

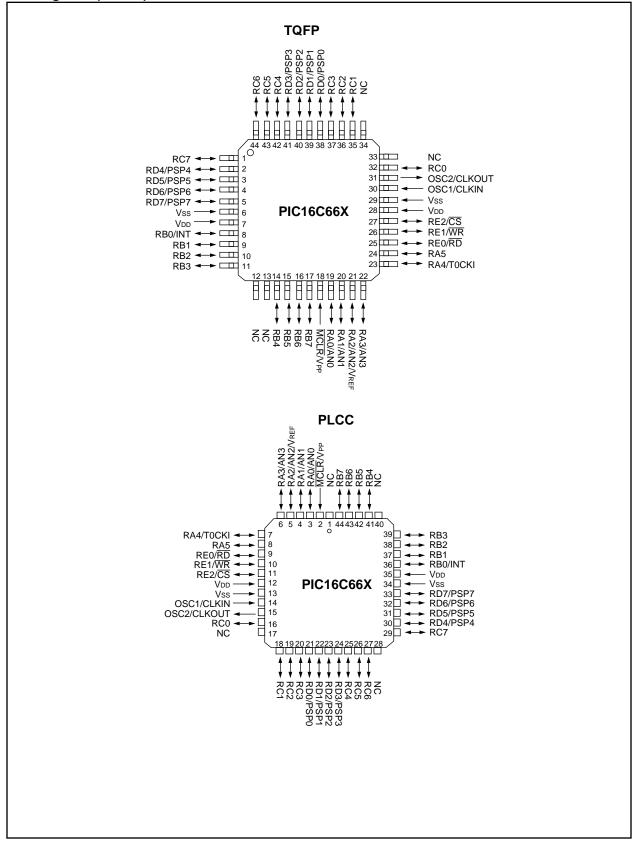
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

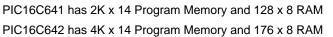
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

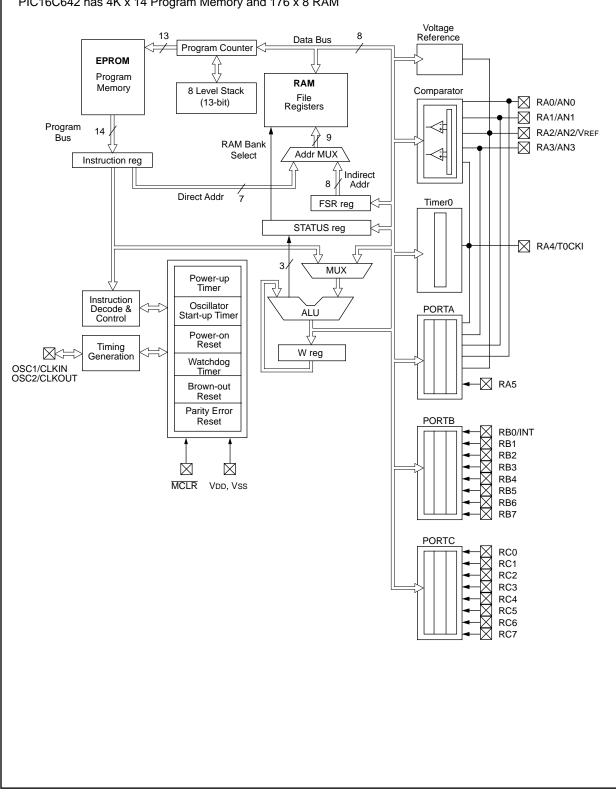
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	176 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc662t-04i-pt


Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Cont.'d)

