

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	1GHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, LVDDR3, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	Keypad, LCD
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 2.0 + PHY (4)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-20°C ~ 105°C (TJ)
Security Features	ARM TZ, Boot Security, Cryptography, RTIC, Secure Fusebox, Secure JTAG, Secure Memory, Secure RTC, Tamper Detection
Package / Case	624-LFBGA
Supplier Device Package	624-MAPBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6s5evm10ad

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Architectural Overview

2 Architectural Overview

The following subsections provide an architectural overview of the i.MX 6Solo/6DualLite processor system.

2.1 Block Diagram

Figure 3 shows the functional modules in the i.MX 6Solo/6DualLite processor system.

¹ 144 KB RAM including 16 KB RAM inside the CAAM.

² For i.MX 6Solo, there is only one A9-core platform in the chip; for i.MX 6DualLite, there are two A9-core platforms.

Figure 3. i.MX 6Solo/6DualLite System Block Diagram

NOTE

The numbers in brackets indicate number of module instances. For example, PWM (4) indicates four separate PWM peripherals.

Block Mnemonic	Block Name	Subsystem	Brief Description
IPUv3H	Image Processing Unit, ver.3H	Multimedia Peripherals	 IPUv3H enables connectivity to displays and video sources, relevant processing and synchronization and control capabilities, allowing autonomous operation. The IPUv3H supports concurrent output to two display ports and concurrent input from two camera ports, through the following interfaces: Parallel Interfaces for both display and camera Single/dual channel LVDS display interface HDMI transmitter MIPI/CSI-2 receiver The processing includes: Image conversions: resizing, rotation, inversion, and color space conversion A high-quality de-interlacing filter Video/graphics combining Image enhancement: color adjustment and gamut mapping, gamma correction, and contrast enhancement Support for display backlight reduction
KPP	Key Pad Port	Connectivity Peripherals	 KPP Supports 8x8 external key pad matrix. KPP features are: Open drain design Glitch suppression circuit design Multiple keys detection Standby key press detection
LDB	LVDS Display Bridge	Connectivity Peripherals	 LVDS Display Bridge is used to connect the IPU (Image Processing Unit) to External LVDS Display Interface. LDB supports two channels; each channel has following signals: One clock pair Four data pairs Each signal pair contains LVDS special differential pad (PadP, PadM).
MLB150	MediaLB	Connectivity / Multimedia Peripherals	The MLB interface module provides a link to a MOST [®] data network, using the standardized MediaLB protocol (up to 6144 fs). The module is backward compatible to MLB-50.
MMDC	Multi-Mode DDR Controller	Connectivity Peripherals	 DDR Controller has the following features: Supports 16/32-bit DDR3-800 (LV) or LPDDR2-800 in i.MX 6Solo Supports 16/32/64-bit DDR3-800 (LV) or LPDDR2-800 in i.MX 6DualLite Supports 2x32 LPDDR2-800 in i.MX 6DualLite Supports up to 4 GByte DDR memory space

Table 2. i.MX 6Solo/6DualLite Modules List (continued)

Block Mnemonic	Block Name	Subsystem	Brief Description
uSDHC-1 uSDHC-3 uSDHC-4	SD/MMC and SDXC Enhanced Multi-Media Card / Secure Digital Host Controller	Connectivity Peripherals	 i.MX 6Solo/6DualLite specific SoC characteristics: All four MMC/SD/SDIO controller IPs are identical and are based on the uSDHC IP. They are: Conforms to the SD Host Controller Standard Specification version 3.0. Fully compliant with MMC command/response sets and Physical Layer as defined in the Multimedia Card System Specification, v4.2/4.3/4.4/4.41 including high-capacity (size > 2 GB) cards HC MMC. Fully compliant with SD command/response sets and Physical Layer as defined in the SD Memory Card Specifications, v3.0 including high-capacity SDHC cards up to 32 GB and SDXC cards up to 2 TB. Fully compliant with SDIO command/response sets and interrupt/read-wait mode as defined in the SDIO Card Specification, Part E1, v3.0 All four ports support: 1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR104 mode (104 MB/s max) 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52 MHz in both SDR and DDR modes (104 MB/s max) However, the SoC level integration and I/O muxing logic restrict the functionality to the following: Instances #1 and #2 are primarily intended to serve as external slots or interfaces to on-board SDIO devices. These ports are equipped with "Card detection" and "Write Protection" pads and do not support hardware reset. Instances #3 and #4 are primarily intended to serve interfaces to embedded MMC memory or interfaces to on-board SDIO devices. These ports are equipped with "Card detection" and "Write Protection" pads and do support hardware reset. All ports can work with 1.8 V and 3.3 V cards. There are two completely independent I/O power domains for Ports #1 and #2 in four bit configuration (SD interface). Port #3 is placed in his own independent power domain and port #4 shares power domain with some other interfaces.
VDOA	VDOA	Multimedia Peripherals	Video Data Order Adapter (VDOA): used to re-order video data from the "tiled" order used by the VPU to the conventional raster-scan order needed by the IPU.
VPU	Video Processing Unit	Multimedia Peripherals	A high-performing video processing unit (VPU), which covers many SD-level and HD-level video decoders and SD-level encoders as a multi-standard video codec engine as well as several important video processing, such as rotation and mirroring. See the i. <i>MX 6Solo/6DualLite Reference Manual</i> (<i>IMX6SDLRM</i>) for complete list of VPU's decoding/encoding capabilities.

