

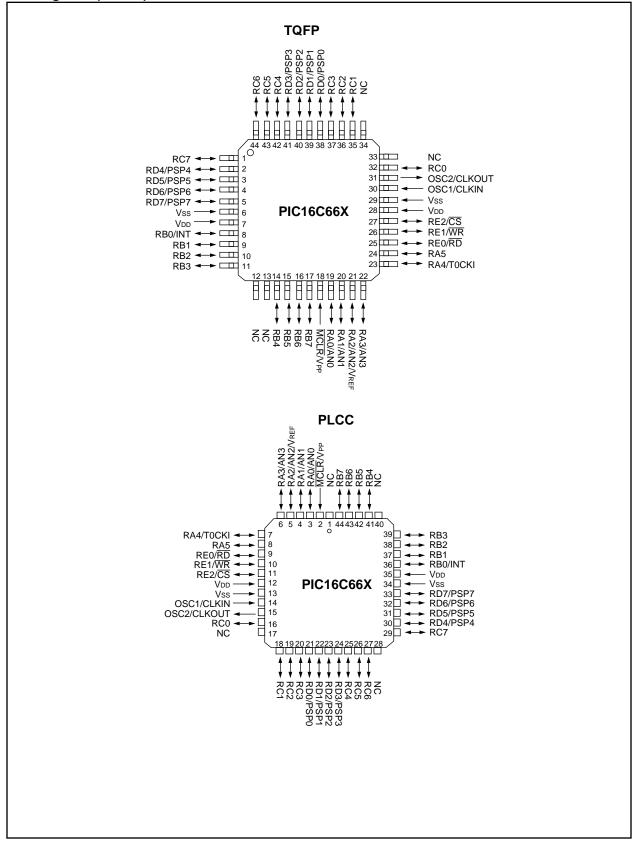
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

2000	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	176 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc642t-04-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Cont.'d)

2.0 PIC16C64X & PIC16C66X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements the proper device option can be selected using the information in the Product Identification System page at the end of this data sheet. When placing orders, please use that page of the data sheet to specify the correct part number.

2.1 UV Erasable Devices

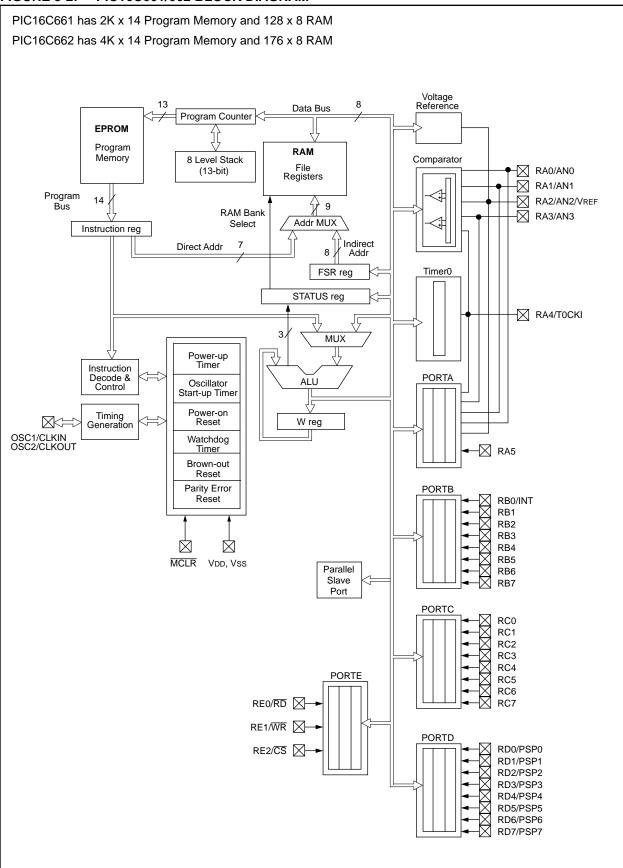
The UV erasable version, offered in CERDIP package is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the oscillator modes.

Microchip's PICSTART[®] Plus and PRO MATE[®] II programmers both support programming of the PIC16C64X & PIC16C66X.

