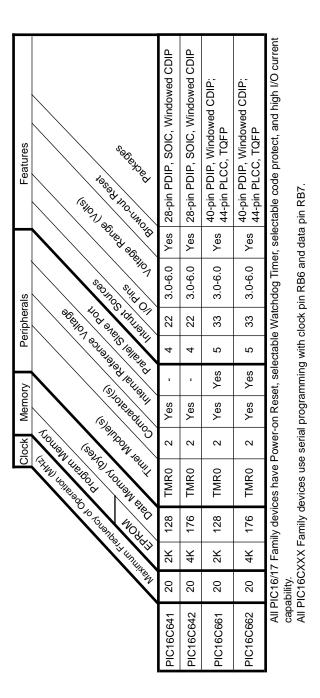


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	176 x 8
Voltage - Supply (Vcc/Vdd)	$4V \sim 6V$
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c642-04-sp

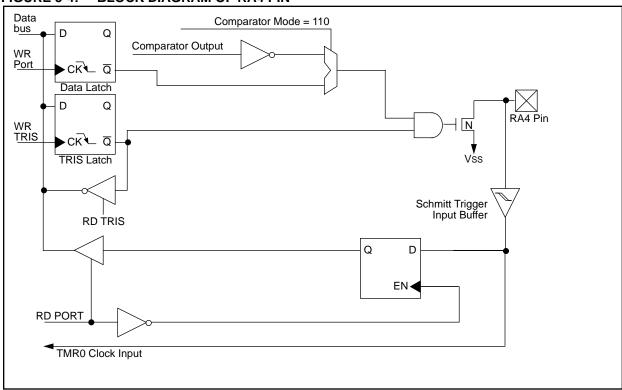
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PIC16C64X & PIC16C66X DEVICE FEATURES

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR, PER	Value on all other resets ⁽¹⁾
Bank 0					•		•		•	•	
00h	INDF	Addressing	this location	uses conte	nts of FSR to	address dat	a memory (I	not a physic	al register)	XXXX XXXX	xxxx xxxx
01h	TMR0	Timer0 Mod	dule's Regist		XXXX XXXX	uuuu uuuu					
02h	PCL	Program C	ounter's (PC)) Least Sign	ificant Byte					0000 0000	0000 0000
03h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h	FSR	Indirect dat	a memory ad	dress point	er	1				XXXX XXXX	uuuu uuuu
05h	PORTA	_	_	PORTA Da	ta Latch wher	n written: PC	ORTA pins w	hen read		xx 0000	xu 0000
06h	PORTB	PORTB Da	ta Latch whe	n written: P	ORTB pins wh	nen read	· ·			XXXX XXXX	uuuu uuuu
06h	PORTC	PORTC Da	ta Latch whe	en written: P	ORTC pins wi	nen read				xxxx xxxx	uuuu uuuu
06h	PORTD ⁽³⁾	PORTD Da	ta Latch whe	en written: P	ORTD pins wi	nen read				XXXX XXXX	uuuu uuuu
06h	PORTE ⁽³⁾	_	_	_		_	RE2	RE1	RE0	xxx	uuu
0Ah	PCLATH	_	_	_	Write buffer	for upper 5 l	bits of progra	am counter		0 0000	0 0000
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽⁴⁾	CMIF	_	_	_	_	_	_	00	00
0Dh-1Eh	Unimplemented									-	_
1Fh	CMCON	C2OUT	C1OUT	_	_	CIS	CM2	CM1	CM0	00 0000	00 0000
Bank 1	•						•				
80h	INDF	Addressing	this location	uses conte	nts of FSR to	address dat	a memory (I	not a physic	al register)	XXXX XXXX	xxxx xxxx
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h	PCL	Program C	ounter's (PC)	Least Sign	ificant Byte				1	0000 0000	0000 0000
83h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h	FSR	Indirect dat	a memory ad	dress point	er					XXXX XXXX	uuuu uuuu
85h	TRISA	_	_	PORTA Da	ta Direction R	egister				11 1111	11 1111
86h	TRISB	PORTB Da	ta Direction I	Register		-				1111 1111	1111 1111
86h	TRISC	PORTC Da	ta Direction	Register						1111 1111	1111 1111
86h	TRISD ⁽³⁾	PORTD Da	ta Direction	Register						1111 1111	1111 1111
86h	TRISE ⁽³⁾	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111
8Ah	PCLATH	—	—	—	Write buffer	for upper 5 l	bits of progra	am counter		0 0000	0 0000
8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000x
8Ch	PIE1	PSPIE ⁽⁴⁾	CMIE	—	_	—	_	—	—	00	00
8Dh	Unimplemented										-
8Eh	PCON	MPEEN	_	_	_	_	PER	POR	BOR	uqqq	uuuu
8Fh-9Eh	Unimplemented						•			_	_
0111-9211											

