

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Coldfire V2
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, UART/USART
Peripherals	DMA, WDT
Number of I/O	61
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.4V ~ 3.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	196-LBGA
Supplier Device Package	196-LBGA (15x15)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf5271cvm100j

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MCF5271 Family Configurations

1 MCF5271 Family Configurations

Table 1. MCF5271 Family Configurations

Module	MCE5270	MCE5271
module	101 3270	
ColdFire V2 Core with EMAC and Hardware Divide	×	x
System Clock	150	MHz
Performance (Dhrystone/2.1 MIPS)	14	14
Instruction/Data Cache	8 Kb	oytes
Static RAM (SRAM)	64 K	bytes
Interrupt Controllers (INTC)	2	2
Edge Port Module (EPORT)	х	х
External Interface Module (EIM)	х	х
4-channel Direct-Memory Access (DMA)	х	х
SDRAM Controller	х	х
Fast Ethernet Controller (FEC)	х	х
Hardware Encryption	_	х
Watchdog Timer (WDT)	х	х
Four Periodic Interrupt Timers (PIT)	х	x
32-bit DMA Timers	4	4
QSPI	х	x
UART(s)	3	3
l ² C	х	х
General Purpose I/O Module (GPIO)	х	x
JTAG - IEEE 1149.1 Test Access Port	х	х
Package	160 QFP, 196 MAPBGA	160 QFP, 196 MAPBGA

2 Block Diagram

The superset device in the MCF5271 family comes in a 196 mold array plastic ball grid array (MAPBGA) package. Figure 1 shows a top-level block diagram of the MCF5271.

Block Diagram

Figure 1. MCF5271 Block Diagram

Features

3 Features

For a detailed feature list see the MCF5271 Reference Manual (MCF5271RM).

4 Signal Descriptions

This section describes signals that connect off chip, including a table of signal properties. For a more detailed discussion of the MCF5271 signals, consult the *MCF5271 Reference Manual* (MCF5271RM).

4.1 Signal Properties

Table 4 lists all of the signals grouped by function. The "Dir" column is the direction for the primary function of the pin. Refer to Section 6, "Mechanicals/Pinouts and Part Numbers," for package diagrams.

NOTE

In this table and throughout this document a single signal within a group is designated without square brackets (i.e., A24), while designations for multiple signals within a group use brackets (i.e., A[23:21]) and is meant to include all signals within the two bracketed numbers when these numbers are separated by a colon.

NOTE

The primary functionality of a pin is not necessarily its default functionality. Pins that are muxed with GPIO will default to their GPIO functionality.

Signal Name	ignal Name GPIO A		Alternate 1 Alternate 2 E		MCF5270 MCF5271 160 QFP	MCF5270 MCF5271 196 MAPBGA				
Reset										
RESET	_			Ι	83	N13				
RSTOUT	_	— <u> </u>		P13						
Clock										
EXTAL	_	_	_	Ι	86	M14				
XTAL	_	_	_	0	85	N14				
CLKOUT	_	—	—	0	89	K14				
		Мо	de Selection	ו						
CLKMOD[1:0]	_	_	_	Ι	20,21	G5,H5				
RCON	—	_	_	Ι	79	K10				
External Memory Interface and Ports										
A[23:21]	PADDR[7:5]	<u>CS</u> [6:4]		0	126, 125, 124	B11, C11, D11				

