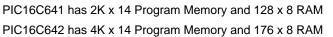


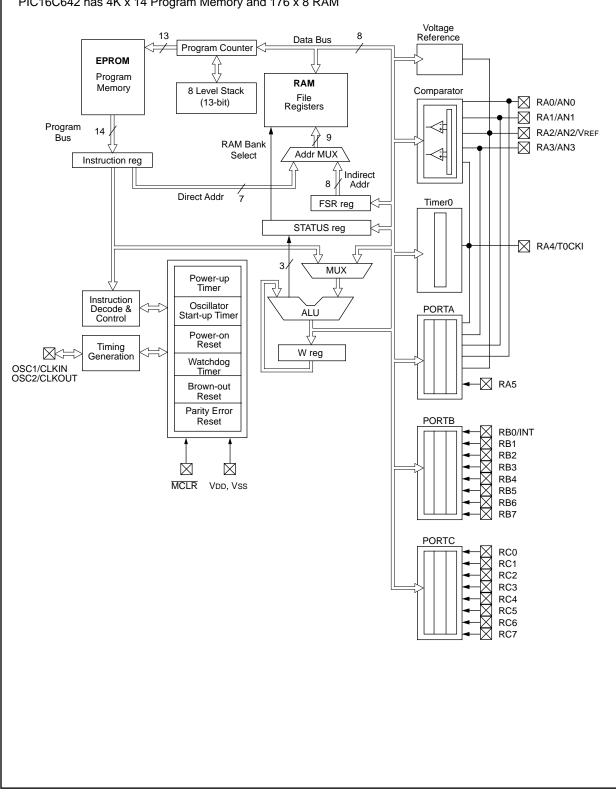
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details


Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	176 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c642-20i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3-1: PIC16C641/642 BLOCK DIAGRAM

4.2 Data Memory Organization

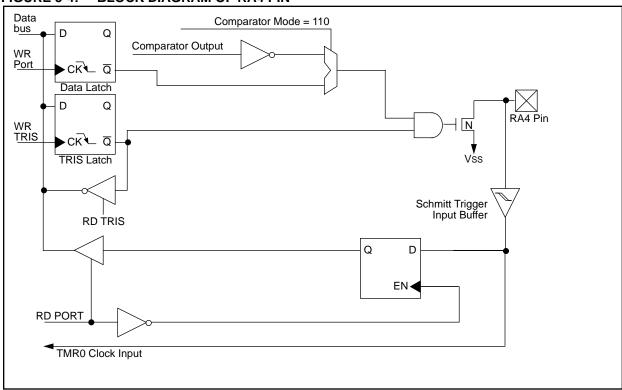
The data memory (Figure 4-4) is partitioned into two banks which contain the general purpose registers and the special function registers. Bank 0 is selected when bit RP0 (STATUS<5>) is cleared. Bank 1 is selected when the RP0 bit is set. The Special Function Registers are located in the first 32 locations of each Bank. Register locations A0h-EFh (Bank 1) are general purpose registers implemented as static RAM. Some special function registers are mapped in Bank 1.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 176×8 for the PIC16C642/662, and 128 x8 for the PIC16C641/661. Each is accessed either directly, or indirectly through the File Select Register FSR (Section 4.5).

FIGURE 4-3: PIC16C641/661 DATA MEMORY MAP

	MEMORY					
File Address	5		File Address			
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h			
01h	TMR0	OPTION	81h			
02h	PCL	PCL				
03h	STATUS	STATUS				
04h	FSR	FSR				
05h	PORTA	TRISA	85h			
06h	PORTB	TRISB	86h			
07h	PORTC	TRISC	87h			
08h	PORTD ⁽²⁾	TRISD ⁽²⁾	88h			
09h	PORTE ⁽²⁾	TRISE ⁽²⁾	89h			
0Ah	PCLATH	PCLATH	8Ah			
0Bh	INTCON	INTCON	8Bh			
0Ch	PIR1	PIE1	8Ch			
0Dh			8Dh			
0Eh		PCON	8Eh			
0Fh			8Fh			
10h			90h			
11h			91h			
12h			92h			
13h			93h			
14h			94h			
15h			95h			
16h			96h			
17h			97h			
18h			98h			
19h			99h			
1Ah 1Ph			9Ah 9Bh			
1Bh 1Ch			960 9Ch			
1Dh			90h			
1Eh			9Eh			
1Fh	CMCON	VRCON	9Eh			
20h	CIVICOIN	VICON				
2011	General Purpose	General Purpose	A0h			
	Register	Register	BFh			
			C0h			
			EFh			
		Mapped	F0h			
		in Page 0				
7Fh ^l	Bank 0	Bank 1	_ FFh			
Note 1: N	Unimplemented data memory locations, read as '0'. Note 1: Not a physical register.					