Table 10. Maximum Supply Currents (continued)

Power Line	Conditions	Max Current	Unit			
NVCC_LVDS2P5 ⁶	_	NVCC_LVDS2P5 is connected to VDD_HIGH_CAP at the board level. VDD_HIGH_CAP is capable of handing the current required by NVCC_LVDS2P5.				
MISC						
DDR_VREF	_	1	mA			

¹ The actual maximum current drawn from VDD_HIGH_IN will be as shown plus any additional current drawn from the VDD_HIGH_CAP outputs, depending upon actual application configuration (for example, NVCC_LVDS_2P5, NVCC_MIPI, or HDMI and PCIe VPH supplies).

- ² Under normal operating conditions, the maximum current on VDD_SNVS_IN is shown in Table 10. The maximum VDD_SNVS_IN current may be higher depending on specific operating configurations, such as BOOT_MODE[1:0] not equal to 00, or use of the Tamper feature. During initial power on, VDD_SNVS_IN can draw up to 1 mA if the supply is capable of sourcing that current. If less than 1 mA is available, the VDD_SNVS_CAP charge time will increase.
- ³ This is the maximum current per active USB physical interface.
- ⁴ The DRAM power consumption is dependent on several factors, such as external signal termination. DRAM power calculators are typically available from the memory vendors. They take in account factors, such as signal termination. See the i.MX 6Solo/DualLite Power Consumption Measurement Application Note (AN4576) for examples of DRAM power consumption during specific use case scenarios.
- ⁵ General equation for estimated, maximum power consumption of an IO power supply:
- $Imax = N \times C \times V \times (0.5 \times F)$

Where:

- N—Number of IO pins supplied by the power line
- C—Equivalent external capacitive load
- V—IO voltage
- (0.5 xF)—Data change rate. Up to 0.5 of the clock rate (F)
- In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz.
- ⁶ NVCC_LVDS2P5 is supplied by VDD_HIGH_CAP (by external connection) so the maximum supply current is included in the current shown for VDD_HIGH_IN. The maximum supply current for NVCC_LVDS2P5 has not been characterized separately.

4.1.6 Low Power Mode Supply Currents

Table 11 shows the current core consumption (not including I/O) of i.MX 6Solo/6DualLite processors in selected low power modes.

Mode	Test Conditions	Supply	Typical ¹	Units
WAIT	 ARM, SoC, and PU LDOs are set to 1.225 HIGH LDO set to 2.5 V Clocks are gated. DDR is in self refresh. PLLs are active in bypass (24MHz) 	VDD_ARM_IN (1.4V)	4.5	
• High • Clocks • DDR i • PLLs • Suppl		VDD_SOC_IN (1.4V)	23	mA
		VDD_HIGH_IN (3.0V)	13.5	
	Supply Voltages remain ON	Total	79	mW

Table 11. Stop Mode Current and Power Consumption

4.4.5 MLB PLL

The MediaLB PLL is necessary in the MediaLB 6-Pin implementation to phase align the internal and external clock edges, effectively tuning out the delay of the differential clock receiver and is also responsible for generating the higher speed internal clock, when the internal-to-external clock ratio is not 1:1.

Table 19. MLB PLL's Elect	trical Parameters
---------------------------	-------------------

Parameter	Value
Lock time	<1 ms

4.4.6 ARM PLL

Parameter	Value
Clock output range	650 MHz ~ 1.3 GHz
Reference clock	24 MHz
Lock time	<2250 reference cycles

4.5 **On-Chip Oscillators**

4.5.1 OSC24M

This block implements an amplifier that when combined with a suitable quartz crystal and external load capacitors implements an oscillator. The oscillator is powered from NVCC_PLL_OUT.

The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight forward biased-inverter implementation is used.

4.5.2 OSC32K

This block implements an amplifier that when combined with a suitable quartz crystal and external load capacitors implements a low power oscillator. It also implements a power mux such that it can be powered from either a ~3 V backup battery (VDD_SNVS_IN) or VDD_HIGH_IN such as the oscillator consumes power from VDD_HIGH_IN when that supply is available and transitions to the back up battery when VDD_HIGH_IN is lost.

In addition, if the clock monitor determines that the OSC32K is not present, then the source of the 32 kHz clock will automatically switch to the internal ring oscillator.

Table 26. RGMII I/O 1.8V and 2.5V mode DC Electrical Characteristics ¹ (cr	ontinued)
---	-----------

Parameters	Symbol	Test Conditions	Min	Мах	Unit
Pull-down Resistor (100 kΩ PD)	R _{PD_100K}	Vin=0V	—	1	μA
Keeper Circuit Resistance	R _{keep}		105	165	kΩ
Input Current (no pull-up/down)	l _{in}	VI = 0, VI = OVDD	-2.9	2.9	μA

¹ Input Mode Selection "SW_PAD_CTL_GRP_DDR_TYPE_RGMII"='10' (1.8V Mode) "SW_PAD_CTL_GRP_DDR_TYPE_RGMII"='11' (2.5V Mode).

² Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.6 V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods. Non-compliance to this specification may affect device reliability or cause permanent damage to the device.

- ³ To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC level through to the target DC level, V_{IL} or V_{IH} . Monotonic input transition time is from 0.1 ns to 1 s.
- ⁴ Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled (register IOMUXC_SW_PAD_CTL_PAD_RGMII_TXC[HYS]= 0).

4.6.5 LVDS I/O DC Parameters

The LVDS interface complies with TIA/EIA 644-A standard. See TIA/EIA STANDARD 644-A, *"Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits"* for details.

Table 27 shows the Low Voltage Differential Signaling (LVDS) I/O DC parameters.