FIGURE 3-1: PIC16C641/642 BLOCK DIAGRAM

Name	DIP Pin #	QFP Pin #	PLCC Pin #	l/O/P Type	Buffer Type	Description
						PORTD can be a bi-directional I/O port or parallel slave port for interfacing to a microprocessor bus.
RD0/PSP0	19	38	21	I/O	ST/TTL ⁽³⁾	
RD1/PSP1	20	39	22	I/O	ST/TTL ⁽³⁾	
RD2/PSP2	21	40	23	I/O	ST/TTL ⁽³⁾	
RD3/PSP3	22	41	24	I/O	ST/TTL ⁽³⁾	
RD4/PSP4	27	2	30	I/O	ST/TTL ⁽³⁾	
RD5/PSP5	28	3	31	I/O	ST/TTL ⁽³⁾	
RD6/PSP6	29	4	32	I/O	ST/TTL ⁽³⁾	
RD7/PSP7	30	5	33	I/O	ST/TTL ⁽³⁾	
						PORTE is a bi-directional I/O port.
RE0/RD	8	25	9	I/O	ST/TTL ⁽³⁾	RE0/RD read control for parallel slave port.
RE1/WR	9	26	10	I/O	ST/TTL ⁽³⁾	RE1/WR write control for parallel slave port.
RE2/CS	10	27	11	I/O	ST/TTL ⁽³⁾	RE2/CS select control for parallel slave port.
Vss	12,31	6,29	13,34	Р		Ground reference for logic and I/O pins.
Vdd	11,32	7,28	12,35	Р		Positive supply for logic and I/O pins.
NC	—	12,13, 33,34	1,17 28,40	_	—	Not Connected.
Legend:	0 = 0 l = in	output put		I/O = inp — = not	ut/output used	P = power ST = Schmitt Trigger input

ST = Schmitt Trigger input

TTL = TTL input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

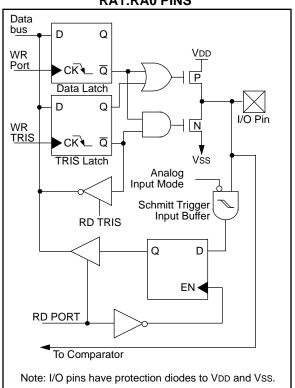
2: This buffer is a Schmitt Trigger input when used in serial programming mode.

3: This buffer is a Schmitt Trigger input when configured as a general purpose I/O and a TTL input when used in the Parallel Slave Port Mode (for interfacing to a microprocessor port).

5.0 I/O PORTS

The PIC16C641 and PIC16C642 have three ports, PORTA, PORTB, and PORTC. PIC16C661 and PIC16C662 devices have five ports, PORTA through PORTE. Some pins for these I/O ports are multiplexed with alternate functions for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

5.1 PORTA and TRISA Registers


PORTA is a 6-bit wide latch. RA4 is a Schmitt Trigger input and an open drain output. Pin RA4 is multiplexed with the T0CKI clock input. All other RA port pins have Schmitt Trigger input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as input or output.

Setting a bit in the TRISA register puts the corresponding output driver in a hi-impedance mode. Clearing a bit in the TRISA register puts the contents of the output latch on the selected pin.

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

The PORTA pins are multiplexed with comparator and voltage reference functions. The operation of these pins are selected by control bits in the CMCON (comparator control register) register and the VRCON (voltage reference control) register. When selected as comparator inputs, these pins will read as '0's.

FIGURE 5-1: BLOCK DIAGRAM OF RA1:RA0 PINS

Note: On reset, the TRISA register is set to all inputs. The digital inputs are disabled and the comparator inputs are forced to ground to reduce excess current consumption.

TRISA controls the direction of the RA pins, even when they are being used as comparator inputs. The user must make sure to keep the pins configured as inputs when using them as comparator inputs.

The RA2 pin will also function as the output for the voltage reference. When in this mode, the VREF pin is a very hi-impedance output. The user must set the TRISA<2> bit and use hi-impedance loads.

In one of the comparator modes defined by the CMCON register, pins RA3 and RA4 become outputs of the comparators. The TRISA<4:3> bits must be cleared to enable outputs to use this function.

EXAMPLE 5-1: INITIALIZING PORTA

CLRF	PORTA	;Initialize PORTA by
		;clearing output latches
MOVLW	0x07	;Turn comparators off,
MOVWF	CMCON	;enable pins for I/O
BSF	STATUS, RPO	;Select bank1
MOVLW	0x1F	;Value to initialize
		;data direction
MOVWF	TRISA	;Set RA<4:0> as inputs
		;TRISA<7:5> are clear

PORTD BLOCK DIAGRAM (IN

FIGURE 5-8:

5.4 <u>PORTD and TRISD Registers</u> (PIC16C661 and PIC16C662 only)

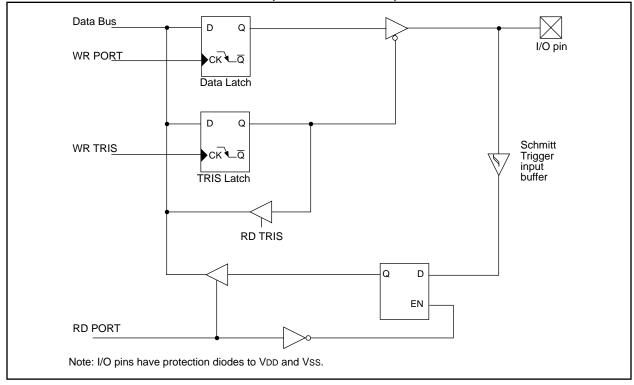
PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

PORTD can be configured as an 8-bit wide microprocessor port (parallel slave port) by setting control bit PSPMODE (TRISE<4>). In this mode, the input buffers are TTL.

I/O PORT MODE) Data bus D Q WR I/O pin⁽¹⁾ PORT СКЪ Data Latch D Q WR Schmitt Trigger input buffer <u>TRIS</u> ►ск 🔪 TRIS Latch **RD TRIS** D Q ΕN **RD PORT** Note 1: I/O pins have protection diodes to VDD and Vss.

Bit#	Buffer Type	Function
bit0	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit0
bit1	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit1
bit2	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit2
bit3	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit3
bit4	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit4
bit5	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit5
bit6	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit6
bit7	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit7
	bit0 bit1 bit2 bit3 bit4 bit5 bit6	bit0 ST/TTL ⁽¹⁾ bit1 ST/TTL ⁽¹⁾ bit2 ST/TTL ⁽¹⁾ bit3 ST/TTL ⁽¹⁾ bit4 ST/TTL ⁽¹⁾ bit5 ST/TTL ⁽¹⁾ bit6 ST/TTL ⁽¹⁾

TABLE 5-7: PORTD FUNCTIONS


Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port Mode.

TABLE 5-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
08h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
88h	TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	1111 1111
89h	TRISE	IBF	OBF	IBOV	PSPMODE	—	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTD.

FIGURE 5-10: PORTE BLOCK DIAGRAM (IN I/O PORT MODE)

TABLE 5-9: PORTE FUNCTIONS

Name	Bit#	Buffer Type	Function
RE0/RD	bit0	ST/TTL ⁽¹⁾	Input/output port pin or read control input in parallel slave port mode: RD
			1 = Not a read operation
			0 = Read operation. Reads PORTD register (if chip selected)
RE1/WR	bit1	ST/TTL ⁽¹⁾	Input/output port pin or write control input in parallel slave port mode: WR 1 = Not a write operation 0 = Write operation. Writes PORTD register (if chip selected)
RE2/CS	bit2	ST/TTL ⁽¹⁾	Input/output port pin or chip select control input in parallel slave port mode: CS 1 = Device is not selected 0 = Device is selected

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port Mode.

TABLE 5-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
09h	PORTE	—	_	—	—		RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTE.

6.0 TIMER0 MODULE

The Timer0 module has the following features:

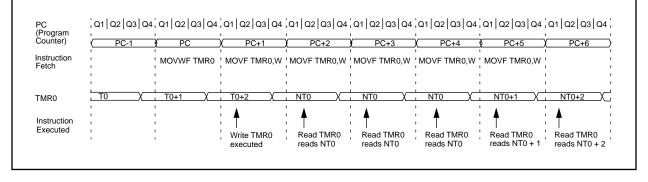
- 8-bit timer/counter register, TMR0
 - Read and write capability
- Interrupt on overflow from FFh to 00h
- 8-bit software programmable prescaler
- Internal or external clock select
 - Edge select for external clock

Figure 6-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing bit TOCS (OPTION<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 register is written, the increment is inhibited for the following two instruction cycles (Figure 6-2 and Figure 6-3). The user can work around this by writing an adjusted value to the TMR0 register.


Counter mode is selected by setting bit T0CS. In this mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the source edge select bit T0SE

(OPTION<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 6.2.


The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by control bit PSA (OPTION<3>). Clearing bit PSA will assign the prescaler to the Timer0 module. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable. Section 6.3 details the operation of the prescaler.

6.1 <u>Timer0 Interrupt</u>

The TMR0 interrupt is generated when the register (TMR0) overflows from FFh to 00h. This overflow sets interrupt flag bit T0IF (INTCON<2>). The interrupt can be masked by clearing enable bit T0IE (INTCON<5>). Flag bit T0IF must be cleared in software by the Timer0 interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot wake the processor from SLEEP since the timer is shut off during SLEEP. Figure 6-4 displays the Timer0 interrupt timing.