Legend: - = unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented
1: Other (non power-up) resets include MCLR Reset and Watchdog Timer Reset during normal operation.
2: The IRP and RP1 bits are reserved, always maintain these bits clear.
3: The PORTD, PORTE, TRISD, and TRISE registers are not implemented on the PIC16C641/642.
4: Bits PSPIE and PSPIF are reserved on the PIC16C641/642, always maintain these bits clear. Note


4.2.2.5 PIR1 REGISTER

This register contains the individual flag bits for the comparator and Parallel Slave Port interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 4-9: PIR1 REGISTER (ADDRESS 0Ch)

FIGURE 5-4: BLOCK DIAGRAM OF RA4 PIN

TABLE 5-1: PORTA FUNCTIONS

Name	Bit #	Buffer Type	Function
RA0/AN0	bit0	ST	Input/output or comparator input.
RA1/AN1	bit1	ST	Input/output or comparator input.
RA2/AN2/VREF	bit2	ST	Input/output or comparator input or VREF output.
RA3/AN3	bit3	ST	Input/output or comparator input/output.
RA4/T0CKI	bit4	ST	Input/output or external clock input for TMR0 or comparator output. Output is open drain type.
RA5	bit5	ST	Input/output.

Legend: ST = Schmitt Trigger input

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

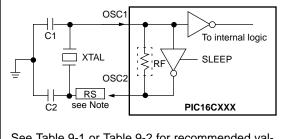
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
05h	PORTA	—		RA5	RA4	RA3	RA2	RA1	RA0	xx 0000	uu 0000
85h	TRISA	—	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
1Fh	CMCON	C2OUT	C10UT	_	_	CIS	CM2	CM1	CM0	00 0000	00 0000
9Fh	VRCON	VREN	VROE	VRR	—	VR3	VR2	VR1	VR0	000- 0000	000- 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

NOTES:

9.2 Oscillator Configurations

9.2.1 OSCILLATOR TYPES


The PIC16CXXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

9.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation (Figure 9-2). The PIC16CXXX oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1 pin (Figure 9-3).

FIGURE 9-2: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (HS, XT OR LP OSC CONFIGURATION)

See Table 9-1 or Table 9-2 for recommended values of C1 and C2.

Note: A series resistor may be required for AT strip cut crystals.

FIGURE 9-3: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 9-1: CAPACITOR SELECTION FOR CERAMIC RESONATORS (PRELIMINARY)

Ranges tested:								
Mode Freq OSC1								
XT	455 kHz	22 - 100						
	2.0 MHz	15 - 68 pl	F					
	4.0 MHz	15 - 68 p	F					
HS	8.0 MHz	8.0 MHz 10 - 68 pF						
	16.0 MHz 10 - 22 pF							
Note: Recommended values of C1 and C2 are identical to the ranges tested table. Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.								
Resonators used:								
455 kHz	Panasonic EFO-A4	55K04B	±0.3%					
2.0 MHz	Murata Erie CSA2.	00MG	±0.5%					

400 KHZ	Fanasonic EFO-A400K04D	±0.3%			
2.0 MHz	Murata Erie CSA2.00MG	±0.5%			
4.0 MHz	Murata Erie CSA4.00MG	±0.5%			
8.0 MHz	Murata Erie CSA8.00MT	±0.5%			
16.0 MHz Murata Erie CSA16.00MX ±0.5%					
All resonators used did not have built-in capacitors.					

