

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	ОТР
EEPROM Size	· ·
RAM Size	176 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c642-10-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 PIC16C64X & PIC16C66X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements the proper device option can be selected using the information in the Product Identification System page at the end of this data sheet. When placing orders, please use that page of the data sheet to specify the correct part number.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the oscillator modes.

Microchip's PICSTART[®] Plus and PRO MATE[®] II programmers both support programming of the PIC16C64X & PIC16C66X.

2.2 <u>One-Time-Programmable (OTP)</u> <u>Devices</u>

The availability of OTP devices is especially useful for customers who need flexibility for frequent code updates and small volume applications. In addition to the program memory, the configuration bits must also be programmed.

2.3 <u>Quick-Turnaround-Production (QTP)</u> <u>Devices</u>

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turnaround-</u> <u>Production (SQTPSM) Devices</u>

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password or ID number.

NOTES:

TABLE 4-1:	SPECIAL FUNCTION REGISTERS
------------	----------------------------

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR, PER	Value on all other resets ⁽¹⁾
Bank 0											
00h	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (I	not a physic	al register)	xxxx xxxx	xxxx xxxx
01h	TMR0	Timer0 Mo	dule's Regist	er						xxxx xxxx	uuuu uuuu
02h	PCL	Program C	ounter's (PC)) Least Signi	ficant Byte			-		0000 0000	0000 0000
03h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h	FSR	Indirect dat	ta memory ad	ddress pointe	er					xxxx xxxx	uuuu uuuu
05h	PORTA	_	_	PORTA Da	ta Latch wher	n written: PC	RTA pins w	hen read		xx 0000	xu 0000
06h	PORTB	PORTB Da	ta Latch whe	n written: P	ORTB pins wh	nen read				xxxx xxxx	uuuu uuuu
06h	PORTC	PORTC Da	ata Latch whe	en written: P	ORTC pins wi	nen read				xxxx xxxx	uuuu uuuu
06h	PORTD ⁽³⁾	PORTD Da	ata Latch whe	en written: P	ORTD pins wi	nen read		_		xxxx xxxx	uuuu uuuu
06h	PORTE ⁽³⁾	_	—	_	—		RE2	RE1	RE0	xxx	uuu
0Ah	PCLATH	—	—	—	Write buffer	for upper 5 b	oits of progra	am counter		0 0000	0 0000
0Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽⁴⁾	CMIF	—	—	—	—	—		00	00
0Dh-1Eh	Unimplemented									-	—
1Fh	CMCON	C2OUT	C1OUT	—	—	CIS	CM2	CM1	CM0	00 0000	00 0000
Bank 1											
80h	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (I	not a physic	al register)	xxxx xxxx	xxxx xxxx
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h	PCL	Program C	ounter's (PC)) Least Signi	ficant Byte					0000 0000	0000 0000
83h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h	FSR	Indirect dat	ta memory ad	ddress pointe	er					XXXX XXXX	uuuu uuuu
85h	TRISA	_	_	PORTA Da	ta Direction R	egister				11 1111	11 1111
86h	TRISB	PORTB Da	ta Direction I	Register						1111 1111	1111 1111
86h	TRISC	PORTC Da	ata Direction	Register						1111 1111	1111 1111
86h	TRISD ⁽³⁾	PORTD Da	ata Direction	Register				_		1111 1111	1111 1111
86h	TRISE ⁽³⁾	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111
8Ah	PCLATH	—	_	_	Write buffer	for upper 5 k	oits of progra	am counter		0 0000	0 0000
8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
8Ch	PIE1	PSPIE ⁽⁴⁾	CMIE	_	_	_	_	_	_	00	00
8Dh	Unimplemented									-	-
8Eh	PCON	MPEEN	_	_	—	_	PER	POR	BOR	uqqq	uuuu
8Fh-9Eh	Unimplemented									-	-
9Fh	VRCON	VREN	VROF	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000

Legend: - = unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented
1: Other (non power-up) resets include MCLR Reset and Watchdog Timer Reset during normal operation.
2: The IRP and RP1 bits are reserved, always maintain these bits clear.
3: The PORTD, PORTE, TRISD, and TRISE registers are not implemented on the PIC16C641/642.
4: Bits PSPIE and PSPIF are reserved on the PIC16C641/642, always maintain these bits clear. Note