2.2 <u>One-Time-Programmable (OTP)</u> <u>Devices</u>

The availability of OTP devices is especially useful for customers who need flexibility for frequent code updates and small volume applications. In addition to the program memory, the configuration bits must also be programmed.

2.3 <u>Quick-Turnaround-Production (QTP)</u> <u>Devices</u>

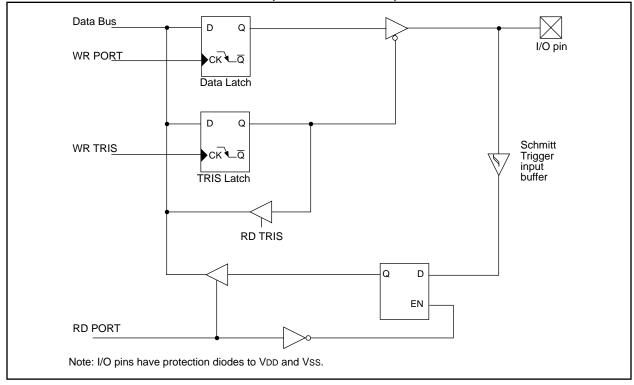

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turnaround-</u> <u>Production (SQTPSM) Devices</u>

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password or ID number.

4.2 Data Memory Organization


The data memory (Figure 4-4) is partitioned into two banks which contain the general purpose registers and the special function registers. Bank 0 is selected when bit RP0 (STATUS<5>) is cleared. Bank 1 is selected when the RP0 bit is set. The Special Function Registers are located in the first 32 locations of each Bank. Register locations A0h-EFh (Bank 1) are general purpose registers implemented as static RAM. Some special function registers are mapped in Bank 1.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 176×8 for the PIC16C642/662, and 128 x8 for the PIC16C641/661. Each is accessed either directly, or indirectly through the File Select Register FSR (Section 4.5).

FIGURE 4-3: PIC16C641/661 DATA MEMORY MAP

MEMORY MAP							
File Address	5		File Address				
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h				
01h	TMR0	OPTION	81h				
02h	PCL	PCL					
03h	STATUS	STATUS					
04h	FSR	FSR					
05h	PORTA	TRISA	85h				
06h	PORTB	TRISB	86h				
07h	PORTC	TRISC	87h				
08h	PORTD ⁽²⁾	TRISD ⁽²⁾	88h				
09h	PORTE ⁽²⁾	TRISE ⁽²⁾	89h				
0Ah	PCLATH	PCLATH	8Ah				
0Bh	INTCON	INTCON	8Bh				
0Ch	PIR1	PIE1	8Ch				
0Dh			8Dh				
0Eh		PCON	8Eh				
0Fh			8Fh				
10h			90h				
11h			91h				
12h			92h				
13h			93h				
14h			94h				
15h			95h				
16h			96h				
17h			97h				
18h			98h				
19h			99h				
1Ah 1Ph			9Ah 9Bh				
1Bh 1Ch			960 9Ch				
1Dh			90h				
1Eh			9Eh				
1Fh	CMCON	VRCON	9Eh				
20h	CIVICOIN	VICON					
2011	General Purpose	General Purpose	A0h				
	Register	Register	BFh				
			C0h				
			EFh				
		Mapped	F0h				
		in Page 0					
7Fh ^l	Bank 0	Bank 1	_ FFh				
Note 1: N	Unimplemented data memory locations, read as '0'. Note 1: Not a physical register.						

FIGURE 5-10: PORTE BLOCK DIAGRAM (IN I/O PORT MODE)

TABLE 5-9: PORTE FUNCTIONS

Name	Bit#	Buffer Type	Function
RE0/RD	bit0	ST/TTL ⁽¹⁾	Input/output port pin or read control input in parallel slave port mode: RD
			1 = Not a read operation
			0 = Read operation. Reads PORTD register (if chip selected)
RE1/WR	bit1	ST/TTL ⁽¹⁾	Input/output port pin or write control input in parallel slave port mode: WR 1 = Not a write operation 0 = Write operation. Writes PORTD register (if chip selected)
RE2/CS	bit2	ST/TTL ⁽¹⁾	Input/output port pin or chip select control input in parallel slave port mode: CS 1 = Device is not selected 0 = Device is selected

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port Mode.

TABLE 5-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
09h	PORTE	—	_	—	—		RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTE.

6.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control, i.e., it can be changed "on the fly" during program execution.

Note: To avoid an unintended device RESET, the following instruction sequence (shown in Example 6-1) must be executed when changing the prescaler assignment from Timer0 to the WDT. This precaution must be followed even if the WDT is disabled.

EXAMPLE 6-1: CHANGING PRESCALER (TIMER0 \rightarrow WDT)

BCF	STATUS, RPO	;Bank 0
CLRF	TMR0	;Clear TMR0 & Prescaler
BSF	STATUS, RPO	;Bank 1
CLRWDT		;Clears WDT
MOVLW	b'xxxx1xxx'	;Select new prescale
MOVWF	OPTION_REG	;value & WDT
BCF	STATUS, RPO	;Bank 0

To change prescaler from the WDT to the Timer0 module, use the sequence shown in Example 6-2.

EXAMPLE 6-2: CHANGING PRESCALER (WDT \rightarrow TIMER0)

CLRWDT		;Clear WDT and
		;prescaler
BSF	STATUS, RPO	;Bank 1
MOVLW	b'xxxx0xxx'	;Select TMR0, new
		;prescale value and
MOVWF	OPTION_REG	;clock source
BCF	STATUS, RPO	;Bank 0

TABLE 6-1:REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
01h	TMR0	Timer0 module's register								xxxx xxxx	uuuu uuuu
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	—	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

9.0 SPECIAL FEATURES OF THE CPU

What sets apart a microcontroller from other processors are special circuits to deal with the needs of real-time applications. The PIC16C64X & PIC16C66X families have a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection.

These are:

- 1. Oscillator selection
- 2. Resets

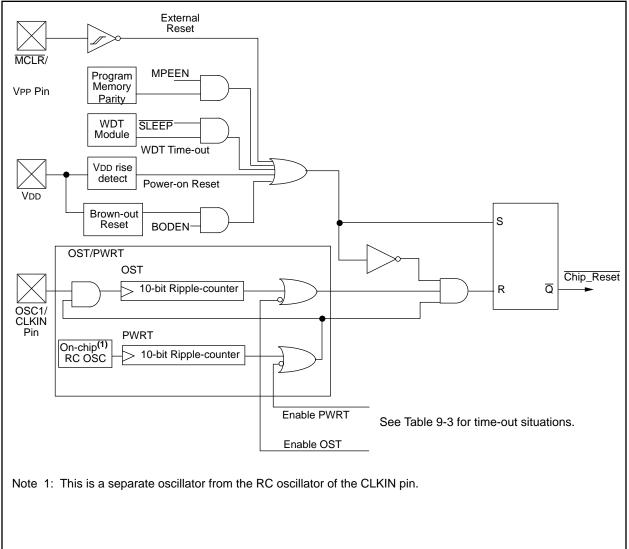
Power-on Reset (POR) Power-up Timer (PWRT) Oscillator Start-up Timer (OST) Brown-out Reset (BOR) Parity Error Reset (PER)

- 3. Interrupts
- 4. Watchdog Timer (WDT)
- 5. SLEEP
- 6. Code protection
- 7. ID Locations
- 8. In-circuit serial programming

The PIC16C64X & PIC16C66X has a Watchdog Timer which is enabled by a configuration bit (WDTE). It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in reset while the power supply stabilizes. Circuitry has been provided for checking program memory parity with a reset when an error is indicated. There is also circuitry to reset the device if a brown-out occurs which provides at least a 72 ms reset. With these three functions on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

9.3 <u>Reset</u>


The PIC16CXXX differentiates between various kinds of reset:

- a) Power-on reset (POR)
- b) MCLR reset during normal operation
- c) MCLR reset during SLEEP
- d) WDT reset (normal operation)
- e) Brown-out Reset (BOR)
- f) Parity Error Reset (PER)

Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on reset, MCLR, WDT reset, Brown-out Reset, Parity Error Reset, and on MCLR reset during SLEEP. They are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different reset situations as indicated in Table 9-4. These bits are used in software to determine the nature of the reset. See Table 9-6 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 9-7.

The $\overline{\text{MCLR}}$ reset path has a noise filter to detect and ignore small pulses. See Table 12-6 for pulse width specification.

FIGURE 9-7: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

Mnemonic,		Description	Cycles		14-Bit	Status	Notes		
Operands				MSb			LSb	Affected	
BYTE-ORIE	NTED	FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0000	0011	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS							
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL AI	ND CO	NTROL OPERATIONS							
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010			Z	

TABLE 10-2: INSTRUCTION SET

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

BTFSS	Bit Test f, Skip if Set								
Syntax:	[label] BTFSS f,b								
Operands:	$0 \le f \le 127$ $0 \le b < 7$								
Operation:	skip if (f) = 1								
Status Affected:	None								
Encoding:	01 11bb bfff ffff								
Description:	If bit 'b' in register 'f' is '1' then the next instruction is skipped. If bit 'b' is '1', then the next instruction fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a 2 cycle instruction.								
Words:	1								
Cycles:	1(2)								
Example	HERE BTFSC FLAG,1 FALSE GOTO PROCESS_CODE TRUE • • •								
	Before Instruction PC = address HERE After Instruction								
	if FLAG<1> = 0, PC = address FALSE if FLAG<1> = 1, PC = address TRUE								

CLRF	Clear f									
Syntax:	[label] CLRF f									
Operands:	$0 \le f \le 127$									
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$									
Status Affected:	Z									
Encoding:	00	0001	1ff	f	ffff					
Description:	The contents of register 'f' are cleared and the Z bit is set.									
Words:	1									
Cycles:	1									
Example	CLRF	FLAG	G_REG	3						
	Before Instruction FLAG_REG = 0x5A After Instruction FLAG_REG = 0x00 Z = 1									

CALL	Call Subroutine								
Syntax:	[<i>label</i>] CALL k								
Operands:	$0 \le k \le 2047$								
Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<4:3>) → PC<12:11>								
Status Affected:	None								
Encoding:	10 0kkk kkkk kkkk								
Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two cycle instruction.								
Words:	1								
Cycles:	2								
Example	HERE CALL THERE								
	Before Instruction PC = Address HERE After Instruction PC = Address THERE TOS = Address HERE+1								

CLRW	Clear W								
Syntax:	[label] CLRW								
Operands:	None								
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$								
Status Affected:	Z								
Encoding:	00	0001	0000	0011					
Description:	W register set.	is cleare	d. Zero bit	(Z) is					
Words:	1								
Cycles:	1								
Example	CLRW								
	Before In	struction	1						
	After Inst	W = ruction W = Z =	0x5A 0x00 1						

RETURN	Return from Subroutine						
Syntax:	[label]	RETUR	N				
Operands:	None						
Operation:	$TOS\toPC$						
Status Affected:	None						
Encoding:	00	0000	0000	1000			
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.						
Words:	1						
Cycles:	2						
Example	RETURN						
	After Inte	rrupt PC =	TOS				

RRF	Rotate R	ight f th	roug	gh Ca	rry			
Syntax:	[label]	RRF f,	d					
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \left[0,1\right] \end{array}$	7						
Operation:	See description below							
Status Affected:	С							
Encoding:	00	1100	dfi	Ef	ffff			
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.							
			Regis	tert				
Words:	1							
Cycles:	1							
Example	RRF		REG1	,0				
		REG1 C	=	1110 0	0110			
	,	REG1 W C	= = =	1110 0111 0				

RLF	Rotate Left f through Carry	SLEEP	
Syntax:	[<i>label</i>] RLF f,d	Syntax:	[label] SLEEP
Operands:	$0 \le f \le 127$ $d \in [0,1]$	Operands:	None
Operation:	See description below	Operation:	00h \rightarrow WDT, 0 \rightarrow WDT prescaler,
Status Affected:	С		$1 \rightarrow \overline{TO}$,
Encoding:	00 1101 dfff ffff		$0 \rightarrow \overline{PD}$
Description:	The contents of register 'f' are rotated	Status Affected:	TO, PD
	one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in	Encoding:	00 0000 0110 0011
	the W register. If 'd' is 1 the result is	Description:	The power-down status bit, PD is cleared. Time-out status bit, TO is
	stored back in register 'f'.		set. Watchdog Timer and its pres-
	C Register f		caler are cleared. The processor is put into SLEEP
Words:	1		mode with the oscillator stopped.
Cycles:	1		See Power-Down Mode (SLEEP) for more details.
Example	RLF REG1,0	Words:	1
	Before Instruction	Cycles:	1
	REG1 = 1110 0110 C = 0	Example:	SLEEP
	After Instruction		
	REG1 = 1110 0110 W = 1100 1100		
	C = 1		

11.6 <u>PICDEM-1 Low-Cost PIC16/17</u> <u>Demonstration Board</u>

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE II or PICSTART-16B programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the PICMASTER emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

11.7 <u>PICDEM-2 Low-Cost PIC16CXX</u> <u>Demonstration Board</u>

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE II programmer or PICSTART-16C, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

11.8 <u>PICDEM-3 Low-Cost PIC16CXX</u> Demonstration Board

The PICDEM-3 is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with a LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-3 board, on a PRO MATE II programmer or PICSTART Plus with an adapter socket, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-3 board to test firmware. Additional prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include an RS-232 interface, push-button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM-3 board is an LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM-3 provides an additional RS-232 interface and Windows 3.1 software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals. PICDEM-3 will be available in the 3rd guarter of 1996.

11.9 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

The MPLAB IDE Software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a windows based application which contains:

- A full featured editor
- Three operating modes
 - editor
 - emulator
 - simulator
- A project manager
- · Customizable tool bar and key mapping
- A status bar with project information
- Extensive on-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC16/17 tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
- Transfer data dynamically via DDE (soon to be replaced by OLE)
- Run up to four emulators on the same PC

The ability to use MPLAB with Microchip's simulator allows a consistent platform and the ability to easily switch from the low cost simulator to the full featured emulator with minimal retraining due to development tools.

11.10 Assembler (MPASM)

The MPASM Universal Macro Assembler is a PChosted symbolic assembler. It supports all microcontroller series including the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXX, and PIC17CXX families.

MPASM offers full featured Macro capabilities, conditional assembly, and several source and listing formats. It generates various object code formats to support Microchip's development tools as well as third party programmers. MPASM allows full symbolic debugging from the Microchip Universal Emulator System (PICMASTER).

MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- Macro assembly capability.
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.

MPASM provides a rich directive language to support programming of the PIC16/17. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

11.11 Software Simulator (MPLAB-SIM)

The MPLAB-SIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PIC16/17 series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/ output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

11.12 C Compiler (MPLAB-C)

The MPLAB-C Code Development System is a complete 'C' compiler and integrated development environment for Microchip's PIC16/17 family of microcontrollers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compiler provides symbol information that is compatible with the MPLAB IDE memory display (PICMASTER emulator software versions 1.13 and later).

11.13 <u>Fuzzy Logic Development System</u> (*fuzzy*TECH-MP)

*fuzzy*TECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, *fuzzy*TECH-MP, edition for implementing more complex systems.

Both versions include Microchip's *fuzzy*LAB[™] demonstration board for hands-on experience with fuzzy logic systems implementation.

11.14 <u>MP-DriveWay™ – Application Code</u> <u>Generator</u>

MP-DriveWay is an easy-to-use Windows-based Application Code Generator. With MP-DriveWay you can visually configure all the peripherals in a PIC16/17 device and, with a click of the mouse, generate all the initialization and many functional code modules in C language. The output is fully compatible with Microchip's MPLAB-C C compiler. The code produced is highly modular and allows easy integration of your own code. MP-DriveWay is intelligent enough to maintain your code through subsequent code generation.

11.15 <u>SEEVAL® Evaluation and</u> <u>Programming System</u>

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials[™] and secure serials. The Total Endurance[™] Disk is included to aid in tradeoff analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

11.16 <u>TrueGauge[®] Intelligent Battery</u> <u>Management</u>

The TrueGauge development tool supports system development with the MTA11200B TrueGauge Intelligent Battery Management IC. System design verification can be accomplished before hardware prototypes are built. User interface is graphically-oriented and measured data can be saved in a file for exporting to Microsoft Excel.

11.17 <u>KEELOQ[®] Evaluation and</u> <u>Programming Tools</u>

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

12.2 DC Characteristics: PIC16LC641/642/661/662-04 (Commercial, Industrial)

		Standard Operating Conditions (unless	otherwi	se sta	ted)	
Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial and							
		0°C	\leq TA \leq	+70°C	COI	nmerci	al
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
D001	Vdd	Supply Voltage	3.0	_	6.0	V	XT, RC, and LP osc configuration
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	_	-	V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure internal Power-on Reset signal	-	Vss	-	V	See section on Power-on Reset for details
D004*	SVDD	VDD rise rate to ensure internal Power-on Reset signal	0.05	_	_	V/ms	See section on Power-on Reset for details
D005	VBOR	Brown-out Reset Voltage	3.7	4.0	4.3	V	BODEN configuration bit is clear
D010	IDD	Supply Current ⁽²⁾	_	2.0	3.8	mA	XT and RC osc configuration Fosc = 4.0 MHz, $VDD = 3.0V$, WDT disabled (4)
D010A			_	22.5	48	μΑ	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WD7 disabled
		Module Differential Current (5)		\square	\checkmark		
D015	Δ IBOR	Brown-out Reset Current		350	425	μA	BODEN bit is clear, VDD = 5.0V
D016		Comparator Current for each Comparator	$\left \begin{array}{c} \\ \end{array} \right $		100	μA	VDD = 3.0V
D017	Δ IVREF	VREF Current		$\langle \mathcal{L} \rangle$	300	μA	VDD = 3.0V
D021	ΔIWDT	WDT Current		6.0>	20	μA	VDD = 3.0V
D021	IPD	Power-down Current (3)	$\left \right\rangle$	Ø.9	5	μA	VDD = 3.0V, WDT disabled

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which Voo can be Jowered in SLEEP mode without losing RAM data.

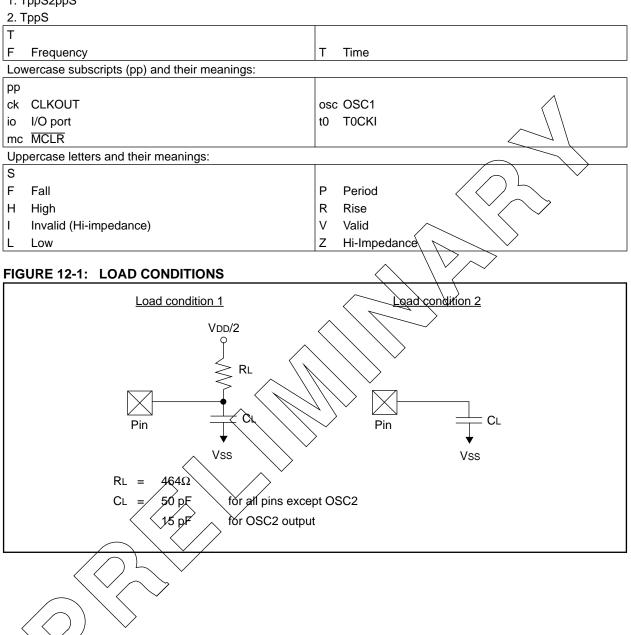
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the surrent consumption.

The test conditions for all Job measurements in active operation mode are:

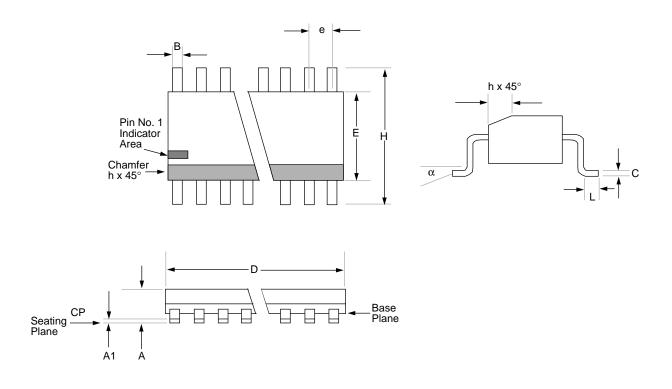
OSC1=external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

 $\overline{\text{MCLR}} = \sqrt{\text{DD}}$; $\overline{\text{WRT}}$ enabled/disabled as specified.

