

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active	
Core Processor	ARM® Cortex®-M3	
Core Size	32-Bit Single-Core	
Speed	120MHz	
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC, SPI, UART/USART, USB OTG	
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT	
Number of I/O	114	
Program Memory Size	512KB (512K x 8)	
Program Memory Type	FLASH	
EEPROM Size	-	
RAM Size	132K x 8	
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V	
Data Converters	A/D 24x12b; D/A 2x12b	
Oscillator Type	Internal	
Operating Temperature	-40°C ~ 105°C (TA)	
Mounting Type	Surface Mount	
Package / Case	144-LQFP	
Supplier Device Package	144-LQFP (20x20)	
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f205zet7tr	

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

This datasheet provides the description of the STM32F205xx and STM32F207xx lines of microcontrollers. For more details on the whole STMicroelectronics STM32 family, refer to *Section 2.1: Full compatibility throughout the family*.

The STM32F205xx and STM32F207xx datasheet should be read in conjunction with the STM32F20x/STM32F21x reference manual. They will be referred to as STM32F20x devices throughout the document.

For information on programming, erasing and protection of the internal Flash memory, refer to the STM32F20x/STM32F21x Flash programming manual (PM0059).

The reference and Flash programming manuals are both available from the STMicroelectronics website *www.st.com*.

For information on the Cortex[®]-M3 core refer to the Cortex[®]-M3 Technical Reference Manual, available from the *www.arm.com* website.

2 Description

The STM32F20x family is based on the high-performance ARM[®] Cortex[®]-M3 32-bit RISC core operating at a frequency of up to 120 MHz. The family incorporates high-speed embedded memories (Flash memory up to 1 Mbyte, up to 128 Kbytes of system SRAM), up to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, three AHB buses and a 32-bit multi-AHB bus matrix.

The devices also feature an adaptive real-time memory accelerator (ART AcceleratorTM) that allows to achieve a performance equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 120 MHz. This performance has been validated using the CoreMark[®] benchmark.

All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers. a true number random generator (RNG). They also feature standard and advanced communication interfaces. New advanced peripherals include an SDIO, an enhanced flexible static memory control (FSMC) interface (for devices offered in packages of 100 pins and more), and a camera interface for CMOS sensors. The devices also feature standard peripherals.

- Up to three I²Cs
- Three SPIs, two I²Ss. To achieve audio class accuracy, the I²S peripherals can be clocked via a dedicated internal audio PLL or via an external PLL to allow synchronization.
- Four USARTs and two UARTs
- A USB OTG high-speed with full-speed capability (with the ULPI)
- A second USB OTG (full-speed)
- Two CANs
- An SDIO interface
- Ethernet and camera interface available on STM32F207xx devices only.

Note: The STM32F205xx and STM32F207xx devices operate in the -40 to +105 °C temperature range from a 1.8 V to 3.6 V power supply. On devices in WLCSP64+2 package, if IRROFF is set to V_{DD} , the supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16).

A comprehensive set of power-saving modes allow the design of low-power applications.

STM32F205xx and STM32F207xx devices are offered in various packages ranging from 64 pins to 176 pins. The set of included peripherals changes with the device chosen. These features make the STM32F205xx and STM32F207xx microcontroller family suitable for a wide range of applications:

- Motor drive and application control
- Medical equipment
- Industrial applications: PLC, inverters, circuit breakers
- Printers, and scanners
- Alarm systems, video intercom, and HVAC
- Home audio appliances

Figure 4 shows the general block diagram of the device family.