4.2.2.1 STATUS REGISTER

The STATUS register, shown in Figure 4-5, contains the arithmetic status of the ALU, the RESET status, and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000uu1uu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF, and MOVWF instructions are used to alter the STATUS register because these instructions do not affect any status bit. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

- Note 1: The IRP and RP1 bits (STATUS<7:6>) are reserved on the PIC16C64X & PIC16C66X and should be maintained clear. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.
- Note 2: The C and DC bits operate as a Borrow and Digit Borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x	
IRP	RP1	RP0	TO	PD	Z	DC	C	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:	IRP: Regis 1 = Bank 2 0 = Bank 0 Bit IRP is	ster Bank 2, 3 (100h 0, 1 (00h - reserved (Select bit - 1FFh) FFh) on the PIC	(used for ii 16C64X &	ndirect addr PIC16C66	essing) X, always i	maintain thi	s bit clear.
bit 6-5:	<pre>bit 6-5: RP1:RP0: Register Bank Select bits (used for direct addressing) 11 = Bank 3 (180h - 1FFh) 10 = Bank 2 (100h - 17Fh) 01 = Bank 1 (80h - FFh) 00 = Bank 0 (00h - 7Fh) Each bank is 128 bytes. Bit RP1 is reserved on the PIC16C64X & PIC16C66X, always maintain this bit clear</pre>							
bit 4:	$\overline{\mathbf{TO}}$: Time- 1 = After p 0 = A WD	out bit oower-up, T time-out	CLRWDT in: occurred	struction, c	or SLEEP ins	truction		
bit 3:	PD : Powe 1 = After p 0 = By exe	r-down bit oower-up o ecution of	t or by the C the SLEEP	LRWDT inst	ruction			
bit 2:	Z : Zero bit 1 = The re 0 = The re	t esult of an esult of an	arithmetic arithmetic	or logic of or logic of	peration is z	ero ot zero		
bit 1:	DC : Digit of 1 = A carry 0 = No car	carry/borro y-out from rry-out fro	ow bit (ADI the 4th lo m the 4th l	WF, ADDLW w order bit ow order b	, SUBLW , SU of the resu bit of the res	BWF instruc It occurred sult	ctions) (for Ī	porrow the polarity is reversed)
bit 0:	C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the most significant bit of the result occurred 0 = No carry-out from the most significant bit of the result occurred Note: For borrow the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.							

FIGURE 4-5: STATUS REGISTER (ADDRESS 03h, 83h)

4.5 Indirect Addressing, INDF, and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the file select register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a nooperation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-12. However, bit IRP is not used in the PIC16C64X & PIC16C66X. A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 4-1.

EXAMPLE 4-1: INDIRECT ADDRESSING

	movlw	0x20	;initialize pointer
	movwf	FSR	;to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;no goto next
			;yes continue
CONTINUE:			

FIGURE 4-12: DIRECT/INDIRECT ADDRESSING

PORTD BLOCK DIAGRAM (IN

FIGURE 5-8:

5.4 <u>PORTD and TRISD Registers</u> (PIC16C661 and PIC16C662 only)

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

PORTD can be configured as an 8-bit wide microprocessor port (parallel slave port) by setting control bit PSPMODE (TRISE<4>). In this mode, the input buffers are TTL.

I/O PORT MODE) Data bus D Q WR I/O pin⁽¹⁾ PORT СКЪ Data Latch D Q WR Schmitt Trigger input buffer <u>TRIS</u> ►ск 🔪 TRIS Latch **RD TRIS** D Q ΕN **RD PORT** Note 1: I/O pins have protection diodes to VDD and Vss.

Name	Bit#	Buffer Type	Function
RD0/PSP0	bit0	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit0
RD1/PSP1	bit1	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit1
RD2/PSP2	bit2	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit2
RD3/PSP3	bit3	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit3
RD4/PSP4	bit4	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit4
RD5/PSP5	bit5	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit5
RD6/PSP6	bit6	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit6
RD7/PSP7	bit7	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit7

TABLE 5-7: PORTD FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port Mode.

TABLE 5-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
08h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
88h	TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	1111 1111
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTD.