The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.
 For RC osc configuration, current through Rext is not included. The current through the resistor can be


< estimated by the formula Ir = VDD/2Rext (mA) with Rext in k Ω . 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be

added to the base IDD or IPD measurement.

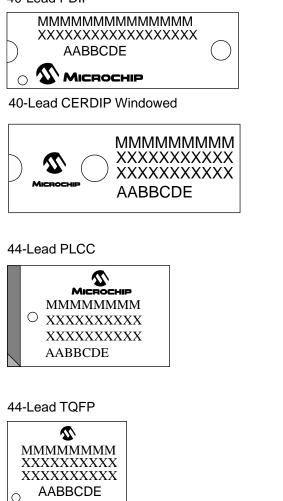

12.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created with one of the following formats:

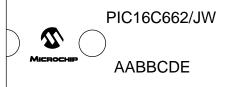
1. TppS2ppS

Package Type: 28-Lead Plastic Small Outline (SO) - Wide, 300 mil Body

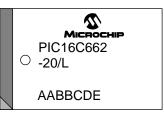
	Package Group: Plastic SOIC (SO)						
		Millimeters		Inches			
Symbol	Min	Max	Notes	Min	Max	Notes	
α	0°	8 °		0°	8 °		
А	2.362	2.642		0.093	0.104		
A1	0.101	0.300		0.004	0.012		
В	0.355	0.483		0.014	0.019		
С	0.241	0.318		0.009	0.013		
D	17.703	18.085		0.697	0.712		
E	7.416	7.595		0.292	0.299		
е	1.270	1.270	BSC	0.050	0.050	BSC	
Н	10.007	10.643		0.394	0.419		
h	0.381	0.762		0.015	0.030		
L	0.406	1.143		0.016	0.045		
CP	—	0.102		—	0.004		


D1 D D/2 PinNo. 1 Indicator Area REFERERE E1 E Ė/2 8 Places A /11/13° 0° min. Detail B A2 | Datum Plane 0.25 0.08 R min. Å1 . 0-7° with Lead Finish Gauge Plane 0.20 min-0.09/0.2 0.09/0.16 1.00 ref. **▲** b1 Base Metal DETAIL B

Package Type: 44-Lead Thin Plastic Quad Flatpack (PT/TQ) - 10x10x1 mm Body 1.0/0.10 mm Lead Form


	Package Group: Plastic TQFP							
		Millimeters		Inches				
Symbol	Min	Max	Notes	Min	Max	Notes		
α	0°	7 °		0°	7 °			
А		1.200		_	0.047			
A1	0.050	0.150		0.002	0.006			
A2	0.950	1.050		0.037	0.041			
b	0.300	0.450		0.012	0.018			
b1	0.300	0.400		0.012	0.016			
D	12.0	12.0	BSC	0.472	0.0472	BSC		
D1	10.0	10.0	BSC	0.394	0.394	BSC		
Е	12.0	12.0	BSC	0.472	0.472	BSC		
E1	10.0	10.0	BSC	0.394	0.394	BSC		
е	0.8	0.8	BSC	0.031	0.031	BSC		
L	0.450	0.750		0.018	0.030			

14.2 Package Marking Information


40-Lead PDIP

Example
PIC16C662-04/P
9512CAA
Similar Microchip
Example

Example

Example

Legend	: MMMMicrochip part number information
XXX	Customer specific information*
AA	Year code (last 2 digits of calendar year)
BB	Week code (week of January 1 is week '01')
С	Facility code of the plant at which wafer is manufactured
	C = Chandler, Arizona, U.S.A.
D	Mask revision number
E	Assembly code of the plant or country of origin in which
	part was assembled

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.

*Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

© 1996 Microchip Technology Inc.

i													
	Features		135	Saber 10.0		18-pin DIP, SOIC; 20-pin SSOP	28-pin PDIP, SOIC Windowed CDIP	28-pin PDIP, SOIC Windowed CDIP					
			TV of	S Ino. C	Stc.	I	I	I	Yes	Yes	Yes	Yes	Yes
	s			-0	eilon	-6.0	-6.0	-6.0	-6.0	-6.0	-6.0	-6.0	-6.0

2.5-6.0 2.5-6.0 2.5-6.0 2.5-6.0 2.5-6.0 3.0-6.0

33 33

> ო ო

I I

I

128

80

512

PIC16C620 PIC16C621 PIC16C622

13 33 13 13 22

4

4 4

128

80

¥ З Ж

128

PIC16C641

2

4

Yes Yes Yes Yes

N 2 N

2.5-6.0

ო

TMR0 **TMR0** TMR0 TMR0 TMR0 TMR0 TMR0

80 80

512

20 20 20 20 20 20 20

PIC16C554 PIC16C556 PIC16C558

¥ Я

^{\$UI}OJ

estros idniejuj

(s)logeredulos

(S)OULOUNOUN

(Seyla) Trouten ered

CETHIN LOIRE BES DO TO TOUR I UNITUREN

SEELION SOLISISTER TELLSULT

Aousw usion

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C6XXX Family devices use serial programming with clock pin RB6 and data pin RB7.

E.3 **PIC16CXXX Family of Devices**

Peripherals

Memory

Clock

40-pin PDIP, Windowed CDIP;

Yes

3.0-6.0

33

ß

Yes

2

TMR0

176

¥

20

PIC16C662

44-pin PLCC, MQFP

40-pin PDIP, Windowed CDIP; 44-pin PLCC, MQFP

Yes

3.0-6.0

33

ŝ

Yes

2

TMR0

128

З

20

PIC16C661

3.0-6.0

22

4

Yes

2

TMR0

176

¥

20

PIC16C642

I

I/O Ports	29
PORTA	29
PORTB	
PORTC	
PORTD	
PORTE	
I/O Programming Considerations	
ICEPIC In-Circuit Emulator	
ID Locations	
INCF Instruction	
INCFSZ Instruction	
In-Circuit Serial Programming	71
Indirect Addressing, INDF and FSR Registers	
Instruction Flow/Pipelining	
Instruction Format	73
Instruction Set	
ADDLW	76
ADDWF	76
ANDLW	76
ANDWF	76
BCF	
BSF	
BTFSC	
BTFSCBTFSS	
CALL	
CLRF	
CLRW	
CLRWDT	
COMF	
DECF	79
DECFSZ	79
GOTO	
INCF	80
INCFSZ	
IORLW	
IORWF	
MOVF	-
MOVWF	
NOP	-
OPTION	
RETFIE	
RETLW	
RETURN	83
RLF	
RRF	
SLEEP	
SUBLW	
SUBWF	
SWAPF	
TRIS	
XORLW	
XORWF	
Section	
Summary Table	
INT Interrupt	
INTCON Register	
Interrupts	
Comparator	51

PORTB Change	32
PSP Read-Write	39
RB0/INT	66
Section	66
Timer0	41
Timer0, Timing	42
IORLW Instruction	
IORWF Instruction	81

Μ

MOVF Instruction	
MOVLW Instruction	
MOVWF Instruction	
MPASM Assembler	87, 88
MPLAB-C C Compiler	
MPLAB-SIM Software Simulator	

Ν

NOP Instruction	
------------------------	--

0

One-Time-Programmable (OTP) Devices .	7
Opcode	
OPTION Instruction	
OPTION Register	
Oscillator Configurations	
Oscillator Start-up Timer (OST)	

Ρ

Package Marking Information	2, 113
Packaging Information	
Parallel Slave Port	
Section	39
Parity Error Reset (PER)	60, 61
PCL	74
PCL and PCLATH	27
PCON Register	
PICDEM-1 Low-Cost PIC16/17 Demo Board	87, 88
PICDEM-2 Low-Cost PIC16CXX Demo Board	87, 88
PICDEM-3 Low-Cost PIC16C9XX Demo Board .	88
PICDEM-3 PIC16C9XX Low-Cost Demonstration	۱
Board	87
PICMASTER [®] High Performance	
In-Circuit Emulator	87
PICSTART [®] Plus Entry Level Development	
System	87
PICSTART [®] Plus Entrvel Prototype	
Programmer	87
PIE1 Register	
Pin Compatible Devices	125
Pin Functions	
RD7/PSP7:RD0/PSP0	
RE0/RD	
RE1/WR	
RE2/CS	14, 39
PIR1 Register	25
Port RB Interrupt	67
PORTA	-
PORTB	
PORTC Register	34
PORTD Register	35