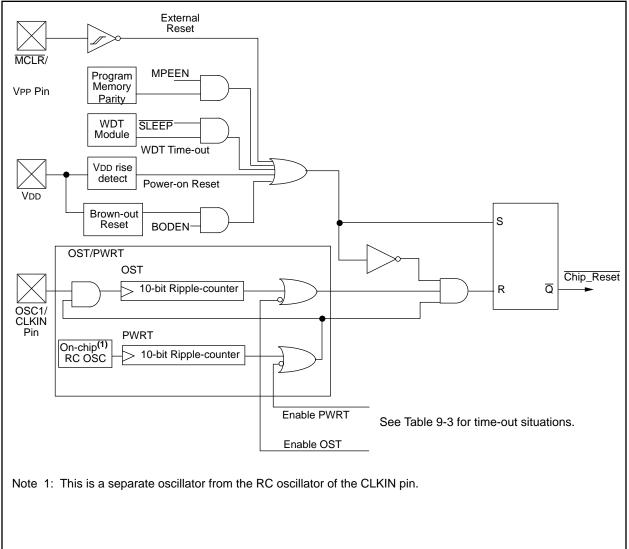
TABLE 9-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR (PRELIMINARY)

Mode	Freq	OSC1	OSC2
LP	32 kHz	68 - 100 pF	68 - 100 pF
	200 kHz	15 - 30 pF	15 - 30 pF
XT	100 kHz	68 - 150 pF	150 - 200 pF
	2 MHz	15 - 30 pF	15 - 30 pF
	4 MHz	15 - 30 pF	15 - 30 pF
HS	8 MHz	15 - 30 pF	15 - 30 pF
	10 MHz	15 - 30 pF	15 - 30 pF
	20 MHz	15 - 30 pF	15 - 30 pF

Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

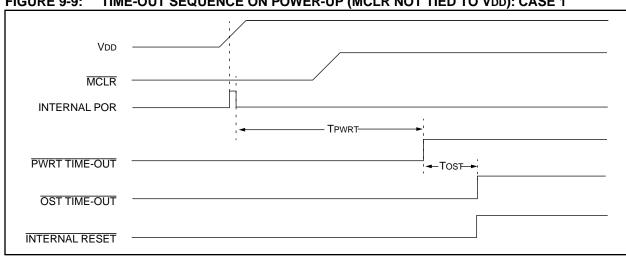
Crystals used:						
32.768 kHz	Epson C-001R32.768K-A	± 20 PPM				
100 kHz	Epson C-2 100.00 KC-P	± 20 PPM				
200 kHz	STD XTL 200.000 kHz	± 20 PPM				
2.0 MHz	ECS ECS-20-S-2	± 50 PPM				
4.0 MHz	ECS ECS-40-S-4	± 50 PPM				
10.0 MHz	ECS ECS-100-S-4	± 50 PPM				
20.0 MHz	ECS ECS-200-S-4	± 50 PPM				

9.3 <u>Reset</u>

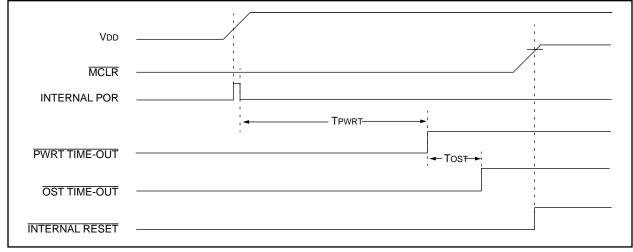

The PIC16CXXX differentiates between various kinds of reset:

- a) Power-on reset (POR)
- b) MCLR reset during normal operation
- c) MCLR reset during SLEEP
- d) WDT reset (normal operation)
- e) Brown-out Reset (BOR)
- f) Parity Error Reset (PER)

Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on reset, MCLR, WDT reset, Brown-out Reset, Parity Error Reset, and on MCLR reset during SLEEP. They are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different reset situations as indicated in Table 9-4. These bits are used in software to determine the nature of the reset. See Table 9-6 for a full description of reset states of all registers.


A simplified block diagram of the on-chip reset circuit is shown in Figure 9-7.

The $\overline{\text{MCLR}}$ reset path has a noise filter to detect and ignore small pulses. See Table 12-6 for pulse width specification.