9.4 <u>Power-on Reset (POR), Power-up</u> <u>Timer (PWRT), Oscillator Start-up</u> <u>Timer (OST), Brown-out Reset (BOR),</u> <u>and Parity Error Reset (PER)</u>

9.4.1 POWER-ON RESET (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.6V to 1.8V). To take advantage of the POR, just tie the $\overline{\text{MCLR}}$ pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is required. See Electrical Specifications for details.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met.

For additional information, refer to Application Note AN607 "*Power-up Trouble Shooting.*"

9.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms (nominal) delay on power-up only, from POR or BOR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as PWRT is active. The PWRT delay allows VDD to rise to an acceptable level. A configuration bit, PWRTE can disable (if set) or enable (if cleared or programmed) the Power-up Timer. The Power-up Timer should always be enabled when Brown-out Reset is enabled.

The power-up time delay will vary from chip to chip due to VDD, temperature, and process variations. See DC parameters for details.

9.4.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-Up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP, and HS modes and only on Power-on Reset or wake-up from SLEEP.

9.4.4 BROWN-OUT RESET (BOR)

PIC16C64X & PIC16C66X devices have on-chip Brown-out Reset circuitry. A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V (Parameter D005 in ES section) for greater than parameter 35 in Table 12-6, the brown-out situation will reset the chip. A reset is not guaranteed to occur if VDD falls below 4.0V for less than parameter 35. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in reset an additional 72 ms. If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute a 72 ms time delay. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 9-8 shows typical Brown-out situations.

FIGURE 9-8: BROWN-OUT SITUATIONS

9.4.5 PARITY ERROR RESET (PER)

PIC16C64X & PIC16C66X devices have on-chip parity bits that can be used to verify the contents of program memory. Parity bits may be useful in applications in order to increase overall reliability of a system.

There are two parity bits for each word of Program Memory. The parity bits are computed on alternating bits of the program word. One computation is performed using even parity, the other using odd parity. As a program executes, the parity is verified. The even parity bit is XOR'd with the even bits in the program memory word. The odd parity bit is negated and XOR'd with the odd bits in the program memory word. When an error is detected, a reset is generated and the PER flag bit in the PCON register is set. This indication can allow software to act on a failure. However, there is no indication of the program memory location of the failure of the Program Memory. This flag can only be cleared in software or by a POR.

The parity array is user selectable during programming. Bit7 of the configuration word located at address 2007h can be programmed (read as '0') to disable parity checking. If left unprogrammed (read as '1'), parity checking is enabled.

9.4.6 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows: First PWRT time-out is invoked after POR has expired. Then the OST is activated. The total time-out will vary based on oscillator configuration and <u>PWRTE</u> bit status. For example, in RC mode with the <u>PWRTE</u> bit set (PWRT disabled), there will be no time-out at all. Figure 9-9, Figure 9-10 and Figure 9-11 depict time-out sequences.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 9-10). This is useful for testing purposes or to synchronize more than one device operating in parallel.

Table 9-5 shows the reset conditions for some special registers, while Table 9-6 shows the reset conditions for all the registers.

TABLE 9-3: TIME-OUT IN VARIOUS SITUATIONS

9.4.7 POWER CONTROL/STATUS REGISTER (PCON)

The power control/status register, PCON (address 8Eh) has four bits. See Figure 4-10 for register.

Bit0 is \overline{BOR} (Brown-out Reset). \overline{BOR} is unknown on a Power-on-reset. It must initially be set by the user and checked on subsequent resets to see if $\overline{BOR} = '0'$ indicating that a Brown-out Reset has occurred. The \overline{BOR} status bit is a "don't care" bit and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

Bit1 is POR (Power-on Reset). It is cleared on a Power-on Reset and is unaffected otherwise. The user set this bit following a Power-on Reset. On subsequent resets if POR is '0', it will indicate that a Power-on Reset must have occurred.

Bit2 is PER (Parity Error Reset). It is cleared on a Parity Error Reset and must be set by user software. It will also be set on a Power-on Reset.

Bit7 is MPEEN (Memory Parity Error Enable). This bit reflects the status of the MPEEN bit in configuration word. It is unaffected by any reset or interrupt.