4.2.2.6 PCON REGISTER

The PCON register contains flag bits to differentiate between a Power-on Reset (POR), an external $\overline{\text{MCLR}}$ reset, WDT reset, Brown-out Reset (BOR), and Parity Error Reset (PER). The PCON register also contains a status bit, MPEEN, which reflects the value of the MPEEN bit in Configuration Word. See Table 9-4 for status of these bits on various resets.

Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR is cleared, indicating a brown-out has occurred. The BOR status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (by programming the BODEN bit in the Configuration word).

FIGURE 4-10: PCON REGISTER (ADDRESS 8Eh)

R-U	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-u			
MPEEN		_	_	—	PER	POR	BOR	R= Readable bit		
bit7		bit0 U= Unimplemented bit, read as '0' - n= Value at POR reset								
bit 7:	bit 7: MPEEN: Memory Parity Error Circuitry Status bit Reflects the value of Configuration Word bit, MPEEN									
bit 6-3:	Unimplen	nented: R	ead as '0'							
bit 2:	PER : Men 1 = No err 0 = Program (must be s	or occurre	ed ry fetch pa	rity error		occurs)				
bit 1:										
bit 0:										

FIGURE 5-4: BLOCK DIAGRAM OF RA4 PIN

TABLE 5-1: PORTA FUNCTIONS

Name	Bit #	Buffer Type	Function			
RA0/AN0	bit0	ST	Input/output or comparator input.			
RA1/AN1	bit1	ST	Input/output or comparator input.			
RA2/AN2/VREF	bit2	ST	Input/output or comparator input or VREF output.			
RA3/AN3	bit3	ST	Input/output or comparator input/output.			
RA4/T0CKI	bit4	ST	Input/output or external clock input for TMR0 or comparator output. Output is open drain type.			
RA5	bit5	ST	Input/output.			

Legend: ST = Schmitt Trigger input

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
05h	PORTA	—		RA5	RA4	RA3	RA2	RA1	RA0	xx 0000	uu 0000
85h	TRISA	—	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111
1Fh	CMCON	C2OUT	C10UT	_	_	CIS	CM2	CM1	CM0	00 0000	00 0000
9Fh	VRCON	VREN	VROE	VRR	—	VR3	VR2	VR1	VR0	000- 0000	000- 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

PORTD BLOCK DIAGRAM (IN

FIGURE 5-8:

5.4 <u>PORTD and TRISD Registers</u> (PIC16C661 and PIC16C662 only)

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

PORTD can be configured as an 8-bit wide microprocessor port (parallel slave port) by setting control bit PSPMODE (TRISE<4>). In this mode, the input buffers are TTL.

I/O PORT MODE) Data bus D Q WR I/O pin⁽¹⁾ PORT СКЪ Data Latch D Q WR Schmitt Trigger input buffer <u>TRIS</u> ►ск 🔪 TRIS Latch **RD TRIS** D Q ΕN **RD PORT** Note 1: I/O pins have protection diodes to VDD and Vss.

Bit#	Buffer Type	Function
bit0	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit0
bit1	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit1
bit2	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit2
bit3	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit3
bit4	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit4
bit5	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit5
bit6	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit6
bit7	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit7
	bit0 bit1 bit2 bit3 bit4 bit5 bit6	bit0 ST/TTL ⁽¹⁾ bit1 ST/TTL ⁽¹⁾ bit2 ST/TTL ⁽¹⁾ bit3 ST/TTL ⁽¹⁾ bit4 ST/TTL ⁽¹⁾ bit5 ST/TTL ⁽¹⁾ bit6 ST/TTL ⁽¹⁾

TABLE 5-7: PORTD FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port Mode.

TABLE 5-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
08h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
88h	TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	1111 1111
89h	TRISE	IBF	OBF	IBOV	PSPMODE	—	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTD.

