5271EC Rev. 4 08/2009 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2009. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

