



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                                   |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                        |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 4MHz                                                                       |
| Connectivity               | -                                                                          |
| Peripherals                | Brown-out Detect/Reset, LED, POR, WDT                                      |
| Number of I/O              | 33                                                                         |
| Program Memory Size        | 7KB (4K x 14)                                                              |
| Program Memory Type        | OTP                                                                        |
| EEPROM Size                | -                                                                          |
| RAM Size                   | 176 x 8                                                                    |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 6V                                                                    |
| Data Converters            | -                                                                          |
| Oscillator Type            | External                                                                   |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                          |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 44-LCC (J-Lead)                                                            |
| Supplier Device Package    | 44-PLCC (16.59x16.59)                                                      |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lc662-04i-l |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## **PIC16C64X & PIC16C66X**

## Pin Diagrams (Cont.'d)



## **Table of Contents**

| 1.0         | General Description                           | 5   |
|-------------|-----------------------------------------------|-----|
| 2.0         | PIC16C64X & PIC16C66X Device Varieties        | 7   |
| 3.0         | Architectural Overview                        | 9   |
| 4.0         | Memory Organization                           | .17 |
| 5.0         | I/O Ports                                     | 29  |
| 6.0         | Timer0 Module                                 | 41  |
| 7.0         | Comparator Module                             | 47  |
| 8.0         | Voltage Reference Module                      | 53  |
| 9.0         | Special Features of the CPU                   | 55  |
| 10.0        | Instruction Set Summary                       | 73  |
| 11.0        | Development Support                           | .87 |
| 12.0        | Electrical Specifications                     | .91 |
| 13.0        | Device Characterization Information1          | 03  |
| 14.0        | Packaging Information1                        | 05  |
| Appendix    | A: Enhancements1                              | 15  |
| Appendix    | KB: Compatibility1                            | 15  |
| Appendix    | C: What's New 1                               | 16  |
| Appendix    | CD: What's Changed1                           | 16  |
| Appendix    | K E: PIC16/17 Microcontrollers                | 17  |
| Pin Com     | patibility1                                   | 25  |
| Index       |                                               | 27  |
| List of Ex  | amples1                                       | 29  |
| List of Fig | gures1                                        | 29  |
| List of Ta  | ables1                                        | 30  |
| On-Line     | Support1                                      | 31  |
| Reader F    | Response1                                     | 32  |
| PIC16C6     | AX & PIC16C66X Product Identification System1 | 35  |

## To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

| TABLE 4-1: | SPECIAL FUNCTION REGISTERS |
|------------|----------------------------|
|------------|----------------------------|