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Output Differential Voltage	VOD	Rload-100 Ω Diff	250	350	450	mV
Output High Voltage	VOH	IOH = 0 mA	1.25	1.375	1.6	V
Output Low Voltage	VOL	IOL = 0 mA	0.9	1.025	1.25	V
Offset Voltage	VOS	—	1.125	1.2	1.375	V

 Table 27. LVDS I/O DC Characteristics

4.6.6 MLB I/O DC Parameters

The MLB interface complies with Analog Interface of 6-pin differential Media Local Bus specification version 4.1. See 6-pin differential MLB specification v4.1, "MediaLB 6-pin interface Electrical Characteristics" for details.

NOTE

The MLB 6-pin interface does not support speed mode 8192 fs.

Table 28 shows the Media Local Bus (MLB) I/O DC parameters.

NOTE

XTALOSC_RTC_XTALI is approximately 32 kHz. XTALOSC_RTC_XTALI cycle is one period or approximately 30 μs.

NOTE

WDOG1_B output signals (for each one of the Watchdog modules) do not have dedicated pins, but are muxed out through the IOMUX. See the IOMUXC chapter of the *i.MX 6Solo/6DualLite Reference Manual* (*IMX6SDLRM*).

4.9.3 External Interface Module (EIM)

The following subsections provide information on the EIM. Maximum operating frequency for EIM data transfer is 104 MHz. Two system clocks are used with the EIM:

- ACLK_EIM_SLOW_CLK_ROOT is used to clock the EIM module. The maximum frequency for CLK_EIM_SLOW_CLK_ROOT is 132 MHz.
- ACLK_EXSC is also used when the EIM is in synchronous mode. The maximum frequency for ACLK_EXSC is 104 MHz.

Timing parameters in this section that are given as a function of register settings.

4.9.3.1 EIM Interface Pads Allocation

EIM supports 32-bit, 16-bit and 8-bit devices operating in address/data separate or multiplexed modes. Table 41 provides EIM interface pads allocation in different modes.

		Non Multiplexed Address/Data Mode							olexed Data mode
Setup		8	Bit		16	Bit	32 Bit	16 Bit	32 Bit
	MUM = 0, DSZ = 100	MUM = 0, DSZ = 101	MUM = 0, DSZ = 110	MUM = 0, DSZ = 111	MUM = 0, DSZ = 001	MUM = 0, DSZ = 010	MUM = 0, DSZ = 011	MUM = 1, DSZ = 001	MUM = 1, DSZ = 011
EIM_ADDR [15:00]	EIM_AD [15:00]	EIM_AD [15:00]	EIM_AD [15:00]	EIM_AD [15:00]	EIM_AD [15:00]	EIM_AD [15:00]	EIM_AD [15:00]	EIM_AD [15:00]	EIM_AD [15:00]
EIM_ADDR [25:16]	EIM_ADDR [25:16]	EIM_ADDR [25:16]	EIM_ADDR [25:16]	EIM_ADDR [25:16]	EIM_ADDR [25:16]	EIM_ADDR [25:16]	EIM_ADDR [25:16]	EIM_ADDR [25:16]	EIM_DATA [09:00]
EIM_DATA [07:00], EIM_EB0_B	EIM_DATA [07:00]	_	_		EIM_DATA [07:00]		EIM_DATA [07:00]	EIM_AD [07:00]	EIM_AD [07:00]
EIM_DATA [15:08], EIM_EB1_B	—	EIM_DATA [15:08]	_		EIM_DATA [15:08]		EIM_DATA [15:08]	EIM_AD [15:08]	EIM_AD [15:08]
EIM_DATA [23:16], EIM_EB2_B	_	_	EIM_DATA [23:16]	_	_	EIM_DATA [23:16]	EIM_DATA [23:16]	_	EIM_DATA [07:00]
EIM_DATA [31:24], EIM_EB3_B				EIM_DATA [31:24]		EIM_DATA [31:24]	EIM_DATA [31:24]		EIM_DATA [15:08]

Table 41. EIM Internal Module Multiplexing¹

Figure 24. DTACK Mode Write Access (DAP=0)

Table 43. EIM Asynchrono	us Timing Parameters	Table Relative Chip to Select
--------------------------	----------------------	-------------------------------

Ref No.	Parameter	Determination by Synchronous measured parameters ¹	Min	Max	Unit
WE31	EIM_CSx_B valid to Address Valid	WE4 - WE6 - CSA ²	_	3 - CSA	ns
WE32	Address Invalid to EIM_CSx_B invalid	WE7 - WE5 - CSN ³	—	3 - CSN	ns
WE32A (muxed A/D	EIM_CSx_B valid to Address Invalid	t ⁴ + WE4 - WE7 + (ADVN ⁵ + ADVA ⁶ + 1 - CSA)	-3 + (ADVN + ADVA + 1 - CSA)	—	ns
WE33	EIM_CSx_B Valid to EIM_WE_B Valid	WE8 - WE6 + (WEA - WCSA)	—	3 + (WEA - WCSA)	ns
WE34	EIM_WE_B Invalid to EIM_CSx_B Invalid	WE7 - WE9 + (WEN - WCSN)	_	3 - (WEN_WCSN)	ns
WE35	EIM_CSx_B Valid to EIM_OE_B Valid	WE10 - WE6 + (OEA - RCSA)	_	3 + (OEA - RCSA)	ns
WE35A (muxed A/D)	EIM_CSx_B Valid to EIM_OE_B Valid	WE10 - WE6 + (OEA + RADVN + RADVA + ADH + 1 - RCSA)	-3 + (OEA + RADVN+RADVA+ ADH+1-RCSA)	3 + (OEA + RADVN+RADVA+ADH +1-RCSA)	ns
WE36	EIM_OE_B Invalid to EIM_CSx_B Invalid	WE7 - WE11 + (OEN - RCSN)	_	3 - (OEN - RCSN)	ns
WE37	EIM_CSx_B Valid to EIM_EBx_B Valid (Read access)	WE12 - WE6 + (RBEA - RCSA)	—	3 + (RBEA - RCSA)	ns

4.11.2.1 ECSPI Master Mode Timing

Figure 36 depicts the timing of ECSPI in master mode. Table 49 lists the ECSPI master mode timing characteristics.