FIGURE 6-2: TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALER

·4 D

101

1

6.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control, i.e., it can be changed "on the fly" during program execution.

Note: To avoid an unintended device RESET, the following instruction sequence (shown in Example 6-1) must be executed when changing the prescaler assignment from Timer0 to the WDT. This precaution must be followed even if the WDT is disabled.

EXAMPLE 6-1: CHANGING PRESCALER (TIMER0 \rightarrow WDT)

BCF	STATUS, RPO	;Bank 0
CLRF	TMR0	;Clear TMR0 & Prescaler
BSF	STATUS, RPO	;Bank 1
CLRWDT		;Clears WDT
MOVLW	b'xxxx1xxx'	;Select new prescale
MOVWF	OPTION_REG	;value & WDT
BCF	STATUS, RPO	;Bank 0

To change prescaler from the WDT to the Timer0 module, use the sequence shown in Example 6-2.

EXAMPLE 6-2: CHANGING PRESCALER (WDT \rightarrow TIMER0)

CLRWDT		;Clear WDT and
		;prescaler
BSF	STATUS, RPO	;Bank 1
MOVLW	b'xxxx0xxx'	;Select TMR0, new
		;prescale value and
MOVWF	OPTION_REG	;clock source
BCF	STATUS, RPO	;Bank 0

TABLE 6-1:REGISTERS ASSOCIATED WITH TIMER0

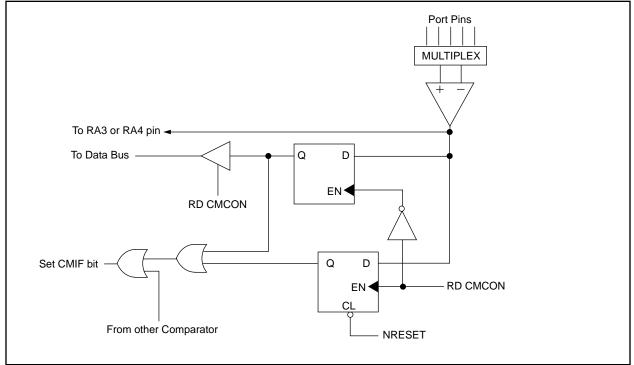
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
01h	TMR0	Timer0 module's register								xxxx xxxx	uuuu uuuu
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	—	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

NOTES:

7.4 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output is guaranteed to have a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise, the maximum delay of the comparators should be used (Table 12-2 and Table 12-3).


7.5 <u>Comparator Outputs</u>

The comparator outputs are read through the CMCON register. These bits are read only. The comparator outputs may also be directly output to the RA3 and RA4 I/O pins. When CM2:CM0 = 110, multiplexors in the output path of the RA3 and RA4 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 7-4 shows the comparator output block diagram.

The TRISA bits will still function as an output enable/ disable for the RA3 and RA4 pins while in this mode.

- Note 1: When reading the PORTA register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input according to the Schmitt Trigger input specification.
- **Note 2:** Analog levels on any pin that is defined as a digital input may cause the input buffer to consume more current than is specified.

FIGURE 7-4: COMPARATOR OUTPUT BLOCK DIAGRAM

BTFSS	Bit Test f, Skip if Set								
Syntax:	[label] BTFSS f,b								
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$								
Operation:	skip if (f) = 1								
Status Affected:	None								
Encoding:	01 11bb bfff ffff								
Description:	If bit 'b' in register 'f' is '1' then the next instruction is skipped. If bit 'b' is '1', then the next instruction fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a 2 cycle instruction.								
Words:	1								
Cycles:	1(2)								
Example	HERE BTFSC FLAG,1 FALSE GOTO PROCESS_CODE TRUE • • •								
	Before Instruction PC = address HERE After Instruction								
	if FLAG<1> = 0, PC = address FALSE if FLAG<1> = 1, PC = address TRUE								

CLRF	Clear f								
Syntax:	[label] CLRF f								
Operands:	$0 \le f \le 12$	27							
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$								
Status Affected:	Z								
Encoding:	00	0001	1ff	f	ffff				
Description:	The conter and the Z	0	ster 'f	' are	cleared				
Words:	1								
Cycles:	1								
Example	CLRF	FLAG	G_REG	3					
	Before Instruction $FLAG_REG = 0x5A$ After Instruction $FLAG_REG = 0x00$ Z = 1								