| Address | Name                 | Bit 7                | Bit 6              | Bit 5         | Bit 4          | Bit 3         | Bit 2          | Bit 1        | Bit 0        | Value on<br>POR,<br>BOR,<br>PER | Value on<br>all other<br>resets <sup>(1)</sup> |
|---------|----------------------|----------------------|--------------------|---------------|----------------|---------------|----------------|--------------|--------------|---------------------------------|------------------------------------------------|
| Bank 0  |                      |                      |                    |               |                |               |                |              |              |                                 |                                                |
| 00h     | INDF                 | Addressing           | this location      | uses conter   | nts of FSR to  | address data  | a memory (I    | not a physic | al register) | xxxx xxxx                       | xxxx xxxx                                      |
| 01h     | TMR0                 | Timer0 Mo            | dule's Regist      | er            |                |               |                |              |              | xxxx xxxx                       | uuuu uuuu                                      |
| 02h     | PCL                  | Program C            | ounter's (PC)      | ) Least Signi | ficant Byte    |               |                | -            |              | 0000 0000                       | 0000 0000                                      |
| 03h     | STATUS               | IRP <sup>(2)</sup>   | RP1 <sup>(2)</sup> | RP0           | TO             | PD            | Z              | DC           | С            | 0001 1xxx                       | 000q quuu                                      |
| 04h     | FSR                  | Indirect dat         | ta memory ad       | ddress pointe | er             |               |                |              |              | xxxx xxxx                       | uuuu uuuu                                      |
| 05h     | PORTA                | _                    | _                  | PORTA Da      | ta Latch wher  | n written: PC | RTA pins w     | hen read     |              | xx 0000                         | xu 0000                                        |
| 06h     | PORTB                | PORTB Da             | ta Latch whe       | n written: P  | ORTB pins wh   | nen read      |                |              |              | xxxx xxxx                       | uuuu uuuu                                      |
| 06h     | PORTC                | PORTC Da             | ata Latch whe      | en written: P | ORTC pins wi   | nen read      |                |              |              | xxxx xxxx                       | uuuu uuuu                                      |
| 06h     | PORTD <sup>(3)</sup> | PORTD Da             | ata Latch whe      | en written: P | ORTD pins wi   | nen read      |                | _            |              | xxxx xxxx                       | uuuu uuuu                                      |
| 06h     | PORTE <sup>(3)</sup> | _                    | —                  | _             | —              |               | RE2            | RE1          | RE0          | xxx                             | uuu                                            |
| 0Ah     | PCLATH               | —                    | —                  | —             | Write buffer   | for upper 5 b | oits of progra | am counter   |              | 0 0000                          | 0 0000                                         |
| 0Bh     | INTCON               | GIE                  | PEIE               | T0IE          | INTE           | RBIE          | T0IF           | INTF         | RBIF         | 0000 000x                       | 0000 000u                                      |
| 0Ch     | PIR1                 | PSPIF <sup>(4)</sup> | CMIF               | —             | —              | —             | —              | —            |              | 00                              | 00                                             |
| 0Dh-1Eh | Unimplemented        |                      |                    |               |                |               |                |              |              | -                               | —                                              |
| 1Fh     | CMCON                | C2OUT                | C1OUT              | —             | —              | CIS           | CM2            | CM1          | CM0          | 00 0000                         | 00 0000                                        |
| Bank 1  |                      |                      |                    |               |                |               |                |              |              |                                 |                                                |
| 80h     | INDF                 | Addressing           | this location      | uses conter   | nts of FSR to  | address data  | a memory (I    | not a physic | al register) | xxxx xxxx                       | xxxx xxxx                                      |
| 81h     | OPTION               | RBPU                 | INTEDG             | TOCS          | T0SE           | PSA           | PS2            | PS1          | PS0          | 1111 1111                       | 1111 1111                                      |
| 82h     | PCL                  | Program C            | ounter's (PC)      | ) Least Signi | ficant Byte    |               |                |              |              | 0000 0000                       | 0000 0000                                      |
| 83h     | STATUS               | IRP <sup>(2)</sup>   | RP1 <sup>(2)</sup> | RP0           | TO             | PD            | Z              | DC           | С            | 0001 1xxx                       | 000q quuu                                      |
| 84h     | FSR                  | Indirect dat         | ta memory ad       | ddress pointe | er             |               |                |              |              | XXXX XXXX                       | uuuu uuuu                                      |
| 85h     | TRISA                | _                    | _                  | PORTA Da      | ta Direction R | egister       |                |              |              | 11 1111                         | 11 1111                                        |
| 86h     | TRISB                | PORTB Da             | ta Direction I     | Register      |                |               |                |              |              | 1111 1111                       | 1111 1111                                      |
| 86h     | TRISC                | PORTC Da             | ata Direction      | Register      |                |               |                |              |              | 1111 1111                       | 1111 1111                                      |
| 86h     | TRISD <sup>(3)</sup> | PORTD Da             | ata Direction      | Register      |                |               |                | _            |              | 1111 1111                       | 1111 1111                                      |
| 86h     | TRISE <sup>(3)</sup> | IBF                  | OBF                | IBOV          | PSPMODE        | _             | TRISE2         | TRISE1       | TRISE0       | 0000 -111                       | 0000 -111                                      |
| 8Ah     | PCLATH               | —                    | _                  | _             | Write buffer   | for upper 5 k | oits of progra | am counter   |              | 0 0000                          | 0 0000                                         |
| 8Bh     | INTCON               | GIE                  | PEIE               | TOIE          | INTE           | RBIE          | T0IF           | INTF         | RBIF         | 0000 000x                       | 0000 000x                                      |
| 8Ch     | PIE1                 | PSPIE <sup>(4)</sup> | CMIE               | _             | _              | _             | _              | _            | _            | 00                              | 00                                             |
| 8Dh     | Unimplemented        |                      |                    |               |                |               |                |              |              | -                               | -                                              |
| 8Eh     | PCON                 | MPEEN                | _                  | _             | —              | _             | PER            | POR          | BOR          | uqqq                            | uuuu                                           |
| 8Fh-9Eh | Unimplemented        |                      |                    |               |                |               |                |              |              | -                               | -                                              |
| 9Fh     | VRCON                | VREN                 | VROF               | VRR           | _              | VR3           | VR2            | VR1          | VR0          | 000- 0000                       | 000- 0000                                      |

Legend: - = unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented
1: Other (non power-up) resets include MCLR Reset and Watchdog Timer Reset during normal operation.
2: The IRP and RP1 bits are reserved, always maintain these bits clear.
3: The PORTD, PORTE, TRISD, and TRISE registers are not implemented on the PIC16C641/642.
4: Bits PSPIE and PSPIF are reserved on the PIC16C641/642, always maintain these bits clear. Note

#### 4.2.2.3 INTCON REGISTER

The INTCON register is a readable and writable register which contains the various enable and flag bits for all non-peripheral interrupt sources.

