

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	176 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c642-10i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-4: PIC16C642/662 DATA MEMORY MAP

File Address	8		File Address					
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h					
01h	TMR0	OPTION						
02h	PCL	PCL						
03h	STATUS	STATUS						
04h	FSR	FSR						
05h	PORTA	TRISA						
06h	PORTB	TRISB						
07h	PORTC	TRISC						
08h	PORTD ⁽²⁾	TRISD ⁽²⁾						
09h	PORTE ⁽²⁾	TRISE ⁽²⁾						
0Ah	PCLATH	PCLATH	8Ah					
0Bh	INTCON	INTCON						
0Ch	PIR1	PIE1	8Ch					
0Dh			8Dh					
0Eh		PCON	8Eh					
0Fh			8Fh					
10h			90h					
11h			91h					
12h			- 92h					
13h			- 93h					
14h			- 94h					
15h			- 95h					
16h			- 96h					
17h			97h					
18h			- 98h					
101								
146			0					
1Rh								
1Ch								
101								
1Eh								
1Eh		VRCON						
206	CIVICOIN	VICON						
2011	General Purpose Register	General Purpose Register	A0h					
		Mapped	F0h					
		in Bank 0						
7Fh ^I	Bank 0	Bank 1	_ ⊢⊢h					
	Unimplemented data memory loca-							
tions, read as '0'. Note 1: Not a physical register. 2: Not implemented on the PIC16C642.								

4.2.2 SPECIAL FUNCTION REGISTERS

The special function registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device (Table 4-1). These registers are static RAM.

The special function registers can be classified into two sets (core and peripheral). The special function registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

4.2.2.2 OPTION REGISTER

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external RB0/INT interrupt, TMR0, and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for TMR0, assign the prescaler to the WDT.

FIGURE 4-6: OPTION REGISTER (ADDRESS 81h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	R= Readable bit	
bit7							bitO	W= Writable bit U= Unimplemented bit, read as '0' - n= Value at POR reset	
bit 7:	RBPU : PORTB Pull-up Enable bit 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual port latch values								
bit 6:	INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin								
bit 5:	TOCS : TMF 1 = Transiti 0 = Interna	R0 Clock So on on RA4/ I instruction	ource Selo T0CKI pi cycle clo	ect bit n ck (CLKC	OUT)				
bit 4:	TOSE : TMF 1 = Increme 0 = Increme	R0 Source E ent on high- ent on low-t	Edge Sele to-low tra o-high tra	ect bit ansition or ansition or	n RA4/T0C n RA4/T0C	KI pin KI pin			
bit 3:	PSA : Preso 1 = Presca 0 = Presca	caler Assigr ler is assigr ler is assigr	ment bit and to the and to the	WDT Timer0 n	nodule				
bit 2-0:	PS2:PS0: 1	Prescaler R	ate Selec	t bits					
	Bit Value	TMR0 Rate	WDT F	Rate					
	000 001 010 100 101 110 111	1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128 1 : 256	1 : 1 1 : 2 1 : 4 1 : 8 1 : 10 1 : 3: 1 : 6 1 : 1:	6 2 4 28					

PIC16C64X & PIC16C66X

4.2.2.4 PIE1 REGISTER

This register contains the individual enable bits for the comparator and Parallel Slave Port interrupts.

FIGURE 4-8: PIE1 REGISTER (ADDRESS 8Ch)

4.2.2.5 PIR1 REGISTER

This register contains the individual flag bits for the comparator and Parallel Slave Port interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 4-9: PIR1 REGISTER (ADDRESS 0Ch)

4.5 Indirect Addressing, INDF, and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the file select register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a nooperation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-12. However, bit IRP is not used in the PIC16C64X & PIC16C66X. A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 4-1.