Table 2. MCF5270 and MCF5271 Signal Information and Muxing

Signal Descriptions

Signal Name	GPIO	Alternate 1	Alternate 2	Dir. ¹	MCF5270 MCF5271 160 OEP	MCF5270 MCF5271 196 MAPBGA				
		1	UARTS			Ι				
U2TXD	PUARTH1	—	—	0	—	A8				
U2RXD	PUARTH0	—	—	Ι	_	A7				
U1CTS	PUARTL7	U2CTS	—	Ι	136	B8				
U1RTS	PUARTL6	U2RTS	—	0	135	C8				
U1TXD	PUARTL5	—	—	0	133	D9				
U1RXD	PUARTL4	—	—	Ι	134	D8				
UOCTS	PUARTL3	—	—	Ι	12	F3				
UORTS	PUARTL2	—	—	0	15	G3				
U0TXD	PUARTL1	—	—	0	14	F1				
U0RXD	PUARTL0	—		I	13	F2				
	DMA Timers									
DT3IN	PTIMER7	U2CTS	QSPI_CS2	Ι	—	H14				
DT3OUT	PTIMER6	U2RTS	QSPI_CS3	0	_	G14				
DT2IN	PTIMER5	DREQ2	DT2OUT	Ι	66	M9				
DT2OUT	PTIMER4	DACK2		0	_	L9				
DT1IN	PTIMER3	DREQ1	DT1OUT	Ι	61	L6				
DT1OUT	PTIMER2	DACK1	—	0	_	M6				
DT0IN	PTIMER1	DREQ0	—	Ι	10	E4				
DT0OUT	PTIMER0	DACK0	—	0	11	F4				
		E	BDM/JTAG ²							
DSCLK	_	TRST	_	0	70	N9				
PSTCLK		TCLK	—	0	68	P9				
BKPT		TMS		0	71	P10				
DSI		TDI	—	Ι	73	M10				
DSO	_	TDO	—	0	72	N10				
JTAG_EN	—	—	—	Ι	78	K9				
DDATA[3:0]	_	—	—	0	_	M12, N12, P12, L11				
PST[3:0]	_	_	—	0	77:74	M11, N11, P11, L10				

Table 2. MCF5270 and MCF5271 Signal Information and Muxing (continued)

5.2.1 Supply Voltage Sequencing and Separation Cautions

Figure 2 shows situations in sequencing the I/O V_{DD} (OV_{DD}), PLL V_{DD} (V_{DDPLL}), and Core V_{DD} (V_{DD}). OV_{DD} is specified relative to V_{DD} .

5.2.1.1 Power Up Sequence

If OV_{DD} is powered up with V_{DD} at 0 V, then the sense circuits in the I/O pads cause all pad output drivers connected to the OV_{DD} to be in a high impedance state. There is no limit on how long after OV_{DD} powers up before V_{DD} must power up. V_{DD} should not lead the OV_{DD} or V_{DDPLL} by more than 0.4 V during power ramp-up, or there will be high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than 1 µs to avoid turning on the internal ESD protection clamp diodes.

The recommended power up sequence is as follows:

- 1. Use 1 ms or slower rise time for all supplies.
- 2. V_{DD} and OV_{DD}/V_{DDPLL} should track up to 0.9 V, then separate for the completion of ramps with OV_{DD} going to the higher external voltages. One way to accomplish this is to use a low drop-out voltage regulator.

5.2.1.2 Power Down Sequence

If V_{DD} is powered down first, then sense circuits in the I/O pads cause all output drivers to be in a high impedance state. There is no limit on how long after V_{DD} powers down before OV_{DD}/V_{DDPLL} must power down. V_{DD} should not lag OV_{DD} or V_{DDPLL} going low by more than 0.4 V during power down or there

Design Recommendations

will be undesired high current in the ESD protection diodes. There are no requirements for the fall times of the power supplies.

The recommended power down sequence is as follows:

- 1. Drop V_{DD} to 0 V.
- 2. Drop OV_{DD}/V_{DDPLL} supplies.

5.3 Decoupling

- Place the decoupling caps as close to the pins as possible, but they can be outside the footprint of the package.
- 0.1 μ F and 0.01 μ F at each supply input

5.4 Buffering

• Use bus buffers on all data/address lines for all off-board accesses and for all on-board accesses when excessive loading is expected. See Section 7, "Electrical Characteristics."

5.5 Pull-up Recommendations

• Use external pull-up resistors on unused inputs. See pin table.

5.6 Clocking Recommendations

- Use a multi-layer board with a separate ground plane.
- Place the crystal and all other associated components as close to the EXTAL and XTAL (oscillator pins) as possible.
- Do not run a high frequency trace around crystal circuit.
- Ensure that the ground for the bypass capacitors is connected to a solid ground trace.
- Tie the ground trace to the ground pin nearest EXTAL and XTAL. This prevents large loop currents in the vicinity of the crystal.
- Tie the ground pin to the most solid ground in the system.
- Do not connect the trace that connects the oscillator and the ground plane to any other circuit element. This tends to make the oscillator unstable.
- Tie XTAL to ground when an external oscillator is clocking the device.