**Note:** Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

## FIGURE 4-7: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

| R/W-0  | R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W->                                                                                                                                      | (                                        |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| GIE    | PEIE TOIE INTE RBIE TOIF INTF RBIF                                                                                                                                             | R= Readable bit                          |
| bit7   | bitO                                                                                                                                                                           | W= Writable bit<br>U= Unimplemented bit, |
|        |                                                                                                                                                                                | read as '0'                              |
| bit 7: | <b>GIE:</b> Global Interrupt Enable bit<br>1 = Enables all un-masked interrupts<br>0 = Disables all interrupts                                                                 | - n= value at POR reset                  |
| bit 6: | <ul> <li>PEIE: Peripheral Interrupt Enable bit</li> <li>1 = Enables all un-masked peripheral interrupts</li> <li>0 = Disables all peripheral interrupts</li> </ul>             |                                          |
| bit 5: | <b>TOIE</b> : TMR0 Overflow Interrupt Enable bit<br>1 = Enables the TMR0 interrupt<br>0 = Disables the TMR0 interrupt                                                          |                                          |
| bit 4: | INTE: RB0/INT External Interrupt Enable bit<br>1 = Enables the RB0/INT external interrupt<br>0 = Disables the RB0/INT external interrupt                                       |                                          |
| bit 3: | <ul> <li><b>RBIE</b>: RB Port Change Interrupt Enable bit</li> <li>1 = Enables the RB port change interrupt</li> <li>0 = Disables the RB port change interrupt</li> </ul>      |                                          |
| bit 2: | <b>TOIF</b> : TMR0 Overflow Interrupt Flag bit<br>1 = TMR0 register overflowed (must be cleared in software)<br>0 = TMR0 register did not overflow                             |                                          |
| bit 1: | <b>INTF</b> : RB0/INT External Interrupt Flag bit<br>1 = The RB0/INT external interrupt occurred (must be cleared in softw<br>0 = The RB0/INT external interrupt did not occur | vare)                                    |
| bit 0: | <b>RBIF</b> : RB Port Change Interrupt Flag bit<br>1 = When at least one of the RB7:RB4 pins changed state (See Sect<br>0 = None of the RB7:RB4 pins have changed state        | ion 5.2 to clear interrupt)              |

#### 4.2.2.5 PIR1 REGISTER

This register contains the individual flag bits for the comparator and Parallel Slave Port interrupts.

**Note:** Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

## FIGURE 4-9: PIR1 REGISTER (ADDRESS 0Ch)



#### 4.2.2.6 PCON REGISTER

The PCON register contains flag bits to differentiate between a Power-on Reset (POR), an external  $\overline{\text{MCLR}}$  reset, WDT reset, Brown-out Reset (BOR), and Parity Error Reset (PER). The PCON register also contains a status bit, MPEEN, which reflects the value of the MPEEN bit in Configuration Word. See Table 9-4 for status of these bits on various resets.

Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR is cleared, indicating a brown-out has occurred. The BOR status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (by programming the BODEN bit in the Configuration word).

#### FIGURE 4-10: PCON REGISTER (ADDRESS 8Eh)

| R-U      | U-0                                                                                                                                                                                         | U-0       | U-0       | U-0 | R/W-1 | R/W-0 | R/W-u |                                                                                    |  |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----|-------|-------|-------|------------------------------------------------------------------------------------|--|--|
| MPEEN    | —                                                                                                                                                                                           |           | _         | —   | PER   | POR   | BOR   | R= Readable bit                                                                    |  |  |
| bit7     |                                                                                                                                                                                             |           |           |     |       | •     | bit0  | W= Writable bit<br>U= Unimplemented bit,<br>read as '0'<br>- n= Value at POR reset |  |  |
| bit 7:   | bit 7: MPEEN: Memory Parity Error Circuitry Status bit<br>Reflects the value of Configuration Word bit, MPEEN                                                                               |           |           |     |       |       |       |                                                                                    |  |  |
| bit 6-3: | Unimpler                                                                                                                                                                                    | nented: R | ead as '0 |     |       |       |       |                                                                                    |  |  |
| bit 2:   | <b>PER</b> : Memory Parity Error Reset Status bit<br>1 = No error occurred<br>0 = Program memory fetch parity error occurred<br>(must be set in software after a Parity Error Reset occurs) |           |           |     |       |       |       |                                                                                    |  |  |
| bit 1:   | <b>POR</b> : Power-on Reset Status bit<br>1 = No Power-on Reset occurred<br>0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)                           |           |           |     |       |       |       |                                                                                    |  |  |
| bit 0:   | <b>BOR</b> : Brown-out Reset Status bit<br>1 = No Brown-out Reset occurred<br>0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)                       |           |           |     |       |       |       |                                                                                    |  |  |

## 4.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is readable and writable. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any reset, the PC is cleared. Figure 4-11 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0>  $\rightarrow$  PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3>  $\rightarrow$  PCH).

#### FIGURE 4-11: LOADING OF PC IN DIFFERENT SITUATIONS



#### 4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note *"Implementing a Table Read"* (AN556).

## 4.3.2 STACK

PIC16C64X & PIC16C66X devices have an 8 level deep x 13-bit wide hardware stack (Figure 4-2). The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

| Note 1: | There are no status bits to indicate stack |
|---------|--------------------------------------------|
|         | overflow or stack underflow conditions.    |

Note 2: There are no instructions mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions, or the vectoring to an interrupt address.