EXAMPLE 4-1: INDIRECT ADDRESSING

	movlw	0x20	;initialize pointer
	movwf	FSR	;to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;no goto next
			;yes continue
CONTINUE:			

FIGURE 4-12: DIRECT/INDIRECT ADDRESSING

PORTD BLOCK DIAGRAM (IN

FIGURE 5-8:

5.4 <u>PORTD and TRISD Registers</u> (PIC16C661 and PIC16C662 only)

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

PORTD can be configured as an 8-bit wide microprocessor port (parallel slave port) by setting control bit PSPMODE (TRISE<4>). In this mode, the input buffers are TTL.

I/O PORT MODE) Data bus D Q WR I/O pin⁽¹⁾ PORT СКЪ Data Latch D Q WR Schmitt Trigger input buffer <u>TRIS</u> ►ск 🔪 TRIS Latch **RD TRIS** D Q ΕN **RD PORT** Note 1: I/O pins have protection diodes to VDD and Vss.

Name	Bit#	Buffer Type	Function
RD0/PSP0	bit0	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit0
RD1/PSP1	bit1	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit1
RD2/PSP2	bit2	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit2
RD3/PSP3	bit3	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit3
RD4/PSP4	bit4	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit4
RD5/PSP5	bit5	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit5
RD6/PSP6	bit6	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit6
RD7/PSP7	bit7	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit7

TABLE 5-7: PORTD FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port Mode.

TABLE 5-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
08h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
88h	TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	1111 1111
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTD.

6.2 Using Timer0 with External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

6.2.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41, and 42 in the electrical specification of the desired device.

6.2.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 6-5 shows the delay from the external clock edge to the timer incrementing.

FIGURE 6-5: TIMER0 TIMING WITH EXTERNAL CLOCK

7.1 Comparator Configuration

There are eight modes of operation for the comparators. The CMCON register is used to select the mode. Figure 7-2 shows the eight possible modes. The TRISA register controls the data direction of the comparator pins for each mode. If the comparator

mode is changed, the comparator output level may not be valid for the specified mode change delay shown in Table 12-2.

Note: Comparator interrupts should be disabled during a comparator mode change otherwise a false interrupt may occur.

FIGURE 7-2: COMPARATOR I/O OPERATING MODES

TABLE 7-1:	REGISTERS ASSOCIATED WITH THE COMPARATOR MODULE
------------	--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other resets
1Fh	CMCON	C2OUT	C1OUT	_	_	CIS	CM2	CM1	CM0	00 0000	00 0000
9Fh	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	CMIF	—	—	—	_	_	_	00	00
8Ch	PIE1	PSPIE ⁽¹⁾	CMIE	—	—	—	—	_	_	00	00
85h	TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111

Note 1: These bits are reserved on the PIC16C641/642, always maintain these bits clear.

8.0 VOLTAGE REFERENCE MODULE

The Voltage Reference is a 16-tap resistor ladder network that provides a selectable voltage reference. The resistor ladder is segmented to provide two ranges of VREF values and has a power-down function to conserve power when the reference module is not being used. The VRCON register, shown in Figure 8-1, controls the operation of the Voltage Reference Module. The block diagram is given in Figure 8-2.

FIGURE 8-1: VRCON REGISTER (ADDRESS 9Fh)

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
VREN	VROE	VRR	—	VR3	VR2	VR1	VR0	R =Readable bit
bit7							bit0	W =Writable bit U =Unimplemented bit, read as '0' - n =Value at POR reset
bit 7:	VREN: VREF Enable 1 = VREF circuit powered up 0 = VREF circuit powered down, no IDD drain							
bit 6:	VROE: VREF Output Enable 1 = VREF is output on RA2 pin 0 = VREF is disconnected from RA2 pin							
bit 5:	VRR: VREF 1 = Low Ra 0 = High Ra	^r Range se inge ange	lection					
bit 4:	Unimplem	ented: Rea	ad as '0	ı				
bit 3-0:	VR3:VR0:	VREF value	selecti	on $0 \leq VR$	3:VR0 ≤ 15	5		
	When: VRR = 1 Then: VREF = (VR3:VR0/ 24) • VDD							
	When: VRF Then: VREF	R = 0 = 1/4 • Vc	D + (VI	R3:VR0/ 32	2) • Vdd			

9.0 SPECIAL FEATURES OF THE CPU

What sets apart a microcontroller from other processors are special circuits to deal with the needs of real-time applications. The PIC16C64X & PIC16C66X families have a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection.