FIGURE 9-7: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

PIC16C64X & PIC16C66X

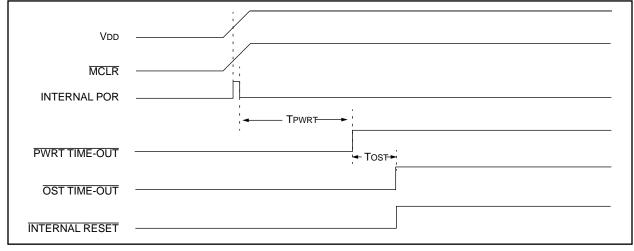
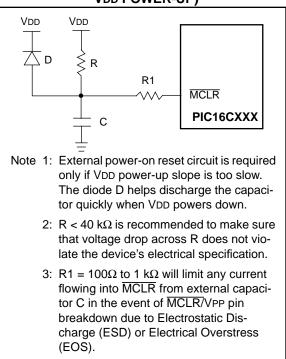
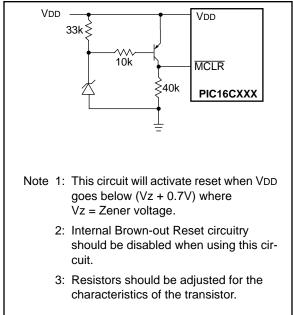


FIGURE 9-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1


FIGURE 9-10: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2


FIGURE 9-11: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

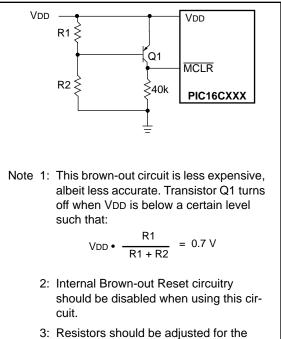

FIGURE 9-12: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

FIGURE 9-13: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1

FIGURE 9-14: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

characteristics of the transistor.

NOTES:

PIC16C64X & PIC16C66X

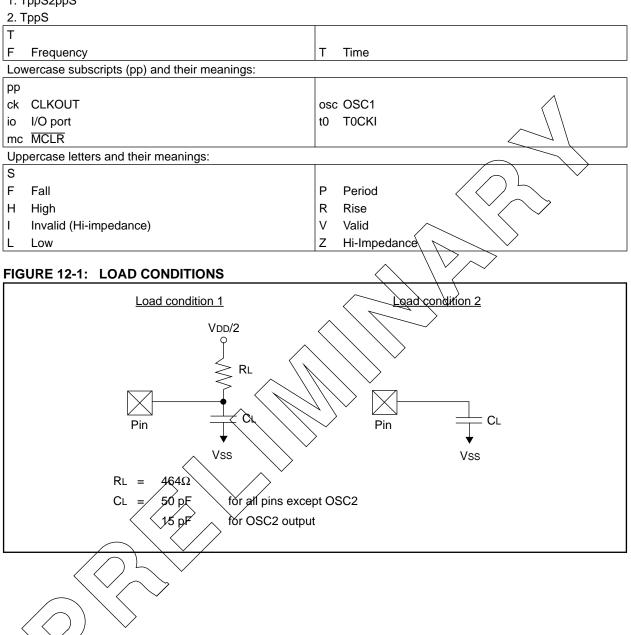
12.3 DC Characteristics: PIC16C641/661 (Commercial, Industrial, Automotive) PIC16C642/662 (Commercial, Industrial, Automotive) PIC16LC641/661 (Commercial, Industrial) PIC16LC642/662 (Commercial, Industrial)