CALL	Call Subroutine									
Syntax:	[<i>label</i>] CALL k									
Operands:	$0 \le k \le 2047$									
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>									
Status Affected:	None									
Encoding:	10 0kkk kkkk kkkk									
Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two cycle instruction.									
Words:	1									
Cycles:	2									
Example	HERE CALL THERE									
	Before Instruction PC = Address HERE After Instruction PC = Address THERE TOS = Address HERE+1									

CLRW	Clear W									
Syntax:	[label] CLRW									
Operands:	None									
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$									
Status Affected:	Z									
Encoding:	00	0001	0000	0011						
Description:	W register is cleared. Zero bit (Z) is set.									
Words:	1									
Cycles:	1									
Example	CLRW									
	Before In	struction	1							
	W = 0x5A After Instruction $W = 0x00$ $Z = 1$									

GOTO	Unconditional Branch	INCFSZ	Increment f, Skip if 0					
Syntax:	[<i>label</i>] GOTO k	Syntax:	[<i>label</i>] INCFSZ f,d					
Operands:	$0 \le k \le 2047$	Operands:	$0 \le f \le 127$					
Operation:	$k \rightarrow PC < 10:0 >$		d ∈ [0,1]					
	$PCLATH<4:3> \rightarrow PC<12:11>$	Operation:	(f) + 1 \rightarrow (dest), skip if result = 0					
Status Affected:	None	Status Affected:	None					
Encoding:	10 1kkk kkkk kkkk	Encoding:	00 1111 dfff ffff					
Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two cycle instruction.	Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded.					
Words:	1		A NOP is executed instead making it a two cycle instruction.					
Cycles:	2	Words:	1					
Example	GOTO THERE	Cycles:	1(2)					
	After Instruction PC = Address THERE	Example	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • •					
			Before Instruction PC = address HERE					

INCF	Increment f									
Syntax:	[label] INCF f,d									
Operands:	$0 \le f \le 127$ $d \in [0,1]$									
Operation:	(f) + 1 \rightarrow (dest)									
Status Affected:	Z									
Encoding:	00 1010 dfff ffff									
Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.									
Words:	1									
Cycles:	1									
Example	INCF CNT, 1									
	Before Instruction CNT = 0xFF Z = 0 After Instruction CNT = 0x00 Z = 1									

IORLW	Inclusive OR Literal with W									
Syntax:	[<i>label</i>] IORLW k									
Operands:	$0 \le k \le 255$									
Operation:	(W) .OR. $k \rightarrow$ (W)									
Status Affected:	Z									
Encoding:	11 1000 kkkk kkkk									
Description:	The contents of the W register is OR'ed with the eight bit literal 'k'. The result is placed in the W register.									
Words:	1									
Cycles:	1									
Example	IORLW 0x35									
	Before Instruction W = 0x9A After Instruction W = 0xBF Z = 1									

After Instruction CNT =

if CNT=

= if CNT≠

=

PC

PC

CNT + 1

address CONTINUE

address HERE +1

0,

0,

RETURN	Return from Subroutine								
Syntax:	[label] RETURN								
Operands:	None								
Operation:	$\text{TOS} \rightarrow \text{P}$	C							
Status Affected:	None								
Encoding:	00	0000	0000	1000					
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.								
Words:	1								
Cycles:	2								
Example	RETURN								
	After Inte	rrupt PC =	TOS						