Note: ECSPIx_MOSI is always driven (not tri-stated) between actual data transmissions. This limits the ECSPI to be connected between a single master and a single slave.

Figure 36. ECSPI Master Mode Timing Diagram

ID	Parameter	Symbol	Min	Max	Unit
CS1	ECSPIx_SCLK Cycle Time-Read ECSPIx_SCLK Cycle Time-Write	t _{clk}	43 15	—	ns
CS2	ECSPIx_SCLK High or Low Time-Read ECSPIx_SCLK High or Low Time-Write	t _{sw}	21.5 7	—	ns
CS3	ECSPIx_SCLK Rise or Fall ¹	t _{RISE/FALL}	—	—	ns
CS4	ECSPIx_SS_B pulse width	t _{CSLH}	Half ECSPIx_SCLK period	—	ns
CS5	ECSPIx_SS_B Lead Time (CS setup time)	t _{SCS}	Half ECSPIx_SCLK period - 4	—	ns
CS6	ECSPIx_SS_B Lag Time (CS hold time)	t _{HCS}	Half ECSPIx_SCLK period - 2	—	ns
CS7	ECSPIx_MOSI Propagation Delay (C _{LOAD} = 20 pF)	t _{PDmosi}	-1	1	ns
CS8	ECSPIx_MISO Setup Time •	t _{Smiso}	18	—	ns
CS9	ECSPIx_MISO Hold Time	t _{Hmiso}	0	—	ns
CS10	RDY to ECSPIx_SS_B Time ²	t _{SDRY}	5	_	ns

Table 49. ECSPI Master Mode Timing Parameters

¹ See specific I/O AC parameters Section 4.7, "I/O AC Parameters."

² SPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals.

No.	Characteristics ^{1,2}	Symbol	Expression ²	Min	Мах	Condition ³	Unit
81	ESAI_TX_CLK rising edge to ESAI_TX_FS out (wr) low ⁵	_	_	_	22.0 12.0	x ck i ck	ns
82	ESAI_TX_CLK rising edge to ESAI_TX_FS out (wI) high		_	_	19.0 9.0	x ck i ck	ns
83	ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) low			_	20.0 10.0	x ck i ck	ns
84	ESAI_TX_CLK rising edge to data out enable from high impedance			_	22.0 17.0	x ck i ck	ns
86	ESAI_TX_CLK rising edge to data out valid	_	_	_	18.0 13.0	x ck i ck	ns
87	ESAI_TX_CLK rising edge to data out high impedance ⁶⁷	_	_	_	21.0 16.0	x ck i ck	ns
89	ESAI_TX_FS input (bl, wr) setup time before ESAI_TX_CLK falling edge ⁵	_	_	2.0 18.0	_	x ck i ck	ns
90	ESAI_TX_FS input (wl) setup time before ESAI_TX_CLK falling edge	_	_	2.0 18.0	_	x ck i ck	ns
91	ESAI_TX_FS input hold time after ESAI_TX_CLK falling edge	_	_	4.0 5.0	_	x ck i ck	ns
95	ESAI_RX_HF_CLK/ESAI_TX_HF_CLK clock cycle	_	2 x T _C	15		_	ns
96	ESAI_TX_HF_CLK input rising edge to ESAI_TX_CLK output		_	—	18.0	_	ns
97	ESAI_RX_HF_CLK input rising edge to ESAI_RX_CLK output		_	_	18.0	_	ns

Table 51. Enhanced Serial Audio Interface (ESAI) Timing Parameters (continued)

¹ i ck = internal clock

x ck = external clock

i ck a = internal clock, asynchronous mode

(asynchronous implies that ESAI_TX_CLK and ESAI_RX_CLK are two different clocks)

i ck s = internal clock, synchronous mode

(synchronous implies that ESAI_TX_CLK and ESAI_RX_CLK are the same clock)

² bl = bit length

- wl = word length
- wr = word length relative
- ³ ESAI_TX_CLK(SCKT pin) = transmit clock
- ESAI_RX_CLK(SCKR pin) = receive clock
- ESAI_TX_FS(FST pin) = transmit frame sync
- ESAI_RX_FS(FSR pin) = receive frame sync
- ESAI_TX_HF_CLK(HCKT pin) = transmit high frequency clock
- ESAI_RX_HF_CLK(HCKR pin) = receive high frequency clock
- ⁴ For the internal clock, the external clock cycle is defined by lcyc and the ESAI control register.
- ⁵ The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync signal waveform, but it spreads from one serial clock before the first bit clock (like the bit length frame sync signal), until the second-to-last bit clock of the first word in the frame.
- ⁶ Periodically sampled and not 100% tested.

The display access can be whole number of DI clock (Tdiclk) only. The IPP_DATA can not be moved relative to the local start point. The data bus of the synchronous interface is output direction only.