6.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control, i.e., it can be changed "on the fly" during program execution.

Note: To avoid an unintended device RESET, the following instruction sequence (shown in Example 6-1) must be executed when changing the prescaler assignment from Timer0 to the WDT. This precaution must be followed even if the WDT is disabled.

EXAMPLE 6-1: CHANGING PRESCALER (TIMER0 \rightarrow WDT)

BCF	STATUS, RPO	;Bank 0
CLRF	TMR0	;Clear TMR0 & Prescaler
BSF	STATUS, RPO	;Bank 1
CLRWDT		;Clears WDT
MOVLW	b'xxxx1xxx'	;Select new prescale
MOVWF	OPTION_REG	;value & WDT
BCF	STATUS, RPO	;Bank 0

To change prescaler from the WDT to the Timer0 module, use the sequence shown in Example 6-2.

EXAMPLE 6-2: CHANGING PRESCALER (WDT \rightarrow TIMER0)

CLRWDT		;Clear WDT and
		;prescaler
BSF	STATUS, RPO	;Bank 1
MOVLW	b'xxxx0xxx'	;Select TMR0, new
		;prescale value and
MOVWF	OPTION_REG	;clock source
BCF	STATUS, RPO	;Bank 0

TABLE 6-1:REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
01h	TMR0	Timer0	module's re	egister						xxxx xxxx	uuuu uuuu
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	—	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

9.0 SPECIAL FEATURES OF THE CPU

What sets apart a microcontroller from other processors are special circuits to deal with the needs of real-time applications. The PIC16C64X & PIC16C66X families have a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection.

These are:

- 1. Oscillator selection
- 2. Resets

Power-on Reset (POR) Power-up Timer (PWRT) Oscillator Start-up Timer (OST) Brown-out Reset (BOR) Parity Error Reset (PER)

- 3. Interrupts
- 4. Watchdog Timer (WDT)
- 5. SLEEP
- 6. Code protection
- 7. ID Locations
- 8. In-circuit serial programming

The PIC16C64X & PIC16C66X has a Watchdog Timer which is enabled by a configuration bit (WDTE). It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in reset while the power supply stabilizes. Circuitry has been provided for checking program memory parity with a reset when an error is indicated. There is also circuitry to reset the device if a brown-out occurs which provides at least a 72 ms reset. With these three functions on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

9.4 <u>Power-on Reset (POR), Power-up</u> <u>Timer (PWRT), Oscillator Start-up</u> <u>Timer (OST), Brown-out Reset (BOR),</u> <u>and Parity Error Reset (PER)</u>

9.4.1 POWER-ON RESET (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.6V to 1.8V). To take advantage of the POR, just tie the $\overline{\text{MCLR}}$ pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is required. See Electrical Specifications for details.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met.

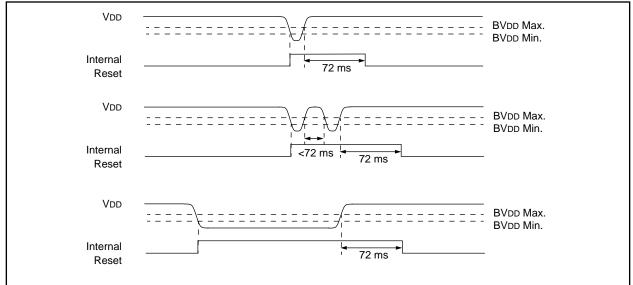
For additional information, refer to Application Note AN607 "*Power-up Trouble Shooting.*"

9.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms (nominal) delay on power-up only, from POR or BOR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as PWRT is active. The PWRT delay allows VDD to rise to an acceptable level. A configuration bit, PWRTE can disable (if set) or enable (if cleared or programmed) the Power-up Timer. The Power-up Timer should always be enabled when Brown-out Reset is enabled.

The power-up time delay will vary from chip to chip due to VDD, temperature, and process variations. See DC parameters for details.

9.4.3 OSCILLATOR START-UP TIMER (OST)


The Oscillator Start-Up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP, and HS modes and only on Power-on Reset or wake-up from SLEEP.

9.4.4 BROWN-OUT RESET (BOR)

PIC16C64X & PIC16C66X devices have on-chip Brown-out Reset circuitry. A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V (Parameter D005 in ES section) for greater than parameter 35 in Table 12-6, the brown-out situation will reset the chip. A reset is not guaranteed to occur if VDD falls below 4.0V for less than parameter 35. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in reset an additional 72 ms. If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute a 72 ms time delay. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 9-8 shows typical Brown-out situations.

FIGURE 9-8: BROWN-OUT SITUATIONS

9.9 <u>Code Protection</u>

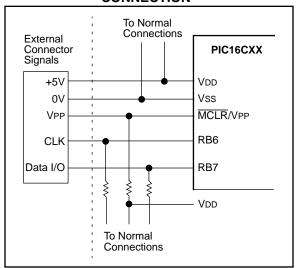
If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note:	Microchip	does	not	recommend	code
	protecting	windov	ved d	evices.	

9.10 ID Locations

Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. Only the least significant 4 bits of the ID locations are used.

9.11 In-Circuit Serial Programming


The PIC16CXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a program/verify mode by holding the RB6 and RB7 pins low while raising the $\overline{\text{MCLR}}$ (VPP) pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After reset, to place the device into programming/verify mode, the program counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14-bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC16C6X/7X Programming Specifications (Literature #DS30228).

A typical in-circuit serial programming connection is shown in Figure 9-20.

FIGURE 9-20: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

BTFSS	Bit Test f, Skip if Set							
Syntax:	[label] BTFSS f,b							
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$							
Operation:	skip if (f) = 1							
Status Affected:	None							
Encoding:	01 11bb bfff ffff							
Description:	If bit 'b' in register 'f' is '1' then the next instruction is skipped. If bit 'b' is '1', then the next instruction fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a 2 cycle instruction.							
Words:	1							
Cycles:	1(2)							
Example	HERE BTFSC FLAG,1 FALSE GOTO PROCESS_CODE TRUE • • •							
	Before Instruction PC = address HERE After Instruction							
	if FLAG<1> = 0, PC = address FALSE if FLAG<1> = 1, PC = address TRUE							

CLRF	Clear f					
Syntax:	[label] (CLRF f				
Operands:	$0 \le f \le 12$	27				
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$					
Status Affected:	Z					
Encoding:	00	0001	1ff	f	ffff	
Description:	The contents of register 'f' are cleared and the Z bit is set.					
Words:	1					
Cycles:	1					
Example	CLRF	FLAG	G_REG	3		
	Before Instruction FLAG_REG = 0x5A After Instruction FLAG_REG = 0x00 Z = 1					

CALL	Call Subroutine			
Syntax:	[<i>label</i>] CALL k			
Operands:	$0 \le k \le 2047$			
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>			
Status Affected:	None			
Encoding:	10 0kkk kkkk kkkk			
Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two cycle instruction.			
Words:	1			
Cycles:	2			
Example	HERE CALL THERE			
	Before Instruction PC = Address HERE After Instruction PC = Address THERE TOS = Address HERE+1			

CLRW	Clear W				
Syntax:	[label]	CLRW			
Operands:	None				
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$				
Status Affected:	Z				
Encoding:	00	0001	0000	0011	
Description:	W register is cleared. Zero bit (Z) is set.				
Words:	1				
Cycles:	1				
Example	CLRW				
	Before In	struction	1		
	After Inst	W = ruction W = Z =	0x5A 0x00 1		

CLRWDT	Clear Watchdog Timer						
Syntax:	[label] CLRWDT						
Operands:	None						
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \mbox{ prescaler}, \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$						
Status Affected:	TO, PD						
Encoding:	00 0000 0110 0100						
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.						
Words:	1						
Cycles:	1						
Example	CLRWDT						
	Before Instruction WDT counter = ? After Instruction WDT counter = $0x00$ WDT prescaler = 0 TO = 1 PD = 1						
COMF	Complement f						
Syntax:	[label] COMF f,d						
Operands:	0 ≤ f ≤ 127 d ∈ [0,1]						
Operation:	$(\overline{f}) ightarrow$ (dest)						
Status Affected:	Z						
Encoding:	00 1001 dfff ffff						
Description:	The contents of register 'f' are comple- mented. If 'd' is 0 the result is stored in W. If 'd' is 1 the result is stored back in register 'f'.						
Words:	1						
- ·							

1			
COMF	RE	G1,0	
Before Ir	nstructior	٦	
	REG1	=	0x13
After Ins	truction		
	REG1	=	0x13
	W	=	0xEC

DECF	Decrement f				
Syntax:	[label] DECF f,d				
Operands:	$0 \le f \le 127$				
	d ∈ [0,1]				
Operation:	(f) - 1 \rightarrow (dest)				
Status Affected:	Z				
Encoding:	00 0011 dfff ffff				
Description:	Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example	DECF CNT, 1				
	Before Instruction				
	CNT = 0x01				
	Z = 0 After Instruction				
	CNT = 0x00				
	Z = 1				
DECFSZ	Decrement f, Skip if 0				
Syntax:	[<i>label</i>] DECFSZ f,d				

DECFSZ	Decrement f, Skip if 0					
Syntax:	[label] DECFSZ f,d					
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	(f) - 1 \rightarrow (dest); skip if result = 0					
Status Affected:	None					
Encoding:	00 1011 dfff ffff					
Description:	The contents of register 'f' are decre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a two cycle instruction.					
Words:	1					
Cycles:	1(2)					
Example	HERE DECFSZ CNT, 1 GOTO LOOP					
	CONTINUE • •					
	$\begin{array}{rcl} Before \ Instruction \\ PC &= & address \ {\rm HERE} \\ After \ Instruction \\ CNT &= & CNT - 1 \\ if \ CNT &= & 0, \\ PC &= & address \ {\rm CONTINUE} \\ if \ CNT \neq & 0, \\ PC &= & address \ {\rm HERE} + 1 \\ \end{array}$					

Cycles:

Example

GOTO	Unconditional Branch	INCFSZ	Increment f, Skip if 0
Syntax:	[<i>label</i>] GOTO k	Syntax:	[<i>label</i>] INCFSZ f,d
Operands:	$0 \le k \le 2047$	Operands:	$0 \le f \le 127$
Operation:	$k \rightarrow PC < 10:0 >$		d ∈ [0,1]
	$PCLATH<4:3> \rightarrow PC<12:11>$	Operation:	(f) + 1 \rightarrow (dest), skip if result = 0
Status Affected:	None	Status Affected:	None
Encoding:	10 1kkk kkkk kkkk	Encoding:	00 1111 dfff ffff
Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two cycle instruction.	Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded.
Words:	1		A NOP is executed instead making it a two cycle instruction.
Cycles:	2	Words:	1
Example	GOTO THERE	Cycles:	1(2)
	After Instruction PC = Address THERE	Example	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • •
			Before Instruction PC = address HERE

INCF	Increment f					
Syntax:	[label] INCF f,d					
Operands:	0 ≤ f ≤ 127 d ∈ [0,1]					
Operation:	(f) + 1 \rightarrow (dest)					
Status Affected:	Z					
Encoding:	00 1010 dfff ffff					
Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.					
Words:	1					
Cycles:	1					
Example	INCF CNT, 1					
	Before Instruction CNT = 0xFF Z = 0 After Instruction CNT = 0x00 Z = 1					

IORLW	Inclusive OR Literal with W					
Syntax:	[label] IORLW k					
Operands:	$0 \le k \le 255$					
Operation:	(W) .OR. $k \rightarrow$ (W)					
Status Affected:	Z					
Encoding:	11 1000 kkkk kkkk					
Description:	The contents of the W register is OR'ed with the eight bit literal 'k'. The result is placed in the W register.					
Words:	1					
Cycles:	1					
Example	IORLW 0x35					
	Before Instruction W = 0x9A After Instruction W = 0xBF Z = 1					