		Standard Operating Conditions (unless othe	erwise	stated)		
			\leq TA \leq +85		for industrial,		
		0°C	\leq TA \leq +70	-	commercial, a	and	
			\leq TA \leq +12		automotive		
		Operating voltage VDD range as		1	-		
Param No.	Sym	Characteristic	Min	Тур †	Max	Unit	Conditions
	VIL	Input Low Voltage					
		I/O ports					
D030		with TTL buffer	Vss	-	0.15Vdd	V	For eptire Voo range
			Vss	-	0.8V	V	4.5√ ≤ √DD ≤ 5.5√
D031		with Schmitt Trigger input	Vss	-	0.2Vdd	V	
D032		MCLR, RA4/T0CKI,OSC1 (in	Vss	-	0.2Vdd	V~	(1)
		RC mode)				< ,	\sim
D033		OSC1 (XT and HS modes)	Vss	-	0.3VDD	$ \lambda $	\searrow
		OSC1 (LP modes)	Vss	-	0.6VDD 1.0	v \	
	Viн	Input High Voltage			\langle	$\overline{\ }$	
		I/O ports			$\langle $	\land	
D040		with TTL buffer	2.0	-/	VQD	×/	
D041		with Schmitt Trigger input	0.25Vdd	L- \	VDD	v	
			to 0.8V	$\left[\right] $	$\backslash \setminus \checkmark$		
D042		MCLR RA4/T0CKI	0.8VDD	(A)	VQD	V	
D043		OSC1 (XT, HS, LP modes)	Q.7VQD	$\left - \right $	VDD	V	
D043A		OSC1 (RC mode)	0.9VDD	7)	\ <u> </u>	V	(1)
D070	IPURB	PORTB weak pull-up current	50	200-	400	μA	VDD = 5.0V, VPIN = VSS
	lı∟	Input Leakage Current ^(2,3)	$ \setminus \rangle$	\bigvee			
		I/O ports (Except PORTA)	$ \rangle$				
			\bigtriangleup	-	±1.0	μA	$VSS \leq VPIN \leq VDD,$
Doco		PORTA					pin at hi-impedance
D060			-	-	±0.5	μA	Vss \leq VPIN \leq VDD, pin at hi-impedance
D061		RA4/T0CKI		_	±1.0		$V_{SS} \leq V_{PIN} \leq V_{DD}$
D063		OSC1, MCLR	-		±1.0 ±5.0	μΑ	$V_{SS} \leq V_{PIN} \leq V_{DD}$ $V_{SS} \leq V_{PIN} \leq V_{DD}$, XT, HS and LP
D063		USUI, MCLR	-	-	±5.0	μA	$VSS \leq VPIN \leq VDD, \times 1, HS and LP osc configuration$
	Vol	Output Low Voltage					
D080		1/Q ports	_	_	0.6	v	IOL = 8.5 mA, VDD = 4.5V,
DUUU	1		_	_	0.0	v	-40° to +85°C
<	$\langle \langle \rangle$	∤/ ~	-	-	0.6	v	$IOL = 7.0 \text{ MA}, \text{VDD} = 4.5\text{V}, +125^{\circ}\text{C}$
D083	$ $ \backslash \rangle	OSC2/CLKOUT	-	-	0.6	v	IOL = 1.6 mA, VDD = 4.5 V,
2000		5			0.0	, v	-40° to +85°C
		(RC only)	-	-	0.6	v	IOL = 1.2 mA, VDD = 4.5V, +125°C
* -	Those n	arameters are characterized but r		I	- • -		, <u> </u>

* These parameters are characterized but not tested.

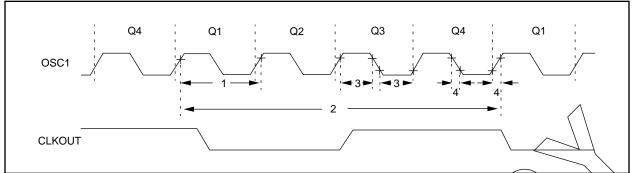
† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C64X & PIC16C66X be driven with external clock in RC mode.


2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

12.4 <u>Timing Parameter Symbology</u>


The timing parameter symbols have been created with one of the following formats:

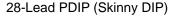
1. TppS2ppS

12.5 Timing Diagrams and Specifications

FIGURE 12-2: EXTERNAL CLOCK TIMING

TABLE 12-4 :	EXTERNAL CLOCK TIMING REQUIREMENTS	
IADLL IZ=7.		

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	4	Ӎ҉Ӏӡ	XT and RC osc mode,
						$ \setminus $	VDD = 5.0V
			DC	—	20 \	MHz	HS osc mode
			DC		200	kHz '	LP osc mode
		Oscillator Frequency ⁽¹⁾	DC	$ - \langle$	4	MHZ	ŘC osc mode, VDD = 5.0V
			0.1		4	MHz	XT osc mode
			4	$\langle \mathcal{A} \rangle$	20	MHz	HS osc mode
			5 <	<u> </u>	200	kHz	LP osc mode
1	Tosc	External CLKIN Period ⁽¹⁾	250	///		ns	XT and RC osc mode
		(· · · · · · · · · · · · · · · · · · ·	50	(\mathcal{H})	>	ns	HS osc mode
		\square	5	\searrow	—	μs	LP osc mode
		Oscillator Period ⁽¹⁾	250	\searrow	—	ns	RC osc mode
			250	-	10,000	ns	XT osc mode
			<u></u> \$0	—	250	ns	HS osc mode
			5	—	—	μs	LP osc mode
2	TCY	Instruction Cycle Time (1)	200	—	DC	ns	TCY = FOSC/4
3*	TosL,	External Clock in (OSC1)	100	—	—	ns	XT osc mode
	TosH	High or Low Time	2.5	—	_	μs	LP osc mode
			15			ns	HS osc mode
4*	TosR	External Clock in (OSC1)	_	—	25	ns	XT osc mode
	TosF	Rise or Fall Time	—	—	50	ns	LP osc mode
					15	ns	HS osc mode


* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1 pin.

When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

14.1 Package Marking Information


28-Lead SOIC

Example

Example

28-Lead Side Brazed Skinny Windowed

Example

 Legend:
 MM...MMicrochip part number information

 XX...X
 Customer specific information*

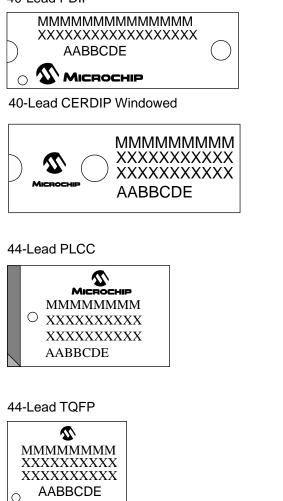
 AA
 Year code (last 2 digits of calendar year)

 BB
 Week code (week of January 1 is week '01')

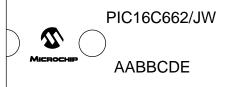
 C
 Facility code of the plant at which wafer is manufactured

 C = Chandler, Arizona, U.S.A.

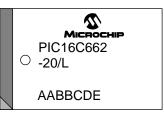
 D
 Mask revision number


 E
 Assembly code of the plant or country of origin in which part was assembled

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.


*Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

14.2 Package Marking Information


40-Lead PDIP

Example
PIC16C662-04/P
9512CAA
Similar Microchip
Example

Example

Example

Legend	: MMMMicrochip part number information
XXX	Customer specific information*
AA	Year code (last 2 digits of calendar year)
BB	Week code (week of January 1 is week '01')
С	Facility code of the plant at which wafer is manufactured
	C = Chandler, Arizona, U.S.A.
D	Mask revision number
E	Assembly code of the plant or country of origin in which
	part was assembled

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.

*Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

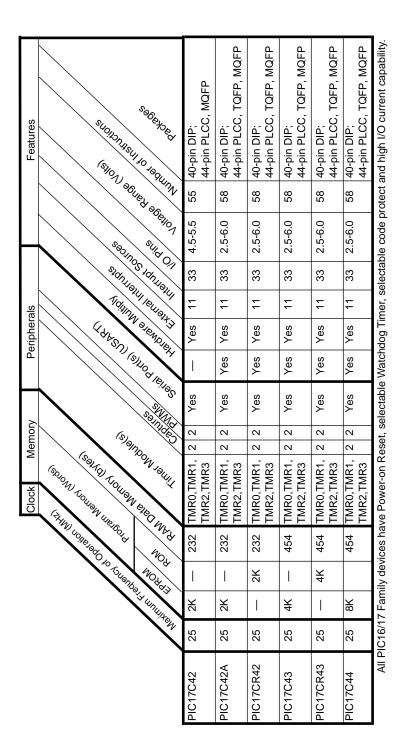
© 1996 Microchip Technology Inc.

NOTES:

APPENDIX A: ENHANCEMENTS

The following are the list of enhancements over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14 bits. This allows larger page sizes both in program memory (4K now as opposed to 512 before) and register file (up to 176 bytes now versus 32 bytes before).
- 2. A PC high latch register (PCLATH) is added to handle program memory paging. PA2, PA1, PA0 bits are removed from STATUS register.
- 3. Data memory paging is slightly redefined. STATUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW.
 Two instructions TRIS and OPTION are being phased out although they are kept for compatibility with PIC16C5X.
- 5. OPTION and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. Reset vector is changed to 0000h.
- Reset of all registers is revisited. Six different reset (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake up from SLEEP through interrupt is added.
- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) are included for more reliable power-up. These timers can be invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt on change feature.
- 13. Timer0 clock input, T0CKI pin is also a port pin (RA4/T0CKI) and has a TRIS bit.
- 14. FSR is made a full 8-bit register.
- 15. "In-circuit programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, VSS, VPP, RB6 (clock) and RB7 (data in/out).
- PCON status register is added with a Power-on Reset status bit (POR), a Brown-out Reset status bit (BOR), a Parity Error Reset (PER), and a Memory Parity Enable (MPEEN) bit.
- 17. Code protection scheme is enhanced such that portions of the program memory can be protected, while the remainder is unprotected.
- 18. PORTA inputs are now Schmitt Trigger inputs.
- 19. Brown-out Reset circuitry has been added.


APPENDIX B: COMPATIBILITY

To convert code written for PIC16C5X to PIC16CXX, the user should take the following steps:

- 1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change reset vector to 0000h.

© 1996 Microchip Technology Inc.

E.8 PIC17CXX Family of Devices

ON-LINE SUPPORT

Microchip provides two methods of on-line support. These are the Microchip BBS and the Microchip World Wide Web (WWW) site.

Use Microchip's Bulletin Board Service (BBS) to get current information and help about Microchip products. Microchip provides the BBS communication channel for you to use in extending your technical staff with microcontroller and memory experts.

To provide you with the most responsive service possible, the Microchip systems team monitors the BBS, posts the latest component data and software tool updates, provides technical help and embedded systems insights, and discusses how Microchip products provide project solutions.

The web site, like the BBS, is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp.mchip.com/biz/mchip

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products

Connecting to the Microchip BBS

Connect worldwide to the Microchip BBS using either the Internet or the CompuServe $^{\ensuremath{\mathbb{R}}}$ communications network.

Internet:

You can telnet or ftp to the Microchip BBS at the address:

mchipbbs.microchip.com

CompuServe Communications Network:

When using the BBS via the Compuserve Network, in most cases, a local call is your only expense. The Microchip BBS connection does not use CompuServe membership services, therefore you do not need CompuServe membership to join Microchip's BBS. There is no charge for connecting to the Microchip BBS. The procedure to connect will vary slightly from country to country. Please check with your local CompuServe agent for details if you have a problem. CompuServe service allow multiple users various baud rates depending on the local point of access.

The following connect procedure applies in most locations.

- 1. Set your modem to 8-bit, No parity, and One stop (8N1). This is not the normal CompuServe setting which is 7E1.
- 2. Dial your local CompuServe access number.
- 3. Depress the <Enter> key and a garbage string will appear because CompuServe is expecting a 7E1 setting.
- 4. Type +, depress the <Enter> key and "Host Name:" will appear.
- 5. Type MCHIPBBS, depress the <Enter> key and you will be connected to the Microchip BBS.

In the United States, to find the CompuServe phone number closest to you, set your modem to 7E1 and dial (800) 848-4480 for 300-2400 baud or (800) 331-7166 for 9600-14400 baud connection. After the system responds with "Host Name:", type NETWORK, depress the <Enter> key and follow CompuServe's directions.

For voice information (or calling from overseas), you may call (614) 723-1550 for your local CompuServe number.

Microchip regularly uses the Microchip BBS to distribute technical information, application notes, source code, errata sheets, bug reports, and interim patches for Microchip systems software products. For each SIG, a moderator monitors, scans, and approves or disapproves files submitted to the SIG. No executable files are accepted from the user community in general to limit the spread of computer viruses.

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-602-786-7302 for the rest of the world.

Trademarks: The Microchip name, logo, PIC, PICSTART, PICMASTER, and are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. *Flex*ROM, MPLAB, PRO MATE, and *fuzzy*LAB, are trademarks and SQTP is a service mark of Microchip in the U.S.A.

*fuzzy*TECH is a registered trademark of Inform Software Corporation. IBM, IBM PC-AT are registered trademarks of International Business Machines Corp. Pentium is a trademark of Intel Corporation. Windows is a trademark and MS-DOS, Microsoft Windows are registered trademarks of Microsoft Corporation. CompuServe is a registered trademark of CompuServe Incorporated.

All other trademarks mentioned herein are the property of their respective companies.

NOTES: