

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	
Peripherals	Brown-out Detect/Reset, LED, POR, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	176 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 6V
Data Converters	
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc662-04-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

TABLE 4-1:	SPECIAL FUNCTION REGISTERS
------------	----------------------------

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR, PER	Value on all other resets ⁽¹⁾
Bank 0											
00h	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (I	not a physic	al register)	xxxx xxxx	xxxx xxxx
01h	TMR0	Timer0 Mo	dule's Regist	er						xxxx xxxx	uuuu uuuu
02h	PCL	Program C	ounter's (PC)) Least Signi	ficant Byte			-		0000 0000	0000 0000
03h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h	FSR	Indirect dat	ta memory ad	ddress pointe	er					xxxx xxxx	uuuu uuuu
05h	PORTA	_	_	PORTA Da	ta Latch wher	n written: PC	RTA pins w	hen read		xx 0000	xu 0000
06h	PORTB	PORTB Da	ta Latch whe	n written: P	ORTB pins wh	nen read				xxxx xxxx	uuuu uuuu
06h	PORTC	PORTC Da	ata Latch whe	en written: P	ORTC pins wi	nen read				xxxx xxxx	uuuu uuuu
06h	PORTD ⁽³⁾	PORTD Da	ata Latch whe	en written: P	ORTD pins wi	nen read		_		xxxx xxxx	uuuu uuuu
06h	PORTE ⁽³⁾	_	—	_	—		RE2	RE1	RE0	xxx	uuu
0Ah	PCLATH	—	— — — Write buffer for upper 5 bits of program counter						0 0000	0 0000	
0Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽⁴⁾	CMIF	—	—	—	—	—		00	00
0Dh-1Eh	Unimplemented									-	—
1Fh	CMCON	C2OUT	C1OUT	—	—	CIS	CM2	CM1	CM0	00 0000	00 0000
Bank 1											
80h	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (I	not a physic	al register)	xxxx xxxx	xxxx xxxx
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h	PCL	Program C	ounter's (PC)) Least Signi	ficant Byte					0000 0000	0000 0000
83h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h	FSR	Indirect dat	ta memory ad	ddress pointe	er					XXXX XXXX	uuuu uuuu
85h	TRISA	_	_	PORTA Da	ta Direction R	egister				11 1111	11 1111
86h	TRISB	PORTB Da	ta Direction I	Register						1111 1111	1111 1111
86h	TRISC	PORTC Da	ata Direction	Register						1111 1111	1111 1111
86h	TRISD ⁽³⁾	PORTD Da	ata Direction	Register				_		1111 1111	1111 1111
86h	TRISE ⁽³⁾	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111
8Ah	PCLATH	—	_	_	Write buffer	for upper 5 k	oits of progra	am counter		0 0000	0 0000
8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
8Ch	PIE1	PSPIE ⁽⁴⁾	CMIE	_	_	_	_	_	_	00	00
8Dh	Unimplemented									-	-
8Eh	PCON	MPEEN	_	_	—	_	PER	POR	BOR	uqqq	uuuu
8Fh-9Eh	Unimplemented									-	-
9Fh	VRCON	VREN	VROF	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000

Legend: - = unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented
1: Other (non power-up) resets include MCLR Reset and Watchdog Timer Reset during normal operation.
2: The IRP and RP1 bits are reserved, always maintain these bits clear.
3: The PORTD, PORTE, TRISD, and TRISE registers are not implemented on the PIC16C641/642.
4: Bits PSPIE and PSPIF are reserved on the PIC16C641/642, always maintain these bits clear. Note

4.5 Indirect Addressing, INDF, and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the file select register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a nooperation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-12. However, bit IRP is not used in the PIC16C64X & PIC16C66X. A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 4-1.

EXAMPLE 4-1: INDIRECT ADDRESSING

	movlw	0x20	;initialize pointer				
	movwf	FSR	;to RAM				
NEXT	clrf	INDF	;clear INDF register				
	incf	FSR	;inc pointer				
	btfss	FSR,4	;all done?				
	goto	NEXT	;no goto next				
			;yes continue				
CONTINUE:							

FIGURE 4-12: DIRECT/INDIRECT ADDRESSING

5.0 I/O PORTS

The PIC16C641 and PIC16C642 have three ports, PORTA, PORTB, and PORTC. PIC16C661 and PIC16C662 devices have five ports, PORTA through PORTE. Some pins for these I/O ports are multiplexed with alternate functions for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

5.1 PORTA and TRISA Registers

PORTA is a 6-bit wide latch. RA4 is a Schmitt Trigger input and an open drain output. Pin RA4 is multiplexed with the T0CKI clock input. All other RA port pins have Schmitt Trigger input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as input or output.

Setting a bit in the TRISA register puts the corresponding output driver in a hi-impedance mode. Clearing a bit in the TRISA register puts the contents of the output latch on the selected pin.

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

The PORTA pins are multiplexed with comparator and voltage reference functions. The operation of these pins are selected by control bits in the CMCON (comparator control register) register and the VRCON (voltage reference control) register. When selected as comparator inputs, these pins will read as '0's.

FIGURE 5-1: BLOCK DIAGRAM OF RA1:RA0 PINS

Note: On reset, the TRISA register is set to all inputs. The digital inputs are disabled and the comparator inputs are forced to ground to reduce excess current consumption.

TRISA controls the direction of the RA pins, even when they are being used as comparator inputs. The user must make sure to keep the pins configured as inputs when using them as comparator inputs.

The RA2 pin will also function as the output for the voltage reference. When in this mode, the VREF pin is a very hi-impedance output. The user must set the TRISA<2> bit and use hi-impedance loads.

In one of the comparator modes defined by the CMCON register, pins RA3 and RA4 become outputs of the comparators. The TRISA<4:3> bits must be cleared to enable outputs to use this function.

EXAMPLE 5-1: INITIALIZING PORTA

CLRF	PORTA	;Initialize PORTA by
		;clearing output latches
MOVLW	0x07	;Turn comparators off,
MOVWF	CMCON	;enable pins for I/O
BSF	STATUS, RPO	;Select bank1
MOVLW	0x1F	;Value to initialize
		;data direction
MOVWF	TRISA	;Set RA<4:0> as inputs
		;TRISA<7:5> are clear

EXAMPLE 5-2: INITIALIZING PORTB

CLRF	PORTB	; Initialize PORTB by
		; clearing output
		; data latches
BSF	STATUS, RPO	; Select Bank 1
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISB	; Set RB<3:0> as inputs
		; RB<5:4> as outputs
		; RB<7:6> as inputs

TABLE 5-3: PORTB FUNCTIONS

Name	Bit #	Buffer Type	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock pin.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data pin.

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

TABLE 5-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR		Value on all other resets	
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx	xxxx	uuuu	uuuu
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111	1111	1111	1111
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111	1111	1111	1111

Legend: x = unknown, u = unchanged, shaded cells are not used by PORTB.

PORTD BLOCK DIAGRAM (IN

FIGURE 5-8:

5.4 <u>PORTD and TRISD Registers</u> (PIC16C661 and PIC16C662 only)

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

PORTD can be configured as an 8-bit wide microprocessor port (parallel slave port) by setting control bit PSPMODE (TRISE<4>). In this mode, the input buffers are TTL.

I/O PORT MODE) Data bus D Q WR I/O pin⁽¹⁾ PORT СКЪ Data Latch D Q WR Schmitt Trigger input buffer <u>TRIS</u> ►ск 🔪 TRIS Latch **RD TRIS** D Q ΕN **RD PORT** Note 1: I/O pins have protection diodes to VDD and Vss.

Name	Bit#	Buffer Type	Function
RD0/PSP0	bit0	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit0
RD1/PSP1	bit1	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit1
RD2/PSP2	bit2	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit2
RD3/PSP3	bit3	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit3
RD4/PSP4	bit4	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit4
RD5/PSP5	bit5	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit5
RD6/PSP6	bit6	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit6
RD7/PSP7	bit7	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit7

TABLE 5-7: PORTD FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port Mode.

TABLE 5-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
08h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
88h	TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	1111 1111
89h	TRISE	IBF	OBF	IBOV	PSPMODE	—	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTD.

5.7 <u>Parallel Slave Port</u> (PIC16C661 and PIC16C662 only)

PORTD operates as an 8-bit wide parallel slave port, or as a microprocessor port when control bit PSPMODE (TRISE<4>) is set. In slave mode it is asynchronously readable and writable by the external world through \overline{RD} control input pin (RE0/ \overline{RD}) and \overline{WR} control input pin (RE1/ \overline{WR}).

It can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting PSPMODE enables port pin RE0/RD to be the RD input, RE1/WR to be the WR input and RE2/CS to be the CS (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set).

There are actually two 8-bit latches, one for data-out (from the PIC16/17) and one for data input. The user writes 8-bit data to PORTD data latch and reads data from the port pin latch (note that they have the same address). In this mode, the TRISD register is ignored since the microprocessor is controlling the direction of data flow.

Input Buffer Full Status Flag bit IBF (TRISE<7>) is set if a received word is waiting to be read by the CPU. Once the PORTD input latch is read, bit IBF is cleared. IBF is a read only status bit. Output Buffer Full Status Flag bit OBF (TRISE<6>) is set if a word written to PORTD latch is waiting to be read by the external bus. Once the PORTD output latch is read by the microprocessor, bit OBF is cleared. Input Buffer Overflow Status flag bit IBOV (TRISE<5>) is set if a second write to the microprocessor port is attempted when the previous word has not been read by the CPU (the first word is retained in the buffer).

When not in Parallel Slave Port mode, bits IBF and OBF are held clear. However, if flag bit IBOV was previously set, it must be cleared in software. An interrupt is generated and latched into flag bit PSPIF (PIR1<7>) when a read or a write operation is completed. Flag bit PSPIF must be cleared by user software. The interrupt can be disabled by clearing the interrupt enable bit PSPIE (PIE1<7>).

FIGURE 5-12: PORTD AND PORTE AS A PARALLEL SLAVE PORT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
08h	PORTD	PSP7	PSP6	PSP5	PSP4	PSP3	PSP2	PSP1	PSP0	xxxx xxxx	uuuu uuuu
09h	PORTE	—	—	—	—	—	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111
0Ch	PIR1	PSPIF ⁽¹⁾	CMIF	_	—	_	—	—	—	00	00
8Ch	PIE1	PSPIE ⁽¹⁾	CMIE	_	_	—	_	—	_	00	00

TABLE 5-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by the PSP.

Note 1: These bits are reserved on the PIC16C641/642, always maintain these bits clear.

6.3 <u>Prescaler</u>

An 8-bit counter is available as a prescaler for the Timer0 module or as a postscaler for the Watchdog Timer (WDT), respectively (Figure 6-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that the prescaler may be used by either the Timer0 module or the Watchdog Timer, but not both. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa. The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x) will clear the prescaler count. When assigned to Watchdog Timer, a CLRWDT instruction will clear the prescaler count along with the Watchdog Timer. The prescaler is not readable or writable.

NOTES:

9.5.1 RB0/INT INTERRUPT

The external interrupt on the RB0/INT pin is edge triggered: either rising if bit INTEDG (OPTION<6>) is set, or falling, if bit INTEDG is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be enabled/dissetting/clearing enable abled by bit INTE (INTCON<4>). The INTF bit must be cleared in software in the interrupt service routine before re-enabling this interrupt. The RB0/INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up. See Section 9.8 for details on SLEEP and Figure 9-19 for timing of wake-up from SLEEP through RB0/INT interrupt.

9.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can be enabled/disabled by setting/clearing T0IE (INTCON<5>) bit. For operation of the Timer0 module, see Section 6.0.

9.5.3 PORTB INTERRUPT

An input change on any bit of PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>). For operation of PORTB (Section 5.2).

9.5.4 COMPARATOR INTERRUPT

See Section 7.6 for complete description of the comparator interrupt.

FIGURE 9-16: RB0/INT PIN INTERRUPT TIMING

9.7 Watchdog Timer (WDT)

The Watchdog Timer (WDT) is a free running on-chip RC oscillator which does not require any external components. The block diagram is shown in Figure 9-17. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. This means that the WDT will run, even if the clock on the OSC1 and OSC2 pins has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device RESET. If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation, this is known as a WDT wake-up. The WDT can be permanently disabled by clearing configuration bit WDTE (Section 9.1).

9.7.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out period varies with temperature, VDD and process variations from part to part (see DC specs). If longer time-outs are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT, under software control, by writing to the OPTION register. Thus, time-out periods of up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler (if assigned to the WDT) and prevent it from timing out and generating a device RESET.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer time-out (WDT Reset and WDT wake-up).

9.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler) it may take several seconds before a WDT time-out occurs.

Note: When the prescaler is assigned to the WDT, always execute a CLRWDT instruction before changing the prescale value, otherwise a WDT reset may occur.

FIGURE 9-17: WATCHDOG TIMER BLOCK DIAGRAM

FIGURE 9-18: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	MPEEN	BODEN ⁽¹⁾	CP1	CP0	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Figure 9-1 for details of the operation of these bits.

PIC16C64X & PIC16C66X

CLRWDT	Clear Watchdog Timer						
Syntax:	[label] CLRWDT						
Operands:	None						
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$						
Status Affected:	TO, PD						
Encoding:	00 0000 0110 0100						
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.						
Words:	1						
Cycles:	1						
Example	CLRWDT						
	Before Instruction WDT counter = ? After Instruction WDT counter = 0x00 WDT prescaler= 0 TO = 1 PD = 1						
COMF	Complement f						
Syntax:	[label] COMF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$						
Operation:	$(\overline{f}) ightarrow (dest)$						
Status Affected:	Z						
Encoding:	00 1001 dfff ffff						
Description:	The contents of register 'f' are comple- mented. If 'd' is 0 the result is stored in W. If 'd' is 1 the result is stored back in register 'f'.						
Words:	1						

1			
COMF	R	EG1,0	
Before I	nstructi	on	
	REG1	=	0x13
After Ins	structior	า	
	REG1	=	0x13
	W	=	0xEC

DECF	Decreme	ent f						
Syntax:	[label] DECF f,d							
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$							
Operation:	(f) - 1 \rightarrow	(dest)						
Status Affected:	Z							
Encoding:	00	0011	dfff	ffff				
Description:	Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.							
Words:	1							
Cycles:	1							
Example	DECF	CNT,	1					
	Before In After Inst	struction CNT Z ruction CNT Z	= 0x01 = 0 = 0x00 = 1)				
DECFSZ	Decreme	ent f, Ski	p if 0					
Syntax:	[label]	DECFSZ	Z f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	7						
Operation:	(f) - 1 \rightarrow ((dest);	skip if re	sult = 0				
Status Affected:	None							
Encoding:	00	1011	dfff	ffff				
Description:	The contents of register 'f' are decre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.							

	(f) - 1 \rightarrow (dest);	skip if re	esult = 0
ected:	None			
	0 0	1011	dfff	ffff
n:	The conten mented. If 'u the W regis placed back If the result which is alr NOP is exe cycle instru	ts of regis d' is 0 the ter. If 'd' is < in regist is 0, the i eady fetcl cuted inst ction.	ter 'f' are o result is pl s 1 the result er 'f'. next instruc- ned, is disc ead makin	lecre- laced in ult is ction, carded. A g it a two
	1			
	1(2)			
	HERE	DECF GOTO	SZ CN LO	Г, 1 ОР
	CONTINU	JE • • •		
	Before Ins PC After Inst	struction = ado	I Iress here	2
	CNT if CNT PC if CNT	= CN = 0, = ado \neq 0,	T - 1 dress con	TINUE
	PC	= add	Iress HER	E+1

Words: Cycles: Example

Cycles: Example

PIC16C64X & PIC16C66X

SUBLW	Subtract W from Literal	SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBLW k	Syntax:	[<i>label</i>] SUBWF f,d
Operands:	$0 \le k \le 255$	Operands:	$0 \le f \le 127$
Operation:	$k \text{ - } (W) \to (W)$		d ∈ [0,1]
Status	C, DC, Z	Operation:	(f) - (W) \rightarrow (dest)
Affected:	· · · · · · · · · · · · · · · · · · ·	Status	C, DC, Z
Encoding:	11 110x kkkk kkkk	Affected:	
Description:	The W register is subtracted (2's com- plement method) from the eight bit literal 'k'. The result is placed in the W register.	Encoding: Description:	00 0010 dfff ffff Subtract (2's complement method) W register from register 'f'. If 'd' is 0 the result is
Words:	1		stored in the W register. If 'd' is 1 the result is stored back in register 'f'.
Cycles:	1	Words:	1
Example 1:	SUBLW 0x02	Cycles:	1
	Before Instruction	Example 1	SUBWE REG1 1
	W = 1 C = 2	p.o	Before Instruction
Example 2:	After Instruction W = 1 C = 1; result is positive Before Instruction		REG1 = 3 $W = 2$ $C = ?$ After Instruction $REG1 = 1$
	W = 2 C = ?		W = 2 C = 1; result is positive
	After Instruction	Example 2:	Before Instruction
Example 3:	W = 0 C = 1; result is zero Before Instruction		REG1 = 2 W = 2 C = ?
Example 6.	W = 3		After Instruction
	C = ? After Instruction		REG1 = 0 W = 2 C = 1; result is zero
	W = 0xFF C = 0: result is nega-	Example 3:	Before Instruction
	tive		REG1 = 1 W = 2 C = ?
			After Instruction

REG1	=	0xFF
W	=	2
С	=	0; result is negative

PIC16C64X & PIC16C66X

SWAPF	Swap Ni	Swap Nibbles in f							
Syntax:	[label]	[label] SWAPF f,d							
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	$0 \le f \le 127$ $d \in [0,1]$							
Operation:	(f<3:0>) - (f<7:4>) -	$(f<3:0>) \rightarrow (dest<7:4>),$ $(f<7:4>) \rightarrow (dest<3:0>)$							
Status Affected:	None								
Encoding:	00 1110 dfff ffff								
Description:	The upper and lower nibbles of regis- ter 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.								
Words:	1								
Cycles:	1								
Example	SWAPF	REG,	0						
	Before In	struction							
		REG1	= 0	kA5					
	After Inst	ruction							
		REG1 W	= 0x = 0x	κΑ5 «5Α					

XORLW	Exclusive OR Literal with W							
Syntax:	[<i>label</i>] XORLW k							
Operands:	$0 \le k \le 255$							
Operation:	(W) .XOR. $k \rightarrow (W)$							
Status Affected:	Z							
Encoding:	11 1010 kkkk kkkk							
Description:	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W register.							
Words:	1							
Cycles:	1							
Example:	XORLW	0xAF						
	Before Ir	structio	on					
		W =	• 0xB5					
	After Instruction							
		W =	• 0x1A					

TRIS	Load TRIS Register				
Syntax:	[label] TRIS f				
Operands:	$5 \le f \le 7$				
Operation:	(W) \rightarrow TRIS register f;				
Status Affected:	None				
Encoding:	00 0000 0110 0fff				
Description:	The instruction is supported for code compatibility with the PIC16C5X prod- ucts. Since TRIS registers are read- able and writable, the user can directly address them.				
Words:	1				
Cycles:	1				
Example					
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.				

XORWF	Exclusiv	e OR W	with f				
Syntax:	[label]	[label] XORWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \left[0,1\right] \end{array}$	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$					
Operation:	(W) .XOF	R. (f) \rightarrow (e	dest)				
Status Affected:	Z						
Encoding:	00 0110 dfff ffff						
Description:	Exclusive register wi result is st is 1 the res 'f'.	OR the co th register ored in the sult is store	ontents r 'f'. If 'o e W re ed bac	of the W d' is 0 the gister. If 'd' k in register			
Words:	1						
Cycles:	1						
Example	XORWF	REG	1				
	Before In	struction					
		REG W	= =	0xAF 0xB5			
	After Inst	ruction					
		REG W	= =	0x1A 0xB5			

12.2 DC Characteristics: PIC16LC641/642/661/662-04 (Commercial, Industrial)

	Standard Operating Conditions (unless otherwise stated)								
Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial and									
	$0^{\circ}C \leq TA \leq +70^{\circ}C$ commercial								
Param	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
NO.									
D001	Vdd	Supply Voltage	3.0	_	6.0	V	XT, RC, and LP osc configuration		
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	_	_	V	Device in SLEEP mode		
D003	VPOR	VDD start voltage to ensure internal Power-on Reset signal	_	Vss	-	V	See section on Power-on Reset for details		
D004*	SVDD	VDD rise rate to ensure internal Power-on Reset signal	0.05	_	-	V/ms	See section on Power-on Reset for details		
D005	VBOR	Brown-out Reset Voltage	3.7	4.0	4.3	V	BODEN configuration bit is clear		
D010	IDD	Supply Current ⁽²⁾	_	2.0	3.8	mA	XT and RC osc configuration Fosc = 4.0 MHz, VDD = 3.0 V, WDT disabled ⁽⁴⁾		
D010A		$- 22.5 48 \mu A LP osc configuration FOSC = 32 kHz, VDD = 3.0V, WDD disabled$							
		Module Differential Current (5)			\checkmark				
D015	Δ IBOR	Brown-out Reset Current		350	425	μA	BODEN bit is clear, VDD = 5.0V		
D016		Comparator Current for each Comparator	$\left \begin{array}{c} \\ \end{array} \right $	<u> </u>	100	μA	VDD = 3.0V		
D017	Δ IVREF	VREF Current	$ \neq /$		300	μA	VDD = 3.0V		
D021	ΔIWDT	WDT Current	\sum	$\langle 6,0 \rangle$	20	μA	VDD = 3.0V		
D021	IPD	Power-down Current (3)	Æ	0.9	5	μA	VDD = 3.0V, WDT disabled		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which Voo can be Jowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the surrent consumption.

The test conditions for all Job measurements in active operation mode are:

OSC1=external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

 $\overline{\text{MCLR}} = \sqrt{\text{DD}}$; $\overline{\text{WRT}}$ enabled/disabled as specified.

The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.
 For RC osc configuration, current through Rext is not included. The current through the resistor can be

< estimated by the formula Ir = VDD/2Rext (mA) with Rext in k Ω . 5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be

added to the base IDD or IPD measurement.

13.0 DEVICE CHARACTERIZATION INFORMATION

NOT AVAILABLE AT THIS TIME.

© 1996 Microchip Technology Inc.

NOTES:

Package Type: 44-Lead Plastic Leaded Chip Carrier (L) - Square

	Package Group: Plastic Leaded Chip Carrier (PLCC)							
		Millimeters			Inches			
Symbol	Min	Max	Notes	Min	Max	Notes		
А	4.191	4.572		0.165	0.180			
A1	2.413	2.921		0.095	0.115			
D	17.399	17.653		0.685	0.695			
D1	16.510	16.663		0.650	0.656			
D2	15.494	16.002		0.610	0.630			
D3	12.700	12.700	BSC	0.500	0.500	BSC		
E	17.399	17.653		0.685	0.695			
E1	16.510	16.663		0.650	0.656			
E2	15.494	16.002		0.610	0.630			
E3	12.700	12.700	BSC	0.500	0.500	BSC		
CP	_	0.102		_	0.004			
LT	0.203	0.381		0.008	0.015			

D1 D D/2 PinNo. 1 Indicator Area REFERERE E1 E Ė/2 8 Places А /11/13° 0° min. Detail B A2 | Datum Plane 0.25 0.08 R min. Å1 . 0-7° with Lead Finish Gauge Plane 0.20 min-0.09/0.2 0.09/0.16 1.00 ref. **▲** b1 Base Metal DETAIL B

Package Type: 44-Lead Thin Plastic Quad Flatpack (PT/TQ) - 10x10x1 mm Body 1.0/0.10 mm Lead Form

Package Group: Plastic TQFP						
Symbol	Millimeters			Inches		
	Min	Max	Notes	Min	Max	Notes
α	0°	7 °		0°	7 °	
А	—	1.200		_	0.047	
A1	0.050	0.150		0.002	0.006	
A2	0.950	1.050		0.037	0.041	
b	0.300	0.450		0.012	0.018	
b1	0.300	0.400		0.012	0.016	
D	12.0	12.0	BSC	0.472	0.0472	BSC
D1	10.0	10.0	BSC	0.394	0.394	BSC
Е	12.0	12.0	BSC	0.472	0.472	BSC
E1	10.0	10.0	BSC	0.394	0.394	BSC
е	0.8	0.8	BSC	0.031	0.031	BSC
L	0.450	0.750		0.018	0.030	

E.6 **PIC16C8X Family of Devices**

÷ Note