Oscillator Configuration	Powe	er-up	Brown-out Pasat	Wake-up from SLEEP	
	PWRTE = 0	PWRTE = 1	Brown-out Keset		
XT, HS, LP	72 ms + 1024 Tosc	1024 Tosc	72 ms + 1024 Tosc	1024 Tosc	
RC	72 ms	_	72 ms	—	

PIC16C64X & PIC16C66X

FIGURE 9-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

FIGURE 9-10: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 9-11: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

PIC16C64X & PIC16C66X

BTFSS	Bit Test f, Skip if Set						
Syntax:	[label] B	STFSS f,b)				
Operands:	$0 \le f \le 127$ $0 \le b < 7$						
Operation:	skip if (f<	b>) = 1					
Status Affected:	None						
Encoding:	01	11bb	bfff	ffff			
Description:	If bit 'b' in register 'f' is '1' then the next instruction is skipped. If bit 'b' is '1', then the next instruction fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a 2 cycle instruction.						
Words:	1						
Cycles:	1(2)						
Example	HERE FALSE TRUE	BTFSC GOTO • •	FLAG,1 PROCESS_CODE				
	Before In	struction	ddress H	TEDE			
	After Inst	ruction if FLAG<1> PC = a if FLAG<1> PC = a	• = 0, address F • = 1, address T	ALSE			

CLRF	Clear f						
Syntax:	[label] (CLRF f					
Operands:	$0 \le f \le 12$	7					
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$						
Status Affected:	Z						
Encoding:	00	0001	lfff	ffff			
Description:	The contents of register 'f' are cleared and the Z bit is set.						
Words:	1						
Cycles:	1						
Example	CLRF	FLAG	_REG				
	Before Instruction $FLAG_REG = 0x5A$ After Instruction $FLAG_REG = 0x00$ Z = 1						

CALL	Call Subroutine					
Syntax:	[<i>label</i>] CALL k					
Operands:	$0 \le k \le 2047$					
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>					
Status Affected:	None					
Encoding:	10 0kkk kkkk kkkk					
Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two cycle instruction.					
Words:	1					
Cycles:	2					
Example	HERE CALL THERE					
	Before Instruction PC = Address HERE After Instruction PC = Address THERE TOS = Address HERE+1					

CLRW	Clear W						
Syntax:	[label] CLRW						
Operands:	None						
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$						
Status Affected:	Z						
Encoding:	00	0001	0000	0011			
Description:	W register set.	is cleare	d. Zero bit	(Z) is			
Words:	1						
Cycles:	1						
Example	CLRW						
	Before Instruction						
		= W	0x5A				
	After Inst	ruction					
		W =	0x00				
		Z =	1				

MPASM allows full symbolic debugging from the Microchip Universal Emulator System (PICMASTER).

MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- Macro assembly capability.
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.

MPASM provides a rich directive language to support programming of the PIC16/17. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

11.11 Software Simulator (MPLAB-SIM)

The MPLAB-SIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PIC16/17 series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/ output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

11.12 C Compiler (MPLAB-C)

The MPLAB-C Code Development System is a complete 'C' compiler and integrated development environment for Microchip's PIC16/17 family of microcontrollers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compiler provides symbol information that is compatible with the MPLAB IDE memory display (PICMASTER emulator software versions 1.13 and later).

11.13 <u>Fuzzy Logic Development System</u> (*fuzzy*TECH-MP)

*fuzzy*TECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, *fuzzy*TECH-MP, edition for implementing more complex systems.

Both versions include Microchip's *fuzzy*LAB[™] demonstration board for hands-on experience with fuzzy logic systems implementation.

11.14 <u>MP-DriveWay™ – Application Code</u> <u>Generator</u>

MP-DriveWay is an easy-to-use Windows-based Application Code Generator. With MP-DriveWay you can visually configure all the peripherals in a PIC16/17 device and, with a click of the mouse, generate all the initialization and many functional code modules in C language. The output is fully compatible with Microchip's MPLAB-C C compiler. The code produced is highly modular and allows easy integration of your own code. MP-DriveWay is intelligent enough to maintain your code through subsequent code generation.

11.15 <u>SEEVAL® Evaluation and</u> <u>Programming System</u>

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials[™] and secure serials. The Total Endurance[™] Disk is included to aid in tradeoff analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

11.16 <u>TrueGauge[®] Intelligent Battery</u> <u>Management</u>

The TrueGauge development tool supports system development with the MTA11200B TrueGauge Intelligent Battery Management IC. System design verification can be accomplished before hardware prototypes are built. User interface is graphically-oriented and measured data can be saved in a file for exporting to Microsoft Excel.