These are:

- 1. Oscillator selection
- 2. Resets

Power-on Reset (POR) Power-up Timer (PWRT) Oscillator Start-up Timer (OST) Brown-out Reset (BOR) Parity Error Reset (PER)

- 3. Interrupts
- 4. Watchdog Timer (WDT)
- 5. SLEEP
- 6. Code protection
- 7. ID Locations
- 8. In-circuit serial programming

The PIC16C64X & PIC16C66X has a Watchdog Timer which is enabled by a configuration bit (WDTE). It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in reset while the power supply stabilizes. Circuitry has been provided for checking program memory parity with a reset when an error is indicated. There is also circuitry to reset the device if a brown-out occurs which provides at least a 72 ms reset. With these three functions on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

9.5.1 RB0/INT INTERRUPT

The external interrupt on the RB0/INT pin is edge triggered: either rising if bit INTEDG (OPTION<6>) is set, or falling, if bit INTEDG is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be enabled/dissetting/clearing enable abled by bit INTE (INTCON<4>). The INTF bit must be cleared in software in the interrupt service routine before re-enabling this interrupt. The RB0/INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up. See Section 9.8 for details on SLEEP and Figure 9-19 for timing of wake-up from SLEEP through RB0/INT interrupt.

9.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can be enabled/disabled by setting/clearing T0IE (INTCON<5>) bit. For operation of the Timer0 module, see Section 6.0.

9.5.3 PORTB INTERRUPT

An input change on any bit of PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>). For operation of PORTB (Section 5.2).

9.5.4 COMPARATOR INTERRUPT

See Section 7.6 for complete description of the comparator interrupt.

FIGURE 9-16: RB0/INT PIN INTERRUPT TIMING

PIC16C64X & PIC16C66X

NOP	No Operation					
Syntax:	[label]	NOP				
Operands:	None					
Operation:	No operation					
Status Affected:	None					
Encoding:	00	0000	0xx0	0000		
Description:	No operati	ion.				
Words:	1					
Cycles:	1					
Example	NOP					

RETFIE	Return from Interrupt
Syntax:	[label] RETFIE
Operands:	None
Operation:	$\begin{array}{l} TOS \rightarrow PC, \\ 1 \rightarrow GIE \end{array}$
Status Affected:	None
Encoding:	00 0000 0000 1001
Description:	Return from Interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by set- ting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two cycle instruction.
Words:	1
Cycles:	2
Example	RETFIE
	After Interrupt PC = TOS GIE = 1

OPTION	Load Option Register				
Syntax:	[label] OPTION				
Operands:	None				
Operation:	$(W) \to OPTION$				
Status Affected:	None				
Encoding:	00 0000 0110 0010				
Words: Cycles: Example	Ine contents of the W register are loaded in the OPTION register. This instruction is supported for code com- patibility with PIC16C5X products. Since OPTION is a readable/writable register, the user can directly address it. 1				
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.				