4.11.10.6.2 LCD Interface Functional Description

Figure 63 depicts the LCD interface timing for a generic active matrix color TFT panel. In this figure, signals are shown with negative polarity. The sequence of events for active matrix interface timing is:

- DI_CLK internal DI clock is used for calculation of other controls.
- IPP_DISP_CLK latches data into the panel on its negative edge (when positive polarity is selected). In active mode, IPP_DISP_CLK runs continuously.
- HSYNC causes the panel to start a new line. (Usually IPUx_DIx_PIN02 is used as HSYNC.)
- VSYNC causes the panel to start a new frame. It always encompasses at least one HSYNC pulse. (Usually IPUx_DIx_PIN03 is used as VSYNC.)
- DRDY acts like an output enable signal to the CRT display. This output enables the data to be shifted onto the display. When disabled, the data is invalid and the trace is off. (DRDY can be used either synchronous or asynchronous generic purpose pin as well.)

Figure 63. Interface Timing Diagram for TFT (Active Matrix) Panels

4.11.10.6.3 TFT Panel Sync Pulse Timing Diagrams

Figure 64 depicts the horizontal timing (timing of one line), including both the horizontal sync pulse and the data. All the parameters shown in the figure are programmable. All controls are started by

Table 67 shows timing characteristics of signals presented in Figure 64 and Figure 65.

ID	Parameter	Symbol	Value	Description	Unit
IP5	Display interface clock period	Tdicp	(¹)	Display interface clock. IPP_DISP_CLK	ns
IP6	Display pixel clock period	Tdpcp	DISP_CLK_PER_PIXEL × Tdicp	Time of translation of one pixel to display, DISP_CLK_PER_PIXEL—number of pixel components in one pixel (1.n). The DISP_CLK_PER_PIXEL is virtual parameter to define Display pixel clock period. The DISP_CLK_PER_PIXEL is received by DC/DI one access division to n components.	ns
IP7	Screen width time	Tsw	(SCREEN_WIDTH) × Tdicp	SCREEN_WIDTH—screen width in, interface clocks. horizontal blanking included. The SCREEN_WIDTH should be built by suitable DI's counter ² .	ns
IP8	HSYNC width time	Thsw	(HSYNC_WIDTH)	HSYNC_WIDTH—Hsync width in DI_CLK with 0.5 DI_CLK resolution. Defined by DI's counter.	ns
IP9	Horizontal blank interval 1	Thbi1	$\operatorname{BGXP} imes\operatorname{Tdicp}$	BGXP—width of a horizontal blanking before a first active data in a line (in interface clocks). The BGXP should be built by suitable DI's counter.	ns
IP10	Horizontal blank interval 2	Thbi2	(SCREEN_WIDTH - BGXP - FW) × Tdicp	Width a horizontal blanking after a last active data in a line (in interface clocks) FW—with of active line in interface clocks. The FW should be built by suitable DI's counter.	ns
IP12	Screen height	Tsh	(SCREEN_HEIGHT) × Tsw	SCREEN_HEIGHT— screen height in lines with blanking. The SCREEN_HEIGHT is a distance between 2 VSYNCs. The SCREEN_HEIGHT should be built by suitable DI's counter.	ns
IP13	VSYNC width	Tvsw	VSYNC_WIDTH	VSYNC_WIDTH—Vsync width in DI_CLK with 0.5 DI_CLK resolution. Defined by DI's counter	ns
IP14	Vertical blank interval 1	Tvbi1	BGYP × Tsw	BGYP—width of first Vertical blanking interval in line. The BGYP should be built by suitable DI's counter.	ns
IP15	Vertical blank interval 2	Tvbi2	(SCREEN_HEIGHT - BGYP - FH) × Tsw	Width of second Vertical blanking interval in line. The FH should be built by suitable DI's counter.	ns
IP5o	Offset of IPP_DISP_CLK	Todicp	DISP_CLK_OFFSET × Tdiclk	DISP_CLK_OFFSET—offset of IPP_DISP_CLK edges from local start point, in DI_CLK×2 (0.5 DI_CLK Resolution). Defined by DISP_CLK counter	ns

Table 67. Synchronous Display Interface Timing Characteristics (Pixel Level)

Symbol	Parameters	Test Conditions	Min	Тур	Max	Unit		
Z _{ID}	Differential input impedance	_	80	_	125	Ω		
LP Line Receiver DC Specifications								
V _{IL}	Input low voltage	—	_	—	550	mV		
V _{IH}	Input high voltage	—	920	—	_	mV		
V _{HYST}	Input hysteresis	—	25	—	_	mV		
Contention Line Receiver DC Specifications								
V _{ILF}	Input low fault threshold	_	200	—	450	mV		

Table 70. Electrical and Timing Information (continued)

4.11.12.2 MIPI D-PHY Signaling Levels

The signal levels are different for differential HS mode and single-ended LP mode. Figure 67 shows both the HS and LP signal levels on the left and right sides, respectively. The HS signaling levels are below the LP low-level input threshold such that LP receiver always detects low on HS signals.

Figure 67. D-PHY Signaling Levels

4.11.12.3 MIPI HS Line Driver Characteristics

Figure 68. Ideal Single-ended and Resulting Differential HS Signals

4.11.12.4 Possible $\triangle VCMTX$ and $\triangle VOD$ Distortions of the Single-ended HS Signals

Figure 69. Possible \triangle VCMTX and \triangle VOD Distortions of the Single-ended HS Signals

4.11.12.5 MIPI D-PHY Switching Characteristics

Table 71. Electrical and Timing Informat	ion
--	-----

Symbol	Parameters	Test Conditions	Min	Тур	Max	Unit	
HS Line Drivers AC Specifications							
_	Maximum serial data rate (forward direction)	On DATAP/N outputs. 80 Ω <= RL <= 125 Ω	80	—	1000	Mbps	

4.11.14.2 MediaLB (MLB) Controller AC Timing Electrical Specifications

This section describes the timing electrical information of the MediaLB module. Figure 82 show the timing of MediaLB 3-pin interface, and Table 75 and Table 76 lists the MediaLB 3-pin interface timing characteristics.