1. RFU = reserved for future use.

1. RFU = reserved for future use.

3.16.3 Regulator ON/OFF and internal reset ON/OFF availability

	Table 4. Regulator ON/OFF and Internal reset ON/OFF availability					
Package	Regulator ON/internal reset ON	Regulator OFF/internal reset ON	Regulator OFF/internal reset OFF			
LQFP64 LQFP100 LQFP144 LQFP176	Yes	No	No			
WLCSP 64+2	Yes REGOFF and IRROFF set to V _{SS}	Yes REGOFF set to V_{DD} and IRROFF set to V_{SS}	Yes REGOFF set to V _{SS} and IRROFF set to V _{DD}			
UFBGA176	Yes REGOFF set to V _{SS}	Yes REGOFF set to V _{DD}	No			

 Table 4. Regulator ON/OFF and internal reset ON/OFF availability

3.17 Real-time clock (RTC), backup SRAM and backup registers

The backup domain of the STM32F20x devices includes:

- The real-time clock (RTC)
- 4 Kbytes of backup SRAM
- 20 backup registers

The real-time clock (RTC) is an independent BCD timer/counter. Its main features are the following:

- Dedicated registers contain the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-coded decimal) format.
- Automatic correction for 28, 29 (leap year), 30, and 31 day of the month.
- Programmable alarm and programmable periodic interrupts with wakeup from Stop and Standby modes.
- It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal lowpower RC oscillator or the high-speed external clock divided by 128. The internal lowspeed RC has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation.
- Two alarm registers are used to generate an alarm at a specific time and calendar fields can be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit programmable binary auto-reload downcounter with programmable resolution is available and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.
- A 20-bit prescaler is used for the time base clock. It is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.

The 4-Kbyte backup SRAM is an EEPROM-like area. It can be used to store data which need to be retained in VBAT and standby mode. This memory area is disabled to minimize power consumption (see *Section 3.18: Low-power modes*). It can be enabled by software.

The interface allows data transfer at up to 48 MHz in 8-bit mode, and is compliant with the SD Memory Card Specification Version 2.0.

The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit.

The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital protocol Rev1.1.

3.26 Ethernet MAC interface with dedicated DMA and IEEE 1588 support

Peripheral available only on the STM32F207xx devices.

The STM32F207xx devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard mediumindependent interface (MII) or a reduced medium-independent interface (RMII). The STM32F207xx requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). the PHY is connected to the STM32F207xx MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) or 50 MHz (RMII) output from the STM32F207xx.

The STM32F207xx includes the following features:

- Supports 10 and 100 Mbit/s rates
- Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors (see the STM32F20x and STM32F21x reference manual for details)
- Tagged MAC frame support (VLAN support)
- Half-duplex (CSMA/CD) and full-duplex operation
- MAC control sublayer (control frames) support
- 32-bit CRC generation and removal
- Several address filtering modes for physical and multicast address (multicast and group addresses)
- 32-bit status code for each transmitted or received frame
- Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes, that is 4 Kbytes in total
- Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input
- Triggers interrupt when system time becomes greater than target time

3.27 Controller area network (CAN)

The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one

Pinouts and pin description

Figure 13. STM32F20x LQFP144 pinout

1. RFU means "reserved for future use". This pin can be tied to V_{DD} , V_{SS} or left unconnected.

2. The above figure shows the package top view.

		Pi	ins								
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	-	-	-	130	D13	PH15	I/O	FT	-	TIM8_CH3N, DCMI_D11, EVENTOUT	-
-	-	-	-	131	E14	P10	I/O	FT	-	TIM5_CH4, SPI2_NSS, I2S2_WS, DCMI_D13, EVENTOUT	-
-	-	-	-	132	D14	PI1	I/O	FT	-	SPI2_SCK, I2S2_SCK, DCMI_D8, EVENTOUT	-
-	-	-	-	133	C14	PI2	I/O	FT	-	TIM8_CH4 ,SPI2_MISO, DCMI_D9, EVENTOUT	-
-	-	-	-	134	C13	PI3	I/O	FT	-	TIM8_ETR, SPI2_MOSI, I2S2_SD, DCMI_D10, EVENTOUT	-
-	-	-	-	135	D9	V _{SS}	S	-	-	-	-
-	-	-	-	136	C9	V _{DD}	S	-	-	-	-
49	A1	76	109	137	A14	PA14 (JTCK-SWCLK)	I/O	FT	-	JTCK-SWCLK, EVENTOUT	-
50	A2	77	110	138	A13	PA15 (JTDI)	I/O	FT	-	JTDI, SPI3_NSS, I2S3_WS,TIM2_CH1_ETR, SPI1_NSS, EVENTOUT	-
51	В3	78	111	139	B14	PC10	I/O	FT	-	SPI3_SCK, I2S3_SCK, UART4_TX, SDIO_D2, DCMI_D8, USART3_TX, EVENTOUT	-
52	C3	79	112	140	B13	PC11	I/O	FT	-	UART4_RX, SPI3_MISO, SDIO_D3, DCMI_D4,USART3_RX, EVENTOUT	-
53	A3	80	113	141	A12	PC12	I/O	FT	-	UART5_TX, SDIO_CK, DCMI_D9, SPI3_MOSI, I2S3_SD, USART3_CK, EVENTOUT	-
-	-	81	114	142	B12	PD0	I/O	FT	-	FSMC_D2,CAN1_RX, EVENTOUT	-
-	-	82	115	143	C12	PD1	I/O	FT	-	FSMC_D3, CAN1_TX, EVENTOUT	-

Table 8. STM32F20x pin and ball definitions (continued)

Typical and maximum current consumption

The MCU is placed under the following conditions:

- At startup, all I/O pins are configured as analog inputs by firmware.
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash memory access time is adjusted to f_{HCLK} frequency (0 wait state from 0 to 30 MHz, 1 wait state from 30 to 60 MHz, 2 wait states from 60 to 90 MHz and 3 wait states from 90 to 120 MHz).
- When the peripherals are enabled HCLK is the system clock, f_{PCLK1} = f_{HCLK}/4, and f_{PCLK2} = f_{HCLK}/2, except is explicitly mentioned.
- The maximum values are obtained for V_{DD} = 3.6 V and maximum ambient temperature (T_A), and the typical values for T_A= 25 °C and V_{DD} = 3.3 V unless otherwise specified.

Table 20. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM ⁽¹⁾

Symbol	Baramatar	Conditions	£	Тур	Ма	Unit	
Symbol	Parameter	Conditions	HCLK	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			120 MHz	49	63	72	
			90 MHz	38	51	61	
			60 MHz	26	39	49	
		– (3) – (3)	30 MHz	14	27	37	
		External clock ⁽³⁾ , all peripherals enabled ⁽⁴⁾	25 MHz	11	24	34	
		P -	16 MHz ⁽⁵⁾	8	21	30	
			8 MHz	5	17	27	
	Supply current		4 MHz	3	16	26	
			2 MHz	2	15	25	m۸
'DD	in Run mode	ode	120 MHz	21	34	44	ША
			90 MHz	17	30	40	
			60 MHz	12	25	35	
		(3)	30 MHz	7	20	30	
		External clock ⁽³⁾ , all peripherals disabled	25 MHz	5	18	28	
		· · · · · · · · · · · · · · · · · · ·	16 MHz ⁽⁵⁾	4.0	17.0	27.0	
			8 MHz	2.5	15.5	25.5	
			4 MHz	2.0	14.7	24.8	
			2 MHz	1.6	14.5	24.6	

1. Code and data processing running from SRAM1 using boot pins.

2. Guaranteed by characterization, tested in production at V_{DD} max and f_{HCLK} max with peripherals enabled.

3. External clock is 4 MHz and PLL is on when f_{HCLK} > 25 MHz.

4. When the ADC is on (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

5. In this case HCLK = system clock/2.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _F	Feedback resistor	-	-	18.4	-	MΩ
I _{DD}	LSE current consumption	-	-	-	1	μA
9 _m	Oscillator Transconductance	-	2.8	-	-	μA/V
t _{SU(LSE)} ⁽²⁾	startup time	V _{DD} is stabilized	-	2	-	s

Table 31. LSE oscillator characteristics (f_{LSE} = 32.768 kHz) ⁽¹⁾

1. Guaranteed by design, not tested in production.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

Note: For information on electing the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

Figure 33. Typical application with a 32.768 kHz crystal

6.3.9 Internal clock source characteristics

The parameters given in *Table 32* and *Table 33* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-	-	16	-	MHz
	HSI user-trimming step ⁽²⁾	-	-	-	1	%
100		$T_A = -40$ to 105 °C ⁽³⁾	- 8	-	4.5	%
ACCHSI	Accuracy of the HSI oscillator	$T_A = -10$ to 85 °C ⁽³⁾	- 4	-	4	%
		$T_A = 25 \ ^{\circ}C^{(4)}$	– 1	-	1	%
t _{su(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	2.2	4.0	μs
DD(HSI) ⁽²⁾	HSI oscillator power consumption	-	-	60	80	μA

 Table 32. HSI oscillator characteristics ⁽¹⁾

1. V_{DD} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design, not tested in production.

- 3. Guaranteed by characterization results.
- 4. Factory calibrated, parts not soldered.

Figure 35. ACC_{LSI} versus temperature

6.3.10 PLL characteristics

The parameters given in *Table 34* and *Table 35* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
f _{PLL_IN}	PLL input clock ⁽¹⁾	-	0.95 ⁽²⁾	1	2.10 ⁽²⁾	MHz	
f _{PLL_OUT}	PLL multiplier output clock	-	24	-	120	MHz	
f _{PLL48_} OUT	48 MHz PLL multiplier output clock	-	-	-	48	MHz	
f _{VCO_OUT}	PLL VCO output	-	192	-	432	MHz	
t	PLL lock time	VCO freq = 192 MHz	75	-	200	116	
LOCK		VCO freq = 432 MHz	100	-	300	μs	

Table 34. Main PLL characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Write / Erase 8-bit mode V _{DD} = 1.8 V	-	5	-	
I _{DD} Supply current		Write / Erase 16-bit mode V _{DD} = 2.1 V	-	8	-	mA
		Write / Erase 32-bit mode V _{DD} = 3.3 V	-	12	-	

Table 37. Flash memory characteristics

Table 38	. Flash	memory	programming
----------	---------	--------	-------------

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit	
t _{prog}	Word programming time	Program/erase parallelism (PSIZE) = x 8/16/32	-	16	100 ⁽²⁾	μs	
		Program/erase parallelism (PSIZE) = x 8	-	400	800		
t _{erase16kb}	Sector (16 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	300	600	ms	
		Program/erase parallelism (PSIZE) = x 32	-	250	500		
		Program/erase parallelism (PSIZE) = x 8	-	1200	2400		
t _{erase64kb}	Sector (64 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	700	1400	ms	
		Program/erase parallelism (PSIZE) = x 32	-	550	1100		
		Program/erase parallelism (PSIZE) = x 8	-	2	4		
t _{ERASE128KB}	Sector (128 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	1.3	2.6	S	
		Program/erase parallelism (PSIZE) = x 32	-	1	2		
		Program/erase parallelism (PSIZE) = x 8	-	16	32		
t _{ME}	Mass erase time	Program/erase parallelism (PSIZE) = x 16	-	11	22	S	
		Program/erase parallelism (PSIZE) = x 32	-	8	16		
		32-bit program operation	2.7	-	3.6	V	
V _{prog}	Programming voltage	16-bit program operation	2.1	-	3.6	V	
		8-bit program operation	1.8	-	3.6	V	

1. Guaranteed by characterization results, not tested in production.

2. The maximum programming time is measured after 100K erase operations.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽²⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	CMOS ports	-	0.4	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	$1_{O} - 40 \text{ mA}$ 2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4	-	v
V _{OL} ⁽²⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	TTL ports	-	0.4	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	$2.7 V < V_{DD} < 3.6 V$	2.4	-	v
V _{OL} ⁽²⁾⁽⁴⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	I _{IO} = +20 mA	-	1.3	V
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	v
V _{OL} ⁽²⁾⁽⁴⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	I _{IO} = +6 mA	-	0.4	V
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2 V < V _{DD} < 2.7 V	V _{DD} -0.4	-	

Table 47.	Output voltag	e characteristics ⁽¹⁾
-----------	---------------	----------------------------------

 PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED).

- 2. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in Table 12 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.
- 3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in *Table 12* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.
- 4. Guaranteed by characterization results, not tested in production.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 39* and *Table 48*, respectively.

Unless otherwise specified, the parameters given in *Table 48* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
00 t _{f(IC} t _{r(IC}		Maximum frequency ⁽²⁾	C _L = 50 pF, V _{DD >} 2.70 V	-	-	4	MHz
	f _{max(IO)out}		C _L = 50 pF, V _{DD >} 1.8 V	-	-	2	
			C _L = 10 pF, V _{DD >} 2.70 V	-	-	8	
			C _L = 10 pF, V _{DD >} 1.8 V	-	-	4	
	t _{f(IO)out} / t _{r(IO)out}	Output high to low level fall time and output low to high level rise time	C _L = 50 pF, V _{DD} = 1.8 V to 3.6 V	-	-	100	ns

Table /	48	1/0	AC.	$characteristics^{(1)}$
Iable	40.	1 /U /		

Symbol	Parameter	Conditions	Min	Мах	Unit
		AHB/APB2	1	-	t _{TIMxCLK}
t _{res(TIM)}	Timer resolution time	from 1, f _{TIMxCLK} = 120 MHz	8.3	-	ns
		AHB/APB2	1	-	t _{TIMxCLK}
		f _{TIMxCLK} = 60 MHz	16.7	-	ns
feve	Timer external clock		0	f _{TIMxCLK} /2	MHz
'EXT	frequency on CH1 to CH4		0	60	MHz
Res _{TIM}	Timer resolution	(((((((((((((((((((-	16	bit
+	16-bit counter clock period	$f_{\text{TIMxCLK}} = 120 \text{ MHz}$	1	65536	t _{TIMxCLK}
COUNTER	selected	AF 62 - 00 MHZ	0.0083	546	μs
t _{MAX_COUNT}	Maximum possible count		-	65536 × 65536	t _{TIMxCLK}
			-	35.79	S

Table 51. Characteristics	of TIMx connected to the	APB2 domain ⁽¹⁾
---------------------------	--------------------------	----------------------------

1. TIMx is used as a general term to refer to the TIM1, TIM8, TIM9, TIM10, and TIM11 timers.

6.3.19 Communications interfaces

I²C interface characteristics

STM32F205xx and STM32F207xx I^2C interface meets the requirements of the standard I^2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 52*. Refer also to *Section 6.3.16*: I/O port *characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

Figure 61. Synchronous multiplexed NOR/PSRAM read timings

Table 76	Synchronous	multiplayad	NOR/PSRAM	road timings $^{(1)(2)}$
	Synchious	munipiezeu		reau unnings

Symbol	Parameter	Min	Мах	Unit
t _{w(CLK)}	FSMC_CLK period	2T _{HCLK}	-	ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x=02)	-	0	ns
t _{d(CLKL-NExH)}	FSMC_CLK low to FSMC_NEx high (x= 02)	1	-	ns
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low	-	1.5	ns
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	2.5	-	ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x=1625)	-	0	ns
t _{d(CLKL-AIV)}	FSMC_CLK low to FSMC_Ax invalid (x=1625)	0	-	ns
t _{d(CLKH-NOEL)}	FSMC_CLK high to FSMC_NOE low	-	1	ns
t _{d(CLKL-NOEH)}	FSMC_