After Instruction CNT =

if CNT=

= if CNT≠

=

PC

PC

CNT + 1

address CONTINUE

address HERE +1

0,

0,

12.2 DC Characteristics: PIC16LC641/642/661/662-04 (Commercial, Industrial)

		Standard Operating Conditions (unless	otherwi	se sta	ted)		
	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial and							
$0^{\circ}C \leq TA \leq +70^{\circ}C$ commercial								
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
D001	Vdd	Supply Voltage	3.0	_	6.0	V	XT, RC, and LP osc configuration	
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	_	-	V	Device in SLEEP mode	
D003	VPOR	VDD start voltage to ensure internal Power-on Reset signal	-	Vss	-	V	See section on Power-on Reset for details	
D004*	SVDD	VDD rise rate to ensure internal Power-on Reset signal	0.05	_	_	V/ms	See section on Power-on Reset for details	
D005	VBOR	Brown-out Reset Voltage	3.7	4.0	4.3	V	BODEN configuration bit is clear	
D010	IDD	Supply Current ⁽²⁾	_	2.0	3.8	mA	XT and RC osc configuration Fosc = 4.0 MHz, VDD = $3.0V$, WDT disabled (4)	
D010A			_	22.5	48	μΑ	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WD7 disabled	
		Module Differential Current (5)		\square	\checkmark			
D015	Δ IBOR	Brown-out Reset Current		350	425	μA	BODEN bit is clear, VDD = 5.0V	
D016		Comparator Current for each Comparator	$\left \begin{array}{c} \\ \end{array} \right $		100	μA	VDD = 3.0V	
D017	Δ IVREF	VREF Current		$\langle \mathcal{L} \rangle$	300	μA	VDD = 3.0V	
D021	ΔIWDT	WDT Current 🧹 🥆		6.0>	20	μA	VDD = 3.0V	
D021	IPD	Power-down Current (3)	$\left \right\rangle$	Ø.9	5	μA	VDD = 3.0V, WDT disabled	

* These parameters are characterized but not tested.

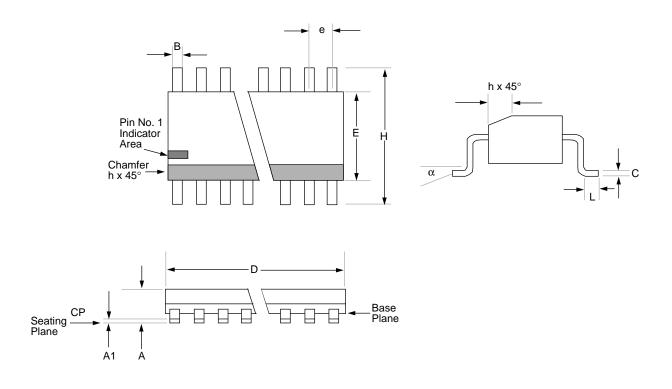
† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which Voo can be Jowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the surrent consumption.

The test conditions for all Job measurements in active operation mode are:

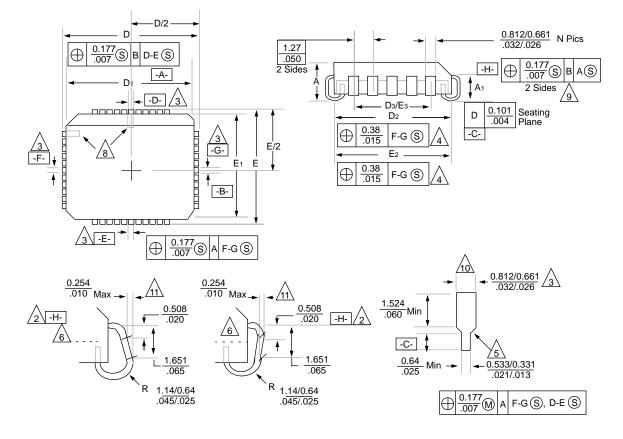
OSC1=external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,


 $\overline{\text{MCLR}} = \sqrt{\text{DD}}$; $\overline{\text{WRT}}$ enabled/disabled as specified.

The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.
 For RC osc configuration, current through Rext is not included. The current through the resistor can be

< estimated by the formula Ir = VDD/2Rext (mA) with Rext in k Ω . 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be

added to the base IDD or IPD measurement.