11.17 <u>KEELOQ[®] Evaluation and</u> <u>Programming Tools</u>

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

12.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings †
Ambient Temperature under bias40° to +125°C
Storage Temperature65° to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)
Voltage on VDD with respect to Vss 0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)0 to +14V
Total power Dissipation (Note 1)1.0W
Maximum Current out of Vss pin
Maximum Current into VDD pin250 mA
Input Clamp Current, Ιικ (VI<0 or VI> VDD)
Output Clamp Current, IOK (Vo <0 or Vo>VDD)
Maximum Output Current sunk by any I/O pin25 mA
Maximum Output Current sourced by any I/O pin25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (combined) (Note 2)
Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 2).
Maximum current sunk by PORTC and PORTD (combined) (Note 2)
Maximum current sourced by PORTC and PORTD (combined) (Note 2)
Note 1: Power dissipation is calculated as follows: $P_{DIS} = V_{DD} \times \{I_{DD} - \Sigma_{IOH}\} + \Sigma \{(V_{DD} - V_{OH}) \times I_{OH}\} + \Sigma (V_{OI} \times I_{OL})$
Note 2: PORTD and PORTE are not implemented on the PIC16C641 and PIC16C642.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 12-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C641-04 PIC16C642-04 PIC16C661-04 PIC16C662-04	PIC16C641-10 PIC16C642-10 PIC16C661-10 PIC16C662-10	PIC16C641-20 PIC16C642-20 PIC16C661-20 PIC16C662-20	PIC16LC641-04 PIC16LC642-04 PIC16LC661-04 PIC16LC662-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 5 mA max @ 5.5V IPD: 21 µA max @ 4.0V Freq: 4.0 MHz max.)	VDp: 4.5V to 8.5V DD: 2.7 mA typ. @ 5.5V IPQ: 1.5 μA typ. @ 4.0V Freq. 4.0 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. @ 5.5V IPD: 1.5 μA typ. @ 4.0V Freq: 4.0 MHz max.	VDD: 3.0V to 6.0V IDD: 2.0 mA typ. @ 3.0V IPD: 0.9 μA typ. @ 3.0V Freq: 4.0 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. @ 5.5V IPD: 21 μA max. @ 4.0V Freq: 4.0 MHz Max.
ХТ	VDD: 4.0V to 6.0V IDD: 5 mA nax. @ 5.5V IPD: 21 vA max. @ 4.0V Freg: 4.0 MHz max.	VeD: 4.5V to 5.5V MD: 2.7 mA typ. @ 5.5V IPD: 1.5 μA typ. @ 4.0V Freq: 4.0 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. @ 5.5V IPD: 1.5 μA typ. @ 4.0V Freq: 4.0 MHz max.	VDD: 3.0V to 6.0V IDD: 2.0 mA typ. @ 3.0V IPD: 0.9 μA typ. @ 3.0V Freq: 4.0 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. @ 5.5V IPD: 21 μA max. @ 4.0V Freq: 4.0 MHz max.
нs	Vsp: 4/5V to 5.5V IDD: 13.5 mA typ. @ 5.5V IPo: 1,5 μA typ. @ 4.5V Freq: 4.0 MHz max.	VDD: 4.5V to 5.5V IDD: 30 mA max. @ 5.5V IPD: 1.5 μA typ. @ 4.5V Freq: 10 MHz max.	VDD: 4.5V to 5.5V IDD: 30 mA max. @ 5.5V IPD: 1.5 μA typ. @ 4.5V Freq: 20 MHz max.	Do not use in HS mode	VDD: 4.5V to 5.5V IDD: 30 mA max. @ 5.5V IPD: 1.5 μA typ. @ 4.5V Freq: 10 MHz max.
LP	VDD: 40% to 6.0V IDD: 52.5 μA typ. @ 32 kHz, 4.0V IPD: 0.9 μA typ. @ 4.0V Freq: 200 kHz max.	Do not use in LP mode	Do not use in LP mode	VDD: 3.0V to 6.0V IDD: 48 μA max. @ 32 kHz, 3.0V IPD: 5.0 μA max. @ 3.0V Freq: 200 kHz max.	VDD: 3.0V to 6.0V IDD: 48 μA max. @ 32 kHz, 3.0V IPD: 5.0 μA max. @ 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

© 1996 Microchip Technology Inc.