## 4.4 Program Memory Paging

PIC16C642 and PIC16C662 devices have 4K of program memory, but the CALL and GOTO instructions only have an 11-bit address range. This 11-bit address range allows a branch within a 2K program memory page size. To allow CALL and GOTO instructions to address the entire 4K program memory address range, there must be another bit to specify the program memory page. This paging bit comes from the PCLATH<3> bit (Figure 4-11). When doing a CALL or GOTO instruction, the user must ensure that this page select bit (PCLATH<3>) is programmed so that the desired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is pushed onto the stack. Therefore, manipulation of the PCLATH<3> bit is not required for the return instructions (which POPs the address from the stack).

| Note: | The PIC16C64X & PIC16C66X ignore the       |
|-------|--------------------------------------------|
|       | PCLATH<4> bit, which is used for program   |
|       | memory pages 2 and 3 (1000h - 1FFFh).      |
|       | The use of PCLATH<4> as a general pur-     |
|       | pose read/write bit is not recommended     |
|       | since this may affect upward compatibility |
|       | with future products.                      |

## 9.1 <u>Configuration Bits</u>

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

## FIGURE 9-1: CONFIGURATION WORD

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h–3FFFh), which can be accessed only during programming.

| CP1 CP           | 0 CP1                                   | CP0                          | CP1                                 | CP0                              | MPEEN                             | BODEN                   | CP1       | CP0      | PWRTE       | WDTE       | FOSC1       | FOSC0        | CONFIG        | Address |
|------------------|-----------------------------------------|------------------------------|-------------------------------------|----------------------------------|-----------------------------------|-------------------------|-----------|----------|-------------|------------|-------------|--------------|---------------|---------|
| bit13            |                                         |                              |                                     |                                  |                                   |                         |           |          |             |            |             | bit0         | REGISTER:     | 2007h   |
| bit 13-8<br>5-4: | <b>CP1:CF</b><br>11 = Co                | <b>0:</b> Co                 | de protettion                       | ection Ł<br>off                  | oits <sup>(2)</sup>               |                         |           |          |             |            |             |              |               |         |
|                  | 10 = Up<br>01 = Up<br>00 = All          | per ha<br>per 3/4<br>memo    | If of pro<br>Ith of pr<br>ry is coo | gram m<br>ogram<br>de prote      | emory cod<br>memory co<br>ected   | e protecte<br>de protec | ed<br>ted |          |             |            |             |              |               |         |
| bit 7:           | <b>MPEEN</b><br>1 = Men<br>0 = Men      | : Memo<br>nory Pa<br>nory Pa | ory Pari<br>arity Ch<br>arity Ch    | ty Error<br>ecking i<br>ecking i | Enable<br>s enabled<br>s disabled |                         |           |          |             |            |             |              |               |         |
| bit 6:           | <b>BODEN</b><br>1 = BOR<br>0 = BOR      | : Brow<br>R enabl<br>R disab | n-out R<br>ed<br>led                | eset En                          | able bit <sup>(1)</sup>           |                         |           |          |             |            |             |              |               |         |
| bit 3:           | <b>PWRTE</b><br>1 = PWF<br>0 = PWF      | : Powe<br>RT disa<br>RT ena  | r-up Tir<br>Ibled<br>bled           | ner Ena                          | able bit <sup>(1)</sup>           |                         |           |          |             |            |             |              |               |         |
| bit 2:           | <b>WDTE</b> : 1<br>1 = WD<br>0 = WD     | Watcho<br>F enab<br>F disab  | dog Tim<br>led<br>led               | er Enat                          | ole bit                           |                         |           |          |             |            |             |              |               |         |
| bit 1-0:         | FOSC1:<br>11 = RC<br>10 = HS<br>01 = XT | FOSC<br>oscilla<br>oscilla   | 0: Oscil<br>ator<br>ator<br>ator    | lator Se                         | election bits                     | 3                       |           |          |             |            |             |              |               |         |
| Note 1:          | 00 = LP<br>Enabling                     | oscilla<br>g Brow            | tor<br>n-out R                      | eset au                          | tomatically                       | enables t               | he Pow    | ver-up 7 | īmer (PWF   | RT) regard | lless of th | e value of b | it PWRTE. Ens | ure the |
| 2:               | All of the                              | e CP1:0                      | CP0 pa                              | irs have                         | to be give                        | in the sam              | e value   | e to ena | ble the coo | de protect | ion scherr  | ne listed.   |               |         |

#### 9.5.1 RB0/INT INTERRUPT

The external interrupt on the RB0/INT pin is edge triggered: either rising if bit INTEDG (OPTION<6>) is set, or falling, if bit INTEDG is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be enabled/dissetting/clearing enable abled by bit INTE (INTCON<4>). The INTF bit must be cleared in software in the interrupt service routine before re-enabling this interrupt. The RB0/INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up. See Section 9.8 for details on SLEEP and Figure 9-19 for timing of wake-up from SLEEP through RB0/INT interrupt.

#### 9.5.2 TMR0 INTERRUPT

An overflow (FFh  $\rightarrow$  00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can be enabled/disabled by setting/clearing T0IE (INTCON<5>) bit. For operation of the Timer0 module, see Section 6.0.

#### 9.5.3 PORTB INTERRUPT

An input change on any bit of PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>). For operation of PORTB (Section 5.2).

#### 9.5.4 COMPARATOR INTERRUPT

See Section 7.6 for complete description of the comparator interrupt.