Package Type: 28-Lead Plastic Small Outline (SO) - Wide, 300 mil Body

	Package Group: Plastic SOIC (SO)						
		Millimeters			Inches		
Symbol	Min	Max	Notes	Min	Max	Notes	
α	0°	8 °		0°	8 °		
А	2.362	2.642		0.093	0.104		
A1	0.101	0.300		0.004	0.012		
В	0.355	0.483		0.014	0.019		
С	0.241	0.318		0.009	0.013		
D	17.703	18.085		0.697	0.712		
E	7.416	7.595		0.292	0.299		
е	1.270	1.270	BSC	0.050	0.050	BSC	
Н	10.007	10.643		0.394	0.419		
h	0.381	0.762		0.015	0.030		
L	0.406	1.143		0.016	0.045		
CP	—	0.102		—	0.004		

E1 Е С Pin No. 1 еΑ Indicator ев Area D \downarrow Base S S1► -Plane Seating Plane B1 À1АЗ Ά A2 e1 В D1

Package Group: Ceramic CERDIP Dual In-Line (CDP)								
	Millimeters			Inches				
Symbol	Min	Max	Notes	Min	Max	Notes		
α	0°	10°		0°	10°			
А	4.318	5.715		0.170	0.225			
A1	0.381	1.778		0.015	0.070			
A2	3.810	4.699		0.150	0.185			
A3	3.810	4.445		0.150	0.175			
В	0.355	0.585		0.014	0.023			
B1	1.270	1.651	Typical	0.050	0.065	Typical		
С	0.203	0.381	Typical	0.008	0.015	Typical		
D	51.435	52.705		2.025	2.075			
D1	48.260	48.260	BSC	1.900	1.900	BSC		
E	15.240	15.875		0.600	0.625			
E1	12.954	15.240		0.510	0.600			
e1	2.540	2.540	BSC	0.100	0.100	BSC		
eA	14.986	16.002	Typical	0.590	0.630	Typical		
eB	15.240	18.034		0.600	0.710			
L	3.175	3.810		0.125	0.150			
S	1.016	2.286		0.040	0.090			
S1	0.381	1.778		0.015	0.070			

Package Type: 44-Lead Plastic Leaded Chip Carrier (L) - Square

Package Group: Plastic Leaded Chip Carrier (PLCC)									
	Millimeters			Inches					
Symbol	Min	Мах	Notes	Min	Max	Notes			
А	4.191	4.572		0.165	0.180				
A1	2.413	2.921		0.095	0.115				
D	17.399	17.653		0.685	0.695				
D1	16.510	16.663		0.650	0.656				
D2	15.494	16.002		0.610	0.630				
D3	12.700	12.700	BSC	0.500	0.500	BSC			
E	17.399	17.653		0.685	0.695				
E1	16.510	16.663		0.650	0.656				
E2	15.494	16.002		0.610	0.630				
E3	12.700	12.700	BSC	0.500	0.500	BSC			
CP	—	0.102			0.004				
LT	0.203	0.381		0.008	0.015				

NOTES:

PIN COMPATIBILITY

Devices that have the same package type and VDD, Vss and MCLR pin locations are said to be pin compatible. This allows these different devices to operate in the same socket. Compatible devices may only requires minor software modification to allow proper operation in the application socket (ex., PIC16C56 and PIC16C61 devices). Not all devices in the same package size are pin compatible; for example, the PIC16C62 is compatible with the PIC16C63, but not the PIC16C55.

Pin compatibility does not mean that the devices offer the same features. As an example, the PIC16C54 is pin compatible with the PIC16C71, but does not have an A/D converter, weak pull-ups on PORTB, or interrupts.

Pin Compatible Devices	Package
PIC12C508, PIC12C509	8-pin
PIC16C54, PIC16C54A, PIC16CR54A, PIC16C56, PIC16C58A, PIC16CR58A, PIC16C61, PIC16C554, PIC16C556, PIC16C558 PIC16C620, PIC16C621, PIC16C622, PIC16C710, PIC16C71, PIC16C711, PIC16F83, PIC16CR83, PIC16C84, PIC16F84A, PIC16CR84	18-pin 20-pin
PIC16C55, PIC16C57, PIC16CR57B	28-pin
PIC16C62, PIC16CR62, PIC16C62A, PIC16C63, PIC16C72, PIC16C73, PIC16C73A	28-pin
PIC16C64, PIC16CR64, PIC16C64A, PIC16C65, PIC16C65A, PIC16C74, PIC16C74A	40-pin
PIC17C42, PIC17CR42, PIC17C42A, PIC17C43, PIC17CR43, PIC17C44	40-pin
PIC16C923, PIC16C924	64/68-pin

TABLE E-1: PIN COMPATIBLE DEVICES

NOTES:

Note the following details of the code protection feature on PICmicro[®] MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoq® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.