12.2 DC Characteristics: PIC16LC641/642/661/662-04 (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated)							
	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial and						
	$0^{\circ}C \leq TA \leq +70^{\circ}C$ commercial						
Param	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
NO.							
D001	Vdd	Supply Voltage	3.0	-	6.0	V	XT, RC, and LP osc configuration
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	_	_	V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure internal Power-on Reset signal	_	Vss	-	V	See section on Power-on Reset for details
D004*	SVDD	VDD rise rate to ensure internal Power-on Reset signal	0.05	_	-	V/ms	See section on Power-on Reset for details
D005	VBOR	Brown-out Reset Voltage	3.7	4.0	4.3	V	BODEN configuration bit is clear
D010	IDD	Supply Current ⁽²⁾	_	2.0	3.8	mA	XT and RC osc configuration Fosc = 4.0 MHz, VDD = 3.0 V, WDT disabled ⁽⁴⁾
D010A			_	22.5	48	μΑ	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WD7 disabled
		Module Differential Current (5)			\checkmark		
D015	Δ IBOR	Brown-out Reset Current		350	425	μA	BODEN bit is clear, VDD = 5.0V
D016		Comparator Current for each Comparator	$\left \begin{array}{c} \\ \end{array} \right $	<u> </u>	100	μA	VDD = 3.0V
D017	Δ IVREF	VREF Current	$ \neq /$		300	μA	VDD = 3.0V
D021	ΔIWDT	WDT Current	\sum	$\langle 6,0 \rangle$	20	μA	VDD = 3.0V
D021	IPD	Power-down Current (3)	Æ	0.9	5	μA	VDD = 3.0V, WDT disabled

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which Voo can be Jowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the surrent consumption.

The test conditions for all Job measurements in active operation mode are:

OSC1=external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

 $\overline{\text{MCLR}} = \sqrt{\text{DD}}$; $\overline{\text{WRT}}$ enabled/disabled as specified.

The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.
 For RC osc configuration, current through Rext is not included. The current through the resistor can be

< estimated by the formula Ir = VDD/2Rext (mA) with Rext in k Ω . 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be

added to the base IDD or IPD measurement.

E1 Е С Pin No. 1 еΑ Indicator ев Area D \downarrow Base S S1► -Plane Seating Plane B1 À1АЗ Ά A2 e1 В D1

Package Group: Ceramic CERDIP Dual In-Line (CDP)						
	Millimeters				Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
α	0°	10°		0°	10°	
А	4.318	5.715		0.170	0.225	
A1	0.381	1.778		0.015	0.070	
A2	3.810	4.699		0.150	0.185	
A3	3.810	4.445		0.150	0.175	
В	0.355	0.585		0.014	0.023	
B1	1.270	1.651	Typical	0.050	0.065	Typical
С	0.203	0.381	Typical	0.008	0.015	Typical
D	51.435	52.705		2.025	2.075	
D1	48.260	48.260	BSC	1.900	1.900	BSC
E	15.240	15.875		0.600	0.625	
E1	12.954	15.240		0.510	0.600	
e1	2.540	2.540	BSC	0.100	0.100	BSC
eA	14.986	16.002	Typical	0.590	0.630	Typical
eB	15.240	18.034		0.600	0.710	
L	3.175	3.810		0.125	0.150	
S	1.016	2.286		0.040	0.090	
S1	0.381	1.778		0.015	0.070	

D1 D D/2 PinNo. 1 Indicator Area REFERERE E1 E Ė/2 8 Places А /11/13° 0° min. Detail B A2 | Datum Plane 0.25 0.08 R min. Å1 . 0-7° with Lead Finish Gauge Plane 0.20 min-0.09/0.2 0.09/0.16 1.00 ref. **▲** b1 Base Metal DETAIL B

Package Type: 44-Lead Thin Plastic Quad Flatpack (PT/TQ) - 10x10x1 mm Body 1.0/0.10 mm Lead Form