5.7 Interface Recommendations

5.7.1 SDRAM Controller

5.7.1.1 SDRAM Controller Signals in Synchronous Mode

Table 3 shows the behavior of SDRAM signals in synchronous mode.

Signal	Description
SD_SRAS	Synchronous row address strobe. Indicates a valid SDRAM row address is present and can be latched by the SDRAM. SD_SRAS should be connected to the corresponding SDRAM SD_SRAS. Do not confuse SD_SRAS with the DRAM controller's SD_CS[1:0], which should not be interfaced to the SDRAM SD_SRAS signals.
SD_SCAS	Synchronous column address strobe. Indicates a valid column address is present and can be latched by the SDRAM. SD_SCAS should be connected to the corresponding signal labeled SD_SCAS on the SDRAM.
DRAMW	DRAM read/write. Asserted for write operations and negated for read operations.
SD_CS[1:0]	Row address strobe. Select each memory block of SDRAMs connected to the MCF5271. One \overline{SD}_{CS} signal selects one SDRAM block and connects to the corresponding \overline{CS} signals.
SD_CKE	Synchronous DRAM clock enable. Connected directly to the CKE (clock enable) signal of SDRAMs. Enables and disables the clock internal to SDRAM. When CKE is low, memory can enter a power-down mode where operations are suspended or they can enter self-refresh mode. SD_CKE functionality is controlled by DCR[COC]. For designs using external multiplexing, setting COC allows SD_CKE to provide command-bit functionality.
<u>BS</u> [3:0]	Column address strobe. For synchronous operation, $\overline{\text{BS}}$ [3:0] function as byte enables to the SDRAMs. They connect to the DQM signals (or mask qualifiers) of the SDRAMs.
CLKOUT	Bus clock output. Connects to the CLK input of SDRAMs.

Table 3. Synchronous DRAM Signal Connections

5.7.1.2 Address Multiplexing

See the SDRAM controller module chapter in the *MCF5271 Reference Manual* for details on address multiplexing.

5.7.2 Ethernet PHY Transceiver Connection

The FEC supports both an MII interface for 10/100 Mbps Ethernet and a seven-wire serial interface for 10 Mbps Ethernet. The interface mode is selected by R_CNTRL[MII_MODE]. In MII mode, the 802.3 standard defines and the FEC module supports 18 signals. These are shown in Table 4.

Signal Description	MCF5271 Pin
Transmit clock	ETXCLK
Transmit enable	ETXEN
Transmit data	ETXD[3:0]
Transmit error	ETXER
Collision	ECOL
Carrier sense	ECRS
Receive clock	ERXCLK
Receive enable	ERXDV
Receive data	ERXD[3:0]

Table 4. MII Mode

6.1 Pinout—196 MAPBGA

The following figure shows a pinout of the MCF5270/71CVMxxx package.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
A		ETXCLK	ETXD3	ETXD2	QSPI_ DOUT	QSPI_CS0	U2RXD	U2TXD	CS3	CS6	CS4	A20	A17		A
В	ERXD0	ERXER	ETXER	ETXD0	QSPI_DIN	BS3	QSPI_CS1	U1CTS	CS7	CS1	A23	A19	A16	A15	в
с	ERXD2	ERXD1	ETXEN	ETXD1	QSCK	BS2	BS0	RTS1	CS2	CS5	A22	A18	A14	A13	с
D	ERXCLK	ERXDV	ERXD3	EMDC	EMDIO	Core VDD_4	BS1	U1RXD1	U1TXD	CS0	A21	A12	A11	A10	D
E	ECRS	ECOL	NC	TINO	VDD	VSS	VDD	SD_CKE	VSS	VDD	A9	A8	A7	A6	E
F	U0TXD	U0RXD	U0CTS	DTOUT0	TEST		VDD	VSS	VDD	VSS	Core VDD_3	A5	A4	A3	F
G	D31	D30	UORTS	Core VDD_1	CLK MOD1	VDD	VSS	VDD	VSS	NC	A2	A1	A0	DTOUT3	G
Н	D29	D28	D27	D26	CLK MOD0	VSS	VDD	VDD	VDD	NC	TA	TIP	TS	DTIN3	н
J	D25	D24	D23	D22	VSS	VDD	VSS	VDD	VSS	VDD	I2C_SCL	I2C_SDA	R/W	TEA	J
к	D21	D20	D19	D18	VDD	VDD		VDD	JTAG_EN	RCON	SD_ RAS	SD_CAS	SD_WE	CLKOUT	к
L	D17	D16	D10	Core VDD_2	D3	DTIN1	IRQ5	IRQ1	DTOUT2	PST0	DDATA0	SD_CS1	SD_CS0	VSSPLL	L
М	D15	D13	D9	D6	D2	DTOUT1	IRQ6	IRQ2	DTIN2	TDI/DSI	PST3	DDATA3	VDDPLL	EXTAL	м
N	D14	D12	D8	D5	D1	OE	IRQ7	IRQ3	TRST/ DSCLK	TDO/DSO	PST2	DDATA2	RESET	XTAL	N
Ρ	VSS	D11	D7	D4	D0	TSIZ1	TSIZ0	IRQ4	TCLK/ PSTCLK	TMS/ BKPT	PST1	DDATA1	RSTOUT	VSS	Ρ
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1

Figure 3. MCF5270/71CVMxxx Pinout (196 MAPBGA)

Mechanicals/Pinouts and Part Numbers

6.2 Package Dimensions—196 MAPBGA

Figure 4 shows MCF5270/71CVMxxx package dimensions.

Figure 4. 196 MAPBGA Package Dimensions (Case No. 1128A-01)

 T_A = Ambient Temperature, °C Θ_{JMA} = Package Thermal Resistance, Junction-to-Ambient, °C/W $P_D = P_{INT} + P_{I/O}$ $P_{INT} = I_{DD} \times V_{DD}$, Watts - Chip Internal Power $P_{I/O}$ = Power Dissipation on Input and Output Pins — User Determined

For most applications $P_{I/O} < P_{INT}$ and can be ignored. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

 $P_{\rm D} = \mathbf{K} \div (\mathbf{T}_{\rm J} + 273^{\circ}C) \quad (2)$

Solving equations 1 and 2 for K gives:

 $K = P_D \times (T_A + 273 \text{ °C}) + \Theta_{JMA} \times P_D^2 (3)$

where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations (1) and (2) iteratively for any value of T_A .

7.3 DC Electrical Specifications

Table 9. DC Electrical Specifications¹

Characteristic	Symbol	Min	Typical	Max	Unit
Core Supply Voltage	V _{DD}	1.4	—	1.6	V
Pad Supply Voltage	OV _{DD}	3.0		3.6	V
PLL Supply Voltage	V _{DDPLL}	3.0		3.6	V
Input High Voltage	V _{IH}	$0.7 \times \mathrm{OV}_\mathrm{DD}$		3.65	V
Input Low Voltage	V _{IL}	V _{SS} – 0.3	_	$0.35\times\text{OV}_\text{DD}$	V
Input Hysteresis	V _{HYS}	$0.06\times\text{OV}_\text{DD}$	_	—	mV
Input Leakage Current $V_{in} = V_{DD}$ or V_{SS} , Input-only pins	l _{in}	-1.0	_	1.0	μA
High Impedance (Off-State) Leakage Current $V_{in} = V_{DD}$ or V_{SS} , All input/output and output pins	I _{OZ}	-1.0	_	1.0	μΑ
Output High Voltage (All input/output and all output pins) I _{OH} = -5.0 mA	V _{OH}	OV _{DD} - 0.5	_	—	V
Output Low Voltage (All input/output and all output pins) $I_{OL} = 5.0 \text{mA}$	V _{OL}	_	_	0.5	V
Weak Internal Pull Up Device Current, tested at V_{IL} Max. ²	I _{APU}	-10		- 130	μA
Input Capacitance ³ All input-only pins All input/output (three-state) pins	C _{in}		_	7 7	pF

Num	Characteristic	Symbol	Min. Value	Max. Value	Unit
6	XTAL Load Capacitance ⁵		5	30	pF
7	PLL Lock Time ^{5, 7,13}	t _{lpll}	_	750	μs
8	Power-up To Lock Time ^{5, 6,8} With Crystal Reference (includes 5 time) Without Crystal Reference ⁹	t _{lplk}		11 750	ms μs
9	1:1 Mode Clock Skew (between CLKOUT and EXTAL) ¹⁰	t _{skew}	-1	1	ns
10	Duty Cycle of reference ⁵	t _{dc}	40	60	%
11	Frequency un-LOCK Range	f _{UL}	-3.8	4.1	% f _{sys/2}
12	Frequency LOCK Range	f _{LCK}	-1.7	2.0	% f _{sys/2}
13	CLKOUT Period Jitter, ^{5, 6, 8,11, 12} Measured at f _{sys/2} Max Peak-to-peak Jitter (Clock edge to clock edge) Long Term Jitter (Averaged over 2 ms interval)	C _{jitter}		5.0 .01	% f _{sys/2}
14	Frequency Modulation Range Limit ^{13,14} (f _{sys/2} Max must not be exceeded)	C _{mod}	0.8	2.2	%f _{sys/2}
15	ICO Frequency. $f_{ico} = f_{ref} \times 2 \times (MFD+2)^{15}$	f _{ico}	48	150	MHz

Table 10. HiP7 PLLMRFM Electrical Sp	pecifications ¹ (continue	(t
--------------------------------------	--------------------------------------	----

1 All values given are initial design targets and subject to change.

2 All internal registers retain data at 0 Hz.

³ "Loss of Reference Frequency" is the reference frequency detected internally, which transitions the PLL into self clocked mode.

- 4 Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls below fLOR with default MFD/RFD settings.
- ⁵ This parameter is guaranteed by characterization before qualification rather than 100% tested.
- ⁶ Proper PC board layout procedures must be followed to achieve specifications.
- 7 This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR).
- 8 Assuming a reference is available at power up, lock time is measured from the time V_{DD} and V_{DDSYN} are valid to RSTOUT negating. If the crystal oscillator is being used as the reference for the PLL, then the
- crystal start up time must be added to the PLL lock time to determine the total start-up time. $t_{ipli} = (64 * 4 * 5 + 5 \tau) T_{ref}$, where $T_{ref} = 1/F_{ref_crystal} = 1/F_{ref_ext} = 1/F_{ref_1:1}$, and $\tau = 1.57 \times 10^{-6} 2(MFD + 10^{-6} T_{ref})$ 9 2).
- ¹⁰ PLL is operating in 1:1 PLL mode.
- ¹¹ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{sys/2}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via VDDSYN and VSSSYN and variation in crystal oscillator frequency increase the Cjitter percentage for a given interval.
- ¹² Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of Cjitter+Cmod.
- ¹³ Modulation percentage applies over an interval of 10µs, or equivalently the modulation rate is 100KHz. ¹⁴ Modulation rate selected must not result in $f_{svs/2}$ value greater than the $f_{svs/2}$ maximum specified value.
- Modulation range determined by hardware design. ¹⁵ $f_{sys/2} = f_{ico} / (2 * 2^{RFD})$

7.5 External Interface Timing Characteristics

Table 11 lists processor bus input timings.

NOTE

All processor bus timings are synchronous; that is, input setup/hold and output delay with respect to the rising edge of a reference clock. The reference clock is the CLKOUT output.

All other timing relationships can be derived from these values.

Name	Characteristic ¹	Symbol	Min	Max	Unit		
freq	System bus frequency	f _{sys/2}	50	75	MHz		
B0	CLKOUT period	t _{cyc}		1/75	ns		
	Control Inputs						
B1a	Control input valid to CLKOUT high ²	t _{CVCH}	9	_	ns		
B1b	BKPT valid to CLKOUT high ³	t _{BKVCH}	9	—	ns		
B2a	CLKOUT high to control inputs invalid ²	t _{CHCII}	0	—	ns		
B2b	CLKOUT high to asynchronous control input BKPT invalid ³	t _{BKNCH}	0	—	ns		
	Data Inputs						
B4	Data input (D[31:0]) valid to CLKOUT high	t _{DIVCH}	4	_	ns		
B5	CLKOUT high to data input (D[31:0]) invalid	t _{CHDII}	0	_	ns		

Table 11. Processor Bus Input Timing Specifications

¹ Timing specifications are tested using full drive strength pad configurations in a 50ohm transmission line environment..

 2 TEA and TA pins are being referred to as control inputs.

³ Refer to figure A-19.

Characteristic	Symbol	Min	Max	Unit					
Address and Attribute Outputs									
CLKOUT high to address (A[23:0]) and control (\overline{TS} , \overline{TSIZ} [1:0], \overline{TIP} , R/W) valid	t _{CHAV}	_	9	ns					
CLKOUT high to address (A[23:0]) and control (\overline{TS} , \overline{TSIZ} [1:0], \overline{TIP} , R/ \overline{W}) invalid	t _{CHAI}	1.5	_	ns					
Data Outputs									
CLKOUT high to data output (D[31:0]) valid	t _{CHDOV}	—	9	ns					
CLKOUT high to data output (D[31:0]) invalid	t _{CHDOI}	1.5		ns					
CLKOUT high to data output (D[31:0]) high impedance	t _{CHDOZ}	_	9	ns					
	Characteristic Address and Attribute C CLKOUT high to address (A[23:0]) and control (TS, TSIZ[1:0], TIP, R/W) valid CLKOUT high to address (A[23:0]) and control (TS, TSIZ[1:0], TIP, R/W) invalid Data Outputs CLKOUT high to data output (D[31:0]) valid CLKOUT high to data output (D[31:0]) invalid CLKOUT high to data output (D[31:0]) high impedance	Characteristic Symbol Address and Attribute Outputs CLKOUT high to address (A[23:0]) and control (TS, TSIZ[1:0], TIP, R/W) valid t _{CHAV} CLKOUT high to address (A[23:0]) and control (TS, TSIZ[1:0], TIP, R/W) invalid t _{CHAI} Data Outputs CLKOUT high to address (A[23:0]) and control (TS, TSIZ[1:0], TIP, R/W) invalid Data Outputs CLKOUT high to data output (D[31:0]) valid t _{CHDOV} CLKOUT high to data output (D[31:0]) invalid t _{CHDOU} CLKOUT high to data output (D[31:0]) invalid t _{CHDOU}	CharacteristicSymbolMinAddress and Attribute OutputsCLKOUT high to address (A[23:0]) and control (TS, TSIZ[1:0], TIP, R/W) validtcHAVCLKOUT high to address (A[23:0]) and control (TS, TSIZ[1:0], TIP, R/W) invalidtcHAI1.5Data OutputsCLKOUT high to address (A[23:0]) and control (TS, TSIZ[1:0], TIP, R/W) invalidtcHAIData OutputsCLKOUT high to data output (D[31:0]) validtcHDOVCLKOUT high to data output (D[31:0]) invalidtcHDOI1.5CLKOUT high to data output (D[31:0]) invalidtcHDOI1.5CLKOUT high to data output (D[31:0]) invalidtcHDOITIME TO THE TOTH TO THE TOTH	CharacteristicSymbolMinMaxAddress and Attribute OutputsCLKOUT high to address (A[23:0]) and control (TS, TSIZ[1:0], TIP, R/W) validtchav-9CLKOUT high to address (A[23:0]) and control (TS, TSIZ[1:0], TIP, R/W) invalidtchav1.5-Data OutputsCLKOUT high to address (A[23:0]) and control (TS, TSIZ[1:0], TIP, R/W) invalidtchav1.5-CLKOUT high to address (A[23:0]) and control (TS, TSIZ[1:0], TIP, R/W) invalidtchav9CLKOUT high to address (A[23:0]) and control (TS, TSIZ[1:0], TIP, R/W) invalidtchav9CLKOUT high to address (A[23:0]) and control (TS, TSIZ[1:0], TIP, R/W) invalidtchav9CLKOUT high to data output (D[31:0]) validtchav-9CLKOUT high to data output (D[31:0]) invalidtchav1.5-CLKOUT high to data output (D[31:0]) high impedancetchav9					

Table 12. External Bus Output Timing Specifications (continued)

CS transitions after the falling edge of CLKOUT.
 BS transitions after the falling edge of CLKOUT.
 OE transitions after the falling edge of CLKOUT.

Read/write bus timings listed in Table 12 are shown in Figure 8, Figure 9, and Figure 10.

Figure 8. Read/Write (Internally Terminated) SRAM Bus Timing

Figure 9 shows a bus cycle terminated by \overline{TA} showing timings listed in Table 12.

Figure 9. SRAM Read Bus Cycle Terminated by \overline{TA}

Figure 10 shows an SRAM bus cycle terminated by $\overline{\text{TEA}}$ showing timings listed in Table 12.

Figure 11 shows an SDRAM read cycle.

Figure	11.	SDRAM	Read	Cycle
--------	-----	-------	------	-------

NUM	Characteristic	Symbol	Min	Max	Unit
D1	CLKOUT high to SDRAM address valid	t _{CHDAV}	_	9	ns
D2	CLKOUT high to SDRAM control valid	t _{CHDCV}	_	9	ns
D3	CLKOUT high to SDRAM address invalid	t _{CHDAI}	1.5	_	ns
D4	CLKOUT high to SDRAM control invalid	t _{CHDCI}	1.5	_	ns
D5	SDRAM data valid to CLKOUT high	t _{DDVCH}	4	_	ns
D6	CLKOUT high to SDRAM data invalid	t _{CHDDI}	1.5	_	ns
D7 ¹	CLKOUT high to SDRAM data valid	t _{CHDDVW}	_	9	ns
D8 ¹	CLKOUT high to SDRAM data invalid	t _{CHDDIW}	1.5	_	ns

¹ D7 and D8 are for write cycles only.

7.10.4 MII Serial Management Channel Timing (EMDIO and EMDC)

Table 21 lists MII serial management channel timings. The FEC functions correctly with a maximum MDC frequency of 2.5 MHz.

Num	Characteristic	Min	Max	Unit
M10	EMDC falling edge to EMDIO output invalid (minimum propagation delay)	0	—	ns
M11	EMDC falling edge to EMDIO output valid (max prop delay)	—	25	ns
M12	EMDIO (input) to EMDC rising edge setup	10	—	ns
M13	EMDIO (input) to EMDC rising edge hold	0	—	ns
M14	EMDC pulse width high	40%	60%	MDC period
M15	EMDC pulse width low	40%	60%	MDC period

Table 21. MII Serial Management Channel	Timing
---	--------

Figure 19 shows MII serial management channel timings listed in Table 21.

Figure 19. MII Serial Management Channel Timing Diagram

7.11 32-Bit Timer Module AC Timing Specifications

Table 22 lists timer module AC timings.

Table 22. Timer Module AC Timing Specifications

Name	Characteristic	0–66	Unit	
Name	Unaracteristic	Min	Max	onn
T1	DT0IN / DT1IN / DT2IN / DT3IN cycle time	3	_	t _{CYC}
T2	DT0IN / DT1IN / DT2IN / DT3IN pulse width	1		t _{CYC}

7.12 **QSPI Electrical Specifications**

Table 23 lists QSPI timings.

Table 23. QSPI Modules AC Timing Specification
--

Name	Characteristic	Min	Max	Unit
QS1	QSPI_CS[1:0] to QSPI_CLK	1	510	tcyc
QS2	QSPI_CLK high to QSPI_DOUT valid.	_	10	ns
QS3	QSPI_CLK high to QSPI_DOUT invalid. (Output hold)	2	_	ns
QS4	QSPI_DIN to QSPI_CLK (Input setup)	9	_	ns
QS5	QSPI_DIN to QSPI_CLK (Input hold)	9	_	ns

The values in Table 23 correspond to Figure 20.

Figure 20. QSPI Timing

7.14 Debug AC Timing Specifications

Table 25 lists specifications for the debug AC timing parameters shown in Figure 26.

Num	Characteristic	150 MHz		Unite	
Num		Min	Max	Units	
DE0	PSTCLK cycle time		0.5	t _{cyc}	
DE1	PST valid to PSTCLK high	4	—	ns	
DE2	PSTCLK high to PST invalid	1.5	—	ns	
DE3	DSCLK cycle time	5	—	t _{cyc}	
DE4	DSI valid to DSCLK high	1	_	t _{cyc}	
DE5 ¹	DSCLK high to DSO invalid	4	—	t _{cyc}	
DE6	BKPT input data setup time to CLKOUT rise	4	—	ns	
DE7	CLKOUT high to BKPT high Z	0	10	ns	
¹ DSCLK and DSL are synchronized internally, D4 is measured from the synchronized DSCLK					

Table 25. Debug AC Timing Specification

DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative to the rising edge of CLKOUT.

Figure 25 shows real-time trace timing for the values in Table 25.

Figure 25. Real-Time Trace AC Timing

Figure 26 shows BDM serial port AC timing for the values in Table 25.