Figure 82. MediaLB 3-Pin Timing

Ground = 0.0 V; Load Capacitance = 60 pF; MediaLB speed = 256/512 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as listed below; unless otherwise noted.

Parameter	Symbol	Min	Max	Unit	Comment
MLB_CLK operating frequency ¹	f _{mck}	11.264	25.6	MHz	256xFs at 44.0 kHz 512xFs at 50.0 kHz
MLB_CLK rise time	t _{mckr}	_	3	ns	V _{IL} TO V _{IH}
MLB_CLK fall time	t _{mckf}	_	3	ns	V _{IH} TO V _{IL}
MLB_CLK low time ²	t _{mckl}	30 14	_	ns	256xFs 512xFs
MLB_CLK high time	t _{mckh}	30 14	_	ns	256xFs 512xFs
MLB_SIG/MLB_DATA receiver input valid to MLB_CLK falling	t _{dsmcf}	1	_	ns	—
MLB_SIG/MLB_DATA receiver input hold from MLB_CLK low	t _{dhmcf}	t _{mdzh}	_	ns	_
MLB_SIG/MLB_DATA output high impedance from MLB_CLK low	t _{mcfdz}	0	t _{mckl}	ns	3
Bus Hold from MLB_CLK low	t _{mdzh}	4	_	ns	—

Table 75. MLB 256/512 Fs Timing Parameters

4.11.15.1 PCIE_REXT Reference Resistor Connection

The impedance calibration process requires connection of reference resistor 200 Ω . 1% precision resistor on PCIE_REXT pads to ground. It is used for termination impedance calibration.

4.11.16 Pulse Width Modulator (PWM) Timing Parameters

This section describes the electrical information of the PWM. The PWM can be programmed to select one of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before being input to the counter. The output is available at the pulse-width modulator output (PWMO) external pin.

Figure 84 depicts the timing of the PWM, and Table 78 lists the PWM timing parameters.

Figure 84. PWM Timing

Table 78. PWM Output Timing Parameters

ID	Parameter	Min	Мах	Unit
	PWM Module Clock Frequency	0	ipg_clk	MHz
P1	PWM output pulse width high	15		ns
P2	PWM output pulse width low	15	_	ns

4.11.17 SCAN JTAG Controller (SJC) Timing Parameters

Figure 85 depicts the SJC test clock input timing. Figure 86 depicts the SJC boundary scan timing. Figure 87 depicts the SJC test access port. Signal parameters are listed in Table 79.

Figure 85. Test Clock Input Timing Diagram

6.2.2 21 x 21 mm Supplies Contact Assignments and Functional Contact Assignments

Table 96 shows supplies contact assignments for the 21 x 21 mm package.

Table 96. 21 x 21 mm	 Supplies 	Contact Assignments
----------------------	------------------------------	----------------------------

Supply Rail Name	Ball(s) Position(s)	Remark
CSI_REXT	D4	—
DRAM_VREF	AC2	—
DSI_REXT	G4	—
GND	A4, A8, A13, A25, B4, C1, C4, C6, C10, D3, D6, D8, E5, E6, E7, F5, F6, F7, F8, G3, G10, G19, H8, H12, H15, H18, J2, J8, J12, J15, J18, K8, K10, K12, K15, K18, L2, L5, L8, L10, L12, L15, L18, M8, M10, M12, M15, M18, N8, N10, N15, N18, P8, P10, P12, P15, P18, R8, R12, R15, R17, T8, T11, T12, T15, T17, T19, U8, U11, U12, U15, U17, U19, V8, V19, W3, W7, W8, W9, W10, W11, W12, W13, W15, W16, W17, W18, W19, Y5, Y24, AA7, AA10, AA13, AA16, AA19, AA22, AB3, AB24, AD4, AD7, AD10, AD13, AD16, AD19, AD22, AE1, AE25	
HDMI_REF	J1	
HDMI_VP	L7	_
HDMI_VPH	M7	_
NVCC_CSI	N7	Supply of the camera sensor interface
NVCC_DRAM	R18, T18, U18, V9, V10, V11, V12, V13, V14, V15, V16, V17, V18	Supply of the DDR interface
NVCC_EIM	K19, L19, M19	Supply of the EIM interface
NVCC_ENET	R19	Supply of the ENET interface
NVCC_GPIO	P7	Supply of the GPIO interface
NVCC_JTAG	J7	Supply of the JTAG tap controller interface
NVCC_LCD	P19	Supply of the LCD interface
NVCC_LVDS2P5	V7	Supply of the LVDS display interface and DDR pre-drivers
NVCC_MIPI	К7	Supply of the MIPI interface
NVCC_NANDF	G15	Supply of the raw NAND Flash memories interface
NVCC_PLL_OUT	E8	—
NVCC_RGMII	G18	Supply of the ENET interface
NVCC_SD1	G16	Supply of the SD card interface
NVCC_SD2	G17	Supply of the SD card interface
NVCC_SD3	G14	Supply of the SD card interface