#### FIGURE 9-16: RB0/INT PIN INTERRUPT TIMING

# **PIC16C64X & PIC16C66X**

| CLRWDT Clear Watchdog Timer |                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Syntax:                     | [label] CLRWDT                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| Operands:                   | None                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Operation:                  | $\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \mbox{ prescaler}, \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$                                                                     |  |  |  |  |  |  |  |
| Status Affected:            | TO, PD                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| Encoding:                   | 00 0000 0110 0100                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| Description:                | CLRWDT instruction resets the Watch-<br>dog Timer. It also resets the prescaler<br>of the WDT. Status bits TO and PD<br>are set.                                                                                             |  |  |  |  |  |  |  |
| Words:                      | 1                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| Cycles:                     | 1                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| Example                     | CLRWDT                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
|                             | $\begin{array}{rcl} \text{WDT counter} &=&?\\ \text{After Instruction}\\ &\text{WDT counter} &=& 0x00\\ &\text{WDT prescaler} &=& 0\\ \hline \hline \hline \hline O &=& 1\\ \hline \hline \hline \hline D &=& 1 \end{array}$ |  |  |  |  |  |  |  |
| COMF                        | Complement f                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| Syntax:                     | [label] COMF f,d                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| Operands:                   | $\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$                                                                                                                                                   |  |  |  |  |  |  |  |
| Operation:                  | $(\bar{f})  ightarrow$ (dest)                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Status Affected:            | Z                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| Encoding: 00 1001 dfff i    |                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| Description:                | The contents of register 'f' are comple-<br>mented. If 'd' is 0 the result is stored in<br>W. If 'd' is 1 the result is stored back in<br>register 'f'.                                                                      |  |  |  |  |  |  |  |
| Words:                      | 1                                                                                                                                                                                                                            |  |  |  |  |  |  |  |

| 1         |           |       |      |
|-----------|-----------|-------|------|
| COMF      | R         | EG1,0 |      |
| Before I  | nstructi  | on    |      |
|           | REG1      | =     | 0x13 |
| After Ins | structior | า     |      |
|           | REG1      | =     | 0x13 |
|           | W         | =     | 0xEC |

| DECF             | Decreme                                                                                                                                                             | ent f                                        |                                |      |  |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------|------|--|--|--|
| Syntax:          | [ label ]                                                                                                                                                           | DECF f                                       | ,d                             |      |  |  |  |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$                                                                                                   |                                              |                                |      |  |  |  |
| Operation:       | (f) - 1 $\rightarrow$ (dest)                                                                                                                                        |                                              |                                |      |  |  |  |
| Status Affected: | Z                                                                                                                                                                   |                                              |                                |      |  |  |  |
| Encoding:        | 00                                                                                                                                                                  | 0011                                         | dfff                           | ffff |  |  |  |
| Description:     | Decrement register 'f'. If 'd' is 0 the<br>result is stored in the W register. If 'd'<br>is 1 the result is stored back in register<br>'f'.                         |                                              |                                |      |  |  |  |
| Words:           | 1                                                                                                                                                                   |                                              |                                |      |  |  |  |
| Cycles:          | 1                                                                                                                                                                   |                                              |                                |      |  |  |  |
| Example          | DECF                                                                                                                                                                | CNT,                                         | 1                              |      |  |  |  |
|                  | Before In<br>After Inst                                                                                                                                             | struction<br>CNT<br>Z<br>ruction<br>CNT<br>Z | = 0x01<br>= 0<br>= 0x00<br>= 1 | )    |  |  |  |
| DECFSZ           | Decreme                                                                                                                                                             | ent f, Ski                                   | p if 0                         |      |  |  |  |
| Syntax:          | [ label ]                                                                                                                                                           | DECFSZ                                       | Z f,d                          |      |  |  |  |
| Operands:        | 0 ≤ f ≤ 127<br>d ∈ [0,1]                                                                                                                                            |                                              |                                |      |  |  |  |
| Operation:       | (f) - 1 $\rightarrow$ (dest); skip if resul                                                                                                                         |                                              |                                |      |  |  |  |
| Status Affected: | None                                                                                                                                                                |                                              |                                |      |  |  |  |
| Encoding:        | 00 1011 dfff ff                                                                                                                                                     |                                              |                                |      |  |  |  |
| Description:     | The contents of register 'f' are decre-<br>mented. If 'd' is 0 the result is placed in<br>the W register. If 'd' is 1 the result is<br>placed back in register 'f'. |                                              |                                |      |  |  |  |

|        | (f) - 1 $\rightarrow$ (                                                                                                  | dest);                                                                                                            | skip if result = 0                                                                                       |                                                                   |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|
| ected: | None                                                                                                                     |                                                                                                                   |                                                                                                          |                                                                   |  |  |  |  |
|        | 0 0                                                                                                                      | 1011                                                                                                              | dfff                                                                                                     | ffff                                                              |  |  |  |  |
| n:     | The conten<br>mented. If 'u<br>the W regis<br>placed back<br>If the result<br>which is alr<br>NOP is exe<br>cycle instru | ts of regis<br>d' is 0 the<br>ter. If 'd' is<br>< in registe<br>is 0, the r<br>eady fetch<br>cuted inst<br>ction. | ter 'f' are o<br>result is pl<br>s 1 the result<br>er 'f'.<br>next instruc-<br>ned, is disc<br>ead makin | lecre-<br>laced in<br>ult is<br>ction,<br>carded. A<br>g it a two |  |  |  |  |
|        | 1                                                                                                                        |                                                                                                                   |                                                                                                          |                                                                   |  |  |  |  |
|        | 1(2)                                                                                                                     |                                                                                                                   |                                                                                                          |                                                                   |  |  |  |  |
|        | HERE                                                                                                                     | DECF<br>GOTO                                                                                                      | SZ CN<br>LO                                                                                              | Г, 1<br>ЭР                                                        |  |  |  |  |
|        | CONTINU                                                                                                                  | JE •<br>•<br>•                                                                                                    |                                                                                                          |                                                                   |  |  |  |  |
|        | Before Instruction<br>PC = address HERE<br>After Instruction                                                             |                                                                                                                   |                                                                                                          |                                                                   |  |  |  |  |
|        | CNT<br>if CNT<br>PC<br>if CNT                                                                                            | = CN<br>= 0,<br>= ado<br>\$\ne\$ 0,                                                                               | T - 1<br>dress Con                                                                                       | TINUE                                                             |  |  |  |  |
|        | PC                                                                                                                       | = auc                                                                                                             | ILESS HER.                                                                                               | 5+1                                                               |  |  |  |  |

Words: Cycles: Example

Cycles: Example

## **PIC16C64X & PIC16C66X**

| NOP              | No Operation  |      |      |      |  |  |  |  |
|------------------|---------------|------|------|------|--|--|--|--|
| Syntax:          | [ label ]     | NOP  |      |      |  |  |  |  |
| Operands:        | None          |      |      |      |  |  |  |  |
| Operation:       | No operation  |      |      |      |  |  |  |  |
| Status Affected: | None          |      |      |      |  |  |  |  |
| Encoding:        | 00            | 0000 | 0xx0 | 0000 |  |  |  |  |
| Description:     | No operation. |      |      |      |  |  |  |  |
| Words:           | 1             |      |      |      |  |  |  |  |
| Cycles:          | 1             |      |      |      |  |  |  |  |
| Example          | NOP           |      |      |      |  |  |  |  |

| RETFIE           | Return from Interrupt                                                                                                                                                      |  |  |  |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Syntax:          | [label] RETFIE                                                                                                                                                             |  |  |  |  |  |
| Operands:        | None                                                                                                                                                                       |  |  |  |  |  |
| Operation:       | $\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$                                                                                                                    |  |  |  |  |  |
| Status Affected: | None                                                                                                                                                                       |  |  |  |  |  |
| Encoding:        | 00 0000 0000 1001                                                                                                                                                          |  |  |  |  |  |
| Description:     | and Top of Stack (TOS) is loaded in<br>the PC. Interrupts are enabled by set-<br>ting Global Interrupt Enable bit, GIE<br>(INTCON<7>). This is a two cycle<br>instruction. |  |  |  |  |  |
| Words:           | 1                                                                                                                                                                          |  |  |  |  |  |
| Cycles:          | 2                                                                                                                                                                          |  |  |  |  |  |
| Example          | RETFIE                                                                                                                                                                     |  |  |  |  |  |
|                  | After Interrupt<br>PC = TOS<br>GIE = 1                                                                                                                                     |  |  |  |  |  |

| OPTION                       | Load Option Register                                                                                                                                                                                                                                    |  |  |  |  |  |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Syntax:                      | [label] OPTION                                                                                                                                                                                                                                          |  |  |  |  |  |
| Operands:                    | None                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Operation:                   | $(W) \rightarrow OPTION$                                                                                                                                                                                                                                |  |  |  |  |  |
| Status Affected:             | None                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Encoding:                    | 00 0000 0110 0010                                                                                                                                                                                                                                       |  |  |  |  |  |
| Words:<br>Cycles:<br>Example | The contents of the W register are<br>loaded in the OPTION register. This<br>instruction is supported for code com-<br>patibility with PIC16C5X products.<br>Since OPTION is a readable/writable<br>register, the user can directly address<br>it.<br>1 |  |  |  |  |  |
|                              | To maintain upward compatibility<br>with future PIC16CXX products, do<br>not use this instruction.                                                                                                                                                      |  |  |  |  |  |
|                              |                                                                                                                                                                                                                                                         |  |  |  |  |  |

| RETLW            | Return with Literal in W                                                                                                                                                            |                           |                                         |                       |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------|-----------------------|--|--|
| Syntax:          | [ label ]                                                                                                                                                                           | RETLW                     | k                                       |                       |  |  |
| Operands:        | $0 \le k \le 255$                                                                                                                                                                   |                           |                                         |                       |  |  |
| Operation:       | $k \rightarrow (W);$<br>TOS $\rightarrow$ PC                                                                                                                                        |                           |                                         |                       |  |  |
| Status Affected: | None                                                                                                                                                                                |                           |                                         |                       |  |  |
| Encoding:        | 11                                                                                                                                                                                  | 01xx                      | kkkk                                    | kkkk                  |  |  |
| Description:     | The W register is loaded with the eight<br>bit literal 'k'. The program counter is<br>loaded from the top of the stack (the<br>return address). This is a two cycle<br>instruction. |                           |                                         |                       |  |  |
| Words:           | 1                                                                                                                                                                                   |                           |                                         |                       |  |  |
| Cycles:          | 2                                                                                                                                                                                   |                           |                                         |                       |  |  |
| Example          | CALL TABLE                                                                                                                                                                          | : ;W (<br>;Of:<br>;Wn     | contains t<br>fset value<br>now has tab | able<br>e<br>le value |  |  |
| TABLE            | ADDWF PC<br>RETLW k1<br>RETLW k2<br>RETLW kn                                                                                                                                        | ;W :<br>;Beg<br>;<br>; E1 | = offset<br>gin table<br>nd of tabl     | e                     |  |  |
|                  | Before In                                                                                                                                                                           | struction                 |                                         |                       |  |  |
|                  | After Inst                                                                                                                                                                          | W =                       | 0x07                                    |                       |  |  |
|                  |                                                                                                                                                                                     | W =                       | value of k                              | 8                     |  |  |

#### 12.2 DC Characteristics: PIC16LC641/642/661/662-04 (Commercial, Industrial)

| Standard Operating Conditions (unless otherwise stated)                         |                |                                                                  |                        |                       |     |       |                                                                                                |  |
|---------------------------------------------------------------------------------|----------------|------------------------------------------------------------------|------------------------|-----------------------|-----|-------|------------------------------------------------------------------------------------------------|--|
| Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial and |                |                                                                  |                        |                       |     |       |                                                                                                |  |
| 0°C ≤ TA ≤ +70°C commercial                                                     |                |                                                                  |                        |                       |     |       |                                                                                                |  |
| Param                                                                           | Sym            | Characteristic                                                   | Min                    | Тур†                  | Max | Units | Conditions                                                                                     |  |
| NO.                                                                             |                |                                                                  |                        |                       |     |       |                                                                                                |  |
| D001                                                                            | Vdd            | Supply Voltage                                                   | 3.0                    | -                     | 6.0 | V     | XT, RC, and LP osc configuration                                                               |  |
| D002*                                                                           | Vdr            | RAM Data Retention<br>Voltage <sup>(1)</sup>                     | 1.5                    | _                     | _   | V     | Device in SLEEP mode                                                                           |  |
| D003                                                                            | VPOR           | VDD start voltage to<br>ensure internal Power-on<br>Reset signal | _                      | Vss                   | -   | V     | See section on Power-on Reset for details                                                      |  |
| D004*                                                                           | SVDD           | VDD rise rate to ensure internal<br>Power-on Reset signal        | 0.05                   | _                     | -   | V/ms  | See section on Power-on Reset for details                                                      |  |
| D005                                                                            | VBOR           | Brown-out Reset Voltage                                          | 3.7                    | 4.0                   | 4.3 | V     | BODEN configuration bit is clear                                                               |  |
| D010                                                                            | IDD            | Supply Current <sup>(2)</sup>                                    | _                      | 2.0                   | 3.8 | mA    | XT and RC osc configuration<br>Fosc = $4.0$ MHz, VDD = $3.0$ V,<br>WDT disabled <sup>(4)</sup> |  |
| D010A                                                                           |                |                                                                  | _                      | 22.5                  | 48  | μΑ    | LP ose configuration<br>Fose = 32 kHz, VDD = 3.0V,<br>WD7 disabled                             |  |
|                                                                                 |                | Module Differential Current <sup>(5)</sup>                       |                        |                       |     |       | > Č                                                                                            |  |
| D015                                                                            | $\Delta$ IBOR  | Brown-out Reset Current                                          |                        | 350                   | 425 | μA    | BODEN bit is clear, VDD = 5.0V                                                                 |  |
| D016                                                                            |                | Comparator Current for<br>each Comparator                        | $\left  \right\rangle$ | <u> </u>              | 100 | μA    | VDD = 3.0V                                                                                     |  |
| D017                                                                            | $\Delta$ IVREF | VREF Current                                                     | $  \neq /$             |                       | 300 | μA    | VDD = 3.0V                                                                                     |  |
| D021                                                                            | ΔIWDT          | WDT Current 🧹 🥆                                                  | $\sum$                 | $\langle 6,0 \rangle$ | 20  | μA    | VDD = 3.0V                                                                                     |  |
| D021                                                                            | IPD            | Power-down Current (3)                                           | Æ                      | 0.9                   | 5   | μA    | VDD = 3.0V, WDT disabled                                                                       |  |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which Voo can be Jowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the surrent consumption.

The test conditions for all Job measurements in active operation mode are:

OSC1=external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

 $\overline{\text{MCLR}} = \sqrt{\text{DD}}$ ;  $\overline{\text{WRT}}$  enabled/disabled as specified.

The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or Vss.
 For RC osc configuration, current through Rext is not included. The current through the resistor can be

< estimated by the formula Ir = VDD/2Rext (mA) with Rext in k $\Omega$ . 5: The  $\Delta$  current is the additional current consumed when this peripheral is enabled. This current should be

added to the base IDD or IPD measurement.



## Package Type: 44-Lead Plastic Leaded Chip Carrier (L) - Square

| Package Group: Plastic Leaded Chip Carrier (PLCC) |             |        |       |        |       |       |  |
|---------------------------------------------------|-------------|--------|-------|--------|-------|-------|--|
|                                                   | Millimeters |        |       | Inches |       |       |  |
| Symbol                                            | Min         | Max    | Notes | Min    | Max   | Notes |  |
| А                                                 | 4.191       | 4.572  |       | 0.165  | 0.180 |       |  |
| A1                                                | 2.413       | 2.921  |       | 0.095  | 0.115 |       |  |
| D                                                 | 17.399      | 17.653 |       | 0.685  | 0.695 |       |  |
| D1                                                | 16.510      | 16.663 |       | 0.650  | 0.656 |       |  |
| D2                                                | 15.494      | 16.002 |       | 0.610  | 0.630 |       |  |
| D3                                                | 12.700      | 12.700 | BSC   | 0.500  | 0.500 | BSC   |  |
| E                                                 | 17.399      | 17.653 |       | 0.685  | 0.695 |       |  |
| E1                                                | 16.510      | 16.663 |       | 0.650  | 0.656 |       |  |
| E2                                                | 15.494      | 16.002 |       | 0.610  | 0.630 |       |  |
| E3                                                | 12.700      | 12.700 | BSC   | 0.500  | 0.500 | BSC   |  |
| CP                                                | _           | 0.102  |       | _      | 0.004 |       |  |
| LT                                                | 0.203       | 0.381  |       | 0.008  | 0.015 |       |  |

## E.8 PIC17CXX Family of Devices



## **ON-LINE SUPPORT**

Microchip provides two methods of on-line support. These are the Microchip BBS and the Microchip World Wide Web (WWW) site.

Use Microchip's Bulletin Board Service (BBS) to get current information and help about Microchip products. Microchip provides the BBS communication channel for you to use in extending your technical staff with microcontroller and memory experts.

To provide you with the most responsive service possible, the Microchip systems team monitors the BBS, posts the latest component data and software tool updates, provides technical help and embedded systems insights, and discusses how Microchip products provide project solutions.

The web site, like the BBS, is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

#### Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

#### www.microchip.com

The file transfer site is available by using an FTP service to connect to:

#### ftp.mchip.com/biz/mchip

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
   Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products

#### **Connecting to the Microchip BBS**

Connect worldwide to the Microchip BBS using either the Internet or the CompuServe  $^{\ensuremath{\mathbb{R}}}$  communications network.

#### Internet:

You can telnet or ftp to the Microchip BBS at the address:

#### mchipbbs.microchip.com

#### **CompuServe Communications Network:**

When using the BBS via the Compuserve Network, in most cases, a local call is your only expense. The Microchip BBS connection does not use CompuServe membership services, therefore you do not need CompuServe membership to join Microchip's BBS. There is no charge for connecting to the Microchip BBS. The procedure to connect will vary slightly from country to country. Please check with your local CompuServe agent for details if you have a problem. CompuServe service allow multiple users various baud rates depending on the local point of access.

The following connect procedure applies in most locations.

- 1. Set your modem to 8-bit, No parity, and One stop (8N1). This is not the normal CompuServe setting which is 7E1.
- 2. Dial your local CompuServe access number.
- 3. Depress the <Enter> key and a garbage string will appear because CompuServe is expecting a 7E1 setting.
- 4. Type +, depress the <Enter> key and "Host Name:" will appear.
- 5. Type MCHIPBBS, depress the <Enter> key and you will be connected to the Microchip BBS.

In the United States, to find the CompuServe phone number closest to you, set your modem to 7E1 and dial (800) 848-4480 for 300-2400 baud or (800) 331-7166 for 9600-14400 baud connection. After the system responds with "Host Name:", type NETWORK, depress the <Enter> key and follow CompuServe's directions.

For voice information (or calling from overseas), you may call (614) 723-1550 for your local CompuServe number.

Microchip regularly uses the Microchip BBS to distribute technical information, application notes, source code, errata sheets, bug reports, and interim patches for Microchip systems software products. For each SIG, a moderator monitors, scans, and approves or disapproves files submitted to the SIG. No executable files are accepted from the user community in general to limit the spread of computer viruses.

#### Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-602-786-7302 for the rest of the world.

**Trademarks:** The Microchip name, logo, PIC, PICSTART, PICMASTER, and are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. *Flex*ROM, MPLAB, PRO MATE, and *fuzzy*LAB, are trademarks and SQTP is a service mark of Microchip in the U.S.A.

*fuzzy*TECH is a registered trademark of Inform Software Corporation. IBM, IBM PC-AT are registered trademarks of International Business Machines Corp. Pentium is a trademark of Intel Corporation. Windows is a trademark and MS-DOS, Microsoft Windows are registered trademarks of Microsoft Corporation. CompuServe is a registered trademark of CompuServe Incorporated.

All other trademarks mentioned herein are the property of their respective companies.