Package Group: Plastic TQFP						
	Millimeters				Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
α	0°	7 °		0°	7 °	
А	—	1.200		_	0.047	
A1	0.050	0.150		0.002	0.006	
A2	0.950	1.050		0.037	0.041	
b	0.300	0.450		0.012	0.018	
b1	0.300	0.400		0.012	0.016	
D	12.0	12.0	BSC	0.472	0.0472	BSC
D1	10.0	10.0	BSC	0.394	0.394	BSC
E	12.0	12.0	BSC	0.472	0.472	BSC
E1	10.0	10.0	BSC	0.394	0.394	BSC
е	0.8	0.8	BSC	0.031	0.031	BSC
L	0.450	0.750		0.018	0.030	

14.2 Package Marking Information

40-Lead PDIP

Example
PIC16C662-04/P
9512CAA
Similar Microchip
Example

Example

Example

Legend: MMMMicrochip part number information					
XXX	Customer specific information*				
AA	Year code (last 2 digits of calendar year)				
BB	Week code (week of January 1 is week '01')				
С	Facility code of the plant at which wafer is manufactured				
	C = Chandler, Arizona, U.S.A.				
D	Mask revision number				
E	Assembly code of the plant or country of origin in which				
	part was assembled				

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.

*Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

© 1996 Microchip Technology Inc.

I

I/O Ports	29
PORTA	29
PORTB	
PORTC	
PORTD	35
PORTE	36
	01
ID LOCATIONS	
	80
INCESZ Instruction	
In-Circuit Serial Programming	71
Indirect Addressing, INDF and FSR Registers	
Instruction Flow/Pipelining	15
Instruction Format	73
Instruction Set	
ADDLW	76
ADDWF	76
ANDLW	76
ANDWF	76
BCE	70
BSE	
	·····// 77
BIF55	
CLRF	78
CLRW	78
CLRWDT	79
COMF	79
DECF	79
DECFSZ	79
GOTO	
INCE	80
INCESZ	80
IORI W	
	00 Q1
	01
	01 01
	81
MOV WF	
NOP	
OPTION	82
RETFIE	
RETLW	82
RETURN	83
RLF	
RRF	
SLEEP	
SUBLW	
SUBWE	84
SWAPF	
TRIS	
XORI W	05 ءد
	00 مر
	73
Summary Table	75
IN I Interrupt	67
INTCON Register	23
Interrupts	66
Comparator	51

PORTB Change	32
PSP Read-Write	39
RB0/INT	66
Section	66
Timer0	41
Timer0, Timing	42
IORLW Instruction	80
IORWF Instruction	81

Μ

MOVF Instruction	
MOVLW Instruction	
MOVWF Instruction	
MPASM Assembler	87, 88
MPLAB-C C Compiler	
MPLAB-SIM Software Simulator	

Ν

NOP Instruction	
-----------------	--

0

One-Time-Programmable (OTP) Devices .	7
Opcode	
OPTION Instruction	82
OPTION Register	22
Oscillator Configurations	57
Oscillator Start-up Timer (OST)	60

Ρ

Package Marking Information11	2, 113
Packaging Information	105
Parallel Slave Port	35
Section	39
Parity Error Reset (PER)	60, 61
PCL	74
PCL and PCLATH	27
PCON Register	26, 61
PICDEM-1 Low-Cost PIC16/17 Demo Board	87, 88
PICDEM-2 Low-Cost PIC16CXX Demo Board	87, 88
PICDEM-3 Low-Cost PIC16C9XX Demo Board .	88
PICDEM-3 PIC16C9XX Low-Cost Demonstration	۱
Board	87
PICMASTER [®] High Performance	
In-Circuit Emulator	87
PICSTART [®] Plus Entry Level Development	
System	87
PICSTART [®] Plus Entrvel Prototype	
Programmer	87
PIE1 Register	24
Pin Compatible Devices	125
Pin Functions	
RD7/PSP7:RD0/PSP0	14
RE0/RD	14, 39
RE1/WR	14, 39
RE2/CS	14, 39
PIR1 Register	25
Port RB Interrupt	67
PORTA	29
PORTB	32
PORTC Register	34
PORTD Register	35

NOTES:

Note the following details of the code protection feature on PICmicro[®] MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoq® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.