Package Information and Contact Assignments

				Out of Reset Condition ¹					
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function	Input/ Output	Value ²		
DISP0_DAT4	P20	NVCC_LCD	GPIO	ALT5	GPIO4_IO25	Input	100 k Ω pull-up		
DISP0_DAT5	R25	NVCC_LCD	GPIO	ALT5	GPIO4_IO26	Input	100 k Ω pull-up		
DISP0_DAT6	R23	NVCC_LCD	GPIO	ALT5	GPIO4_IO27	Input	100 kΩ pull-up		
DISP0_DAT7	R24	NVCC_LCD	GPIO	ALT5	GPIO4_IO28	Input	100 kΩ pull-up		
DISP0_DAT8	R22	NVCC_LCD	GPIO	ALT5	GPIO4_IO29	Input	100 kΩ pull-up		
DISP0_DAT9	T25	NVCC_LCD	GPIO	ALT5	GPIO4_IO30	Input	100 k Ω pull-up		
DRAM_A0	AC14	NVCC_DRAM	DDR	ALT0	DRAM_ADDR00	Output	Low		
DRAM_A1	AB14	NVCC_DRAM	DDR	ALT0	DRAM_ADDR01	Output	Low		
DRAM_A10	AA15	NVCC_DRAM	DDR	ALT0	DRAM_ADDR10	Output	Low		
DRAM_A11	AC12	NVCC_DRAM	DDR	ALT0	DRAM_ADDR11	Output	Low		
DRAM_A12	AD12	NVCC_DRAM	DDR	ALT0	DRAM_ADDR12	Output	Low		
DRAM_A13	AC17	NVCC_DRAM	DDR	ALT0	DRAM_ADDR13	Output	Low		
DRAM_A14	AA12	NVCC_DRAM	DDR	ALT0	DRAM_ADDR14	Output	Low		
DRAM_A15	Y12	NVCC_DRAM	DDR	ALT0	DRAM_ADDR15	Output	Low		
DRAM_A2	AA14	NVCC_DRAM	DDR	ALT0	DRAM_ADDR02	Output	Low		
DRAM_A3	Y14	NVCC_DRAM	DDR	ALT0	DRAM_ADDR03	Output	Low		
DRAM_A4	W14	NVCC_DRAM	DDR	ALT0	DRAM_ADDR04	Output	Low		
DRAM_A5	AE13	NVCC_DRAM	DDR	ALT0	DRAM_ADDR05	Output	out Low		
DRAM_A6	AC13	NVCC_DRAM	DDR	ALT0	DRAM_ADDR06	Output	Low		
DRAM_A7	Y13	NVCC_DRAM	DDR	ALT0	DRAM_ADDR07	Output	Low		
DRAM_A8	AB13	NVCC_DRAM	DDR	ALT0	DRAM_ADDR08	Output	Low		
DRAM_A9	AE12	NVCC_DRAM	DDR	ALT0	DRAM_ADDR09	Output	Low		
DRAM_CAS	AE16	NVCC_DRAM	DDR	ALT0	DRAM_CAS	Output	Low		
DRAM_CS0	Y16	NVCC_DRAM	DDR	ALT0	DRAM_CS0	Output	Low		
DRAM_CS1	AD17	NVCC_DRAM	DDR	ALT0	DRAM_CS1	Output	Low		
DRAM_D0	AD2	NVCC_DRAM	DDR	ALT0	DRAM_DATA00	Input	100 k Ω pull-up		
DRAM_D1	AE2	NVCC_DRAM	DDR	ALT0	DRAM_DATA01	Input	100 k Ω pull-up		
DRAM_D10	AA6	NVCC_DRAM	DDR	ALT0	DRAM_DATA10	Input	100 k Ω pull-up		
DRAM_D11	AE7	NVCC_DRAM	DDR	ALT0	DRAM_DATA11	Input	100 k Ω pull-up		
DRAM_D12	AB5	NVCC_DRAM	DDR	ALT0	DRAM_DATA12	Input	100 k Ω pull-up		
DRAM_D13	AC5	NVCC_DRAM	DDR	ALT0	DRAM_DATA13	Input	100 k Ω pull-up		
DRAM_D14	AB6	NVCC_DRAM	DDR	ALT0	DRAM_DATA14	Input	100 k Ω pull-up		
DRAM_D15	AC7	NVCC_DRAM	DDR	ALT0	DRAM_DATA15	Input	100 k Ω pull-up		
DRAM_D16	AB7	NVCC_DRAM	DDR	ALT0	DRAM_DATA16	Input	100 k Ω pull-up		
DRAM_D17	AA8	NVCC_DRAM	DDR	ALT0	DRAM_DATA17	Input	100 k Ω pull-up		
DRAM_D18	AB9	NVCC_DRAM	DDR	ALT0	DRAM_DATA18	Input	100 kΩ pull-up		

Table 97. 21 x 21 mm Functional Contact Assignments (continued)

Package Information and Contact Assignments

	-	2	3	4	ß	9	7	œ	6	10	÷	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
т	DSI_D1P	DSI_D1M	DSI_CLK0M	DSI_CLK0P	JTAG_TCK	JTAG_MOD	PCIE_VP	GND	VDDHIGH_IN	VDDHIGH_CAP	VDDARM_CAP	GND	VDDARM_CAP	VDDARM_IN	GND	VDDSOC_IN	VDDPU_CAP	GND	EIM_A25	EIM_D21	EIM_D31	EIM_A20	EIM_A21	EIM_CS0	EIM_A16	н
7	HDMI_REF	GND	HDMI_D1M	HDMI_D1P	HDMI_CLKM	HDMI_CLKP	NVCC_JTAG	GND	VDDHIGH_IN	VDDHIGH_CAP	VDDARM_CAP	GND	VDDARM_CAP	VDDARM_IN	GND	VDDSOC_IN	VDDPU_CAP	GND	EIM_D29	EIM_D30	EIM_A23	EIM_A18	EIM_CS1	EIM_OE	EIM_DA1	Г
×	HDMI_HPD	HDMI_DDCCEC	HDMI_D2M	HDMI_D2P	HDMI_D0M	HDMI_D0P	NVCC_MIPI	GND	VDDARM_IN	GND	VDDARM_CAP	GND	VDDARM_CAP	VDDARM_IN	GND	VDDSOC_IN	VDDPU_CAP	GND	NVCC_EIM	EIM_RW	EIM_EB0	EIM_LBA	EIM_EB1	EIM_DA3	EIM_DA6	У
_	CSI0_DAT13	GND	CSI0_DAT17	CSI0_DAT16	GND	CSI0_DAT19		GND	VDDARM_IN	GND	VDDARM_CAP	GND	VDDARM_CAP	VDDARM_IN	GND	VDDSOC_IN	VDDPU_CAP	GND	NVCC_EIM	EIM_DA0	EIM_DA2	EIM_DA4	EIM_DA5	EIM_DA8	EIM_DA7	
Σ	CSI0_DAT10	CSI0_DAT12	CSI0_DAT11	CSI0_DAT14	CSI0_DAT15	CSI0_DAT18	HDMI_VPH	GND	VDDARM_IN	GND	VDDARM_CAP	GND	VDDARM_CAP	VDDARM_IN	GND		VDDPU_CAP	GND	NVCC_EIM	EIM_DA11	EIM_DA9	EIM_DA10	EIM_DA13	EIM_DA12	EIM_WAIT	M
z	CSI0_DAT4	CSI0_VSYNC	CSI0_DAT7	CSI0_DAT6	CSI0_DAT9	CSI0_DAT8	NVCC_CSI	GND	VDDARM_IN	GND	VDDARM_CAP	NC	VDDARM_CAP	VDDARM_IN	GND		VDDPU_CAP	GND	DI0_DISP_CLK	DIO_PIN3	DI0_PIN15	EIM_BCLK	EIM_DA14	EIM_DA15	DIO_PIN2	Z
٩	CSI0_PIXCLK	CSI0_DAT5	CSI0_DATA_EN	CSI0_MCLK	GPIO_19	GPIO_18	NVCC_GPIO	GND	VDDARM_IN	GND	VDDARM_CAP	GND	VDDARM_CAP	VDDARM_IN	GND	VDDSOC_IN	VDDPU_CAP	GND	NVCC_LCD	DISP0_DAT4	DISP0_DAT3	DISP0_DAT1	DISP0_DAT2	DISP0_DAT0	DI0_PIN4	Р
æ	GPIO_17	GPIO_16	GPIO_7	GPIO_5	GPIO_8	GPIO_4	GPIO_3	GND	VDDARM_IN	VDDSOC_CAP	VDDARM_CAP	GND	VDDARM_CAP	VDDARM_IN	GND	VDDSOC_IN	GND	NVCC_DRAM	NVCC_ENET	DISP0_DAT13	DISP0_DAT10	DISP0_DAT8	DISP0_DAT6	DISP0_DAT7	DISP0_DAT5	В

Table 99. 21 x 21 mm, 0.8 mm Pitch Ball Map i.MX 6Solo (continued)

Table 102. i.MX 6Solo/6DualLite	Data Sheet Document Past	Revision Histories (continued)

Rev. Number	Date	Substantive Changes
6	8/2016	 Changed throughout: LVDDR3 to DDR3L Changed terminology from "floating" to "not connected". Table 2, "I.MX 6Solo/6DualLite Modules List," on page 11: uSDHC1-4, SD/MMC and SDXC Enhanced Multi-Media Card/Secure Digital Host Controller row: Added new bullet at top: "Conforms to the SD Host Controller", eCSPI1-4 row: removed from the Brief Description column, "with data rate up to 52Mbit/s." BCH row, removed from Brief Description column, "encryption/decryption". Table 3, "Special Signal Considerations," on page 21: GPANAIO row, modified remarks to be NXP use only. SRC_POR_B row: removed reference to internal POR which is not supported on device. TEST_MODE row: modified remarks to be NXP use only and added tie to Vss or remain unconnected. Table 6, "Absolute Maximum Ratings," on page 24" throughout table: clarified parameter descriptions including adding LDO state. Clarified symbol names. Added row, RGMI I/O supply voltage. Added row, RGMI I/O supply voltage row: USB_OTG_CHD_B. All maximum voltages increased (improved). Section 4.1.2, "Thermal Resistance: added NOTE. Table 8, "Operating Ranges," on page 26: Changed minimum parameter of Run mode: LDO enabled from 1.175 to 1.25 V. Section 4.2.1, "Power-Up Sequence": Removed references to the internal POR function. Internal POR is not supported. Removed battery resistor (coin cell) calculation. Section 4.5.2, "OSC32K": Removed battery resistor (coin cell) calculation. Section 4.5.4, "CASC3, "Power-Up Sequence": Removed references to the internal POR function. Internal POR is not supported to RTC_XTALI (Clock Inputs) DC Parameters": Added fortons to RTC_XTALI Clock Inputs) DC Parameters. Added fortons to REPC_XTALI High-level DC input voltage at the Max parameter. Added following tabe: "The VII and VII only apply when external clock source is used". S
5	6/2015	 Table 8, "Operating Hanges," Run mode: LDO enabled row; Changed comments for VDD_ARM_IN, from "1.05V minimum for operation up to 396MHz" to "1.125V minimum for operation up to 396MHz". Table 3, "Special Signal Considerations," XTALI/XTALO row: Changed from "The crystal must be rated", to "See Hardware Development Guide".