RETLW Return with Literal in W						
Syntax:	[label]	RETLW	k			
Operands:	$0 \le k \le 255$					
Operation:	$\begin{array}{l} k \rightarrow (W); \\ TOS \rightarrow P \end{array}$	C				
Status Affected:	None					
Encoding:	11	01xx	kkkk	kkkk		
Description:	The W regibit literal 'k loaded from return add instruction	ister is loa '. The pro n the top ress). Thi	aded with the gram count of the states is a two of two of the states is a two of two of two of two of two of two o	he eight nter is ck (the cycle		
Words:	1					
Cycles:	2					
Example	CALL TABLE	: ;W (;Of: ;Wn	contains t fset value ow has tab	able e le value		
TABLE	ADDWF PC RETLW k1 RETLW k2 RETLW kn	;W : ;Beg ; ; E1	= offset gin table nd of tabl	.e		
	Before In	struction				
	After Inst	W =	0x07			
		W =	value of k	8		

CLKOUT AND I/O TIMING REQUIREMENTS TABLE 12-5:

Parameter	Sym	Characteristic	\wedge	Min	Typt	Max	Units	Conditions
No.			$ \longrightarrow $					
10*	TosH2ckL	OSC1↑ to CLKOUT↓	$ \land \land$	$ig/ \not>$	75	200	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		\searrow -	75	200	ns	Note 1
12*	TckR	CLKOUT rise time	$\langle / / /$	<u> </u>	35	100	ns	Note 1
13*	TckF	CLKOUT fall time	/ V / / / /	—	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out valit	4/	—	_	0.5Tcy + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKO	л 🔪 🔨	Tosc + 200	—	—	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT	$\land \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0	—	—	ns	Note 1
17*	TosH2ioV	OSC11 (Q1 cycle) to	$\overline{\}$	—	50	150	ns	
		Port out valid						
18*	TosH2iol	OSC11 (Q2-cycle) to	PIC16C64X/66X	100	_	—	ns	
		Port input invalid (I/O in hold time)	PIC16LC64X/66X	200	_	—	ns	
19*	TioV205H	Rort input valid to OSC1↑ ((I/O in setup time)	0	—	—	ns	
20*	TIOR	Port output rise time	PIC16C64X/66X	—	10	40	ns	
	$ \setminus \lor$	\land	PIC16LC64X/66X	—	—	80	ns	
21*	TioF <	Port output fall time	PIC16C64X/66X	—	10	40	ns	
)	\triangleright	PIC16LC64X/66X		_	80	ns	
28(11)	Tinp	INT pin high or low time		Тсү	—		ns	
23††*	Trbp	RB7:RB4 change INT high	or low time	Тсү			ns	

* These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

These parameters are asynchronous events not related to any internal clock edges. ††

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

FIGURE 12-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, AND POWER-UP TIMER TIMING

 TABLE 12-6:
 RESET, WATCHOOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	_		μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Piescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	—	1024Tosc	_	-	Tosc = OSC1 period
33*	Towrt	Power up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	TIOZ	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	—	—	2.1	μs	
35	TBOR	Brown-out Reset pulse width	100	_	_	μs	$VDD \le BVDD (D005)$
36	TPER	Parity Error Reset	—	TBD		μs	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

14.2 Package Marking Information

40-Lead PDIP

Example
PIC16C662-04/P
9512CAA
Similar Microchip
Example

Example

Example

Legend: MMMMicrochip part number information					
XXX	Customer specific information*				
AA	Year code (last 2 digits of calendar year)				
BB	Week code (week of January 1 is week '01')				
С	Facility code of the plant at which wafer is manufactured				
	C = Chandler, Arizona, U.S.A.				
D	Mask revision number				
E	Assembly code of the plant or country of origin in which				
	part was assembled				

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.

*Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

© 1996 Microchip Technology Inc.

APPENDIX E: PIC16/17 MICROCONTROLLERS

E.1 PIC14000 Devices

 NOTES:

Note the following details of the code protection feature on PICmicro[®] MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoq® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit Tri-Atria Office Building

32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260 Kokomo

2767 S. Albright Road

Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338 New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335 San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521 China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2350361 Fax: 86-755-2366086 Hong Kong Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza

223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc. India Liaison Office **Divvasree Chambers** 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850 Taiwan Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Nordic ApS **Regus Business Centre** Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Microchip Technology GmbH

Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy

Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kinadom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02