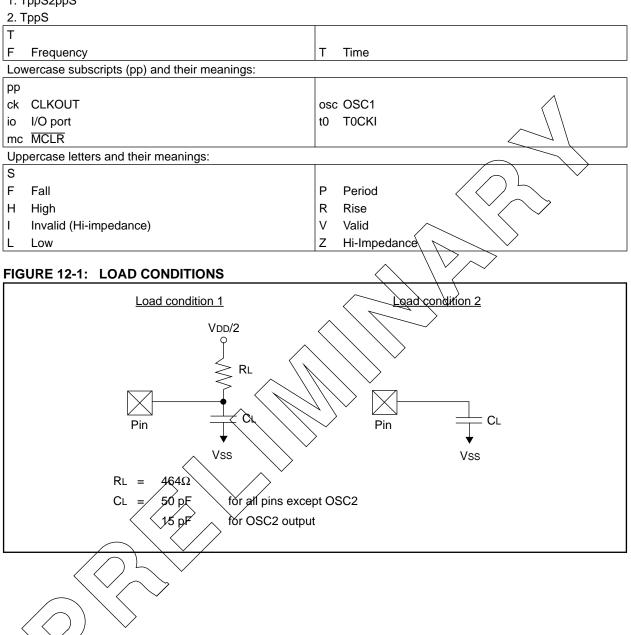
RRF	Rotate Right f through Carry										
Syntax:	[label]	RRF f,	d								
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$										
Operation:	See description below										
Status Affected:	С										
Encoding:	00	1100	dfi	Ef	ffff						
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.										
			Regis	tert							
Words:	1										
Cycles:	1										
Example	RRF		REG1	,0							
		REG1 C	=	1110 0	0110						
	l	REG1 W C	= = =	1110 0111 0							

RLF	Rotate Left f through Carry	SLEEP						
Syntax:	[<i>label</i>] RLF f,d	Syntax:	[label] SLEEP					
Operands:	$0 \le f \le 127$ $d \in [0,1]$	Operands:	None					
Operation:	See description below	Operation:	00h \rightarrow WDT, 0 \rightarrow WDT prescaler,					
Status Affected:	С		$1 \rightarrow \overline{TO}$,					
Encoding:	00 1101 dfff ffff		$0 \rightarrow \overline{PD}$					
Description:	The contents of register 'f' are rotated	Status Affected:						
	one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in	Encoding: Description:	00 0000 0110 0011					
	the W register. If 'd' is 1 the result is		The power-down status bit, PD is cleared. Time-out status bit, TO is set. Watchdog Timer and its pres-					
	stored back in register 'f'.							
	C Register f		caler are cleared. The processor is put into SLEEP					
Words:	1		mode with the oscillator stopped.					
Cycles:	1		See Power-Down Mode (SLEEP) for more details.					
Example	RLF REG1,0	Words:	1					
	Before Instruction	Cycles:	1					
	$\begin{array}{rcl} REG1 & = & 1110 & 0110 \\ C & = & 0 \end{array}$	Example:	SLEEP					
	After Instruction							
	REG1 = 1110 0110 W = 1100 1100							
	C = 1							

		Standard Operating Conditions (unless othe	rwise	stated)						
		Operating temperature -40°C			for industrial,						
		0°C	and								
	$-40^{\circ}C \leq TA \leq +125^{\circ}C$ automotive										
Operating voltage VDD range as described in DC spec Section 12.1 and 12.2											
Param	Sym	Characteristic	Min	Тур	Max	Unit	Conditions				
No.	-			t							
	Vон	Output High Voltage ⁽³⁾									
D090		I/O ports (Except RA4)	Vdd-0.7	-	-	V	Юн = -3.0 mA, VpD = 4.5V,				
							-40° to +85°C				
			Vdd-0.7	-	-	V	Юн = -2.5 mA, \				
							$VDD = 4.5V, \mp 125^{\circ}C$				
D092		OSC2/CLKOUT	VDD-0.7	-	-	V	Юн = -1.3 mA, VDD=4.5V,				
							-40° to +85°C				
			Vdd-0.7	-	-	V <	$10 \mu = -1.0 \text{ mA},$				
		(RC only)					VDD = 4,5∀, +125°C				
		Capacitive Loading Specs									
		on Output Pins									
D100	COSC2	OSC2 pin	-	-	15 \	PF.	In XT, HS and LP modes when				
							external clock used to drive OSC1.				
D101	Сю	All I/O pins/OSC2 (in RC mode)	-	-	50						

* These parameters are characterized but not tested.

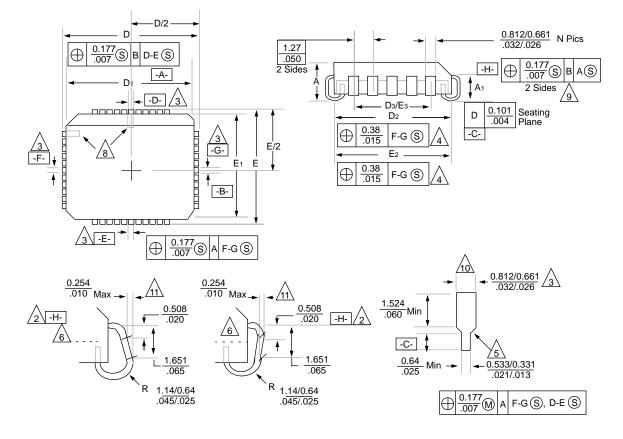
† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger nput. It is not recommended that the PIC16C64X & PIC16C66X be driven with external clock in RC mode.

- 2: The leakage current on the MCLR pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as coming out of the pin

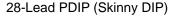
12.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created with one of the following formats:


1. TppS2ppS

13.0 DEVICE CHARACTERIZATION INFORMATION

NOT AVAILABLE AT THIS TIME.


© 1996 Microchip Technology Inc.

Package Type: 44-Lead Plastic Leaded Chip Carrier (L) - Square

Package Group: Plastic Leaded Chip Carrier (PLCC)									
		Millimeters							
Symbol	Min	Max	Notes	Min	Max	Notes			
А	4.191	4.572		0.165	0.180				
A1	2.413	2.921		0.095	0.115				
D	17.399	17.653		0.685	0.695				
D1	16.510	16.663		0.650	0.656				
D2	15.494	16.002		0.610	0.630				
D3	12.700	12.700	BSC	0.500	0.500	BSC			
E	17.399	17.653		0.685	0.695				
E1	16.510	16.663		0.650	0.656				
E2	15.494	16.002		0.610	0.630				
E3	12.700	12.700	BSC	0.500	0.500	BSC			
CP	_	0.102		_	0.004				
LT	0.203	0.381		0.008	0.015				

14.1 Package Marking Information


28-Lead SOIC

Example

Example

28-Lead Side Brazed Skinny Windowed

Example

 Legend:
 MM...MMicrochip part number information

 XX...X
 Customer specific information*

 AA
 Year code (last 2 digits of calendar year)

 BB
 Week code (week of January 1 is week '01')

 C
 Facility code of the plant at which wafer is manufactured

 C = Chandler, Arizona, U.S.A.

 D
 Mask revision number

 E
 Assembly code of the plant or country of origin in which part was assembled

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.

*Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

APPENDIX C: WHAT'S NEW

New Data Sheet

APPENDIX D: WHAT'S CHANGED

New Data Sheet

Features			16	- du ``	or the states	18-pin DIP, SOIC; 20-pin SSOP	28-pin PDIP, SOIC Windowed CDIP	28-pin PDIP, SOIC Windowed CDIP						
		$\overline{)}$	٣ روت	Souley 6	UNOIS GEIION		1	I	Yes	Yes	Yes	Yes	Yes	
s					ellon	-9.0	-6.0	-6.0	-6.0	-6.0	-6.0	-6.0	-6.0	

2.5-6.0 2.5-6.0 2.5-6.0 2.5-6.0 2.5-6.0 3.0-6.0

33 33

> ო ო

I I

I

128

80

512

PIC16C620 PIC16C621 PIC16C622

13 33 13 13 22

4

4 4

128

80

¥ З Ж

128

PIC16C641

2

4

Yes Yes Yes Yes

N 2 N

2.5-6.0

ო

TMR0 **TMR0** TMR0 TMR0 TMR0 TMR0 TMR0

80 80

512

20 20 20 20 20 20 20

PIC16C554 PIC16C556 PIC16C558

¥ Я

^{\$UI}OJ

estros idniejuj

(s)logeredulos

(S)OULOUNOUN

(Seyla) CIOLIEN ENEQ

CETHIN LOIRE BES DO TO TOUR I UNITUREN

SEELION SOLISISTER TELLSULT

Aousw usion

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C6XXX Family devices use serial programming with clock pin RB6 and data pin RB7.

E.3 **PIC16CXXX Family of Devices**

Peripherals

Memory

Clock

40-pin PDIP, Windowed CDIP;

Yes

3.0-6.0

33

ß

Yes

2

TMR0

176

¥

20

PIC16C662

44-pin PLCC, MQFP

40-pin PDIP, Windowed CDIP; 44-pin PLCC, MQFP

Yes

3.0-6.0

33

ŝ

Yes

2

TMR0

128

З

20

PIC16C661

3.0-6.0

22

4

Yes

2

TMR0

176

¥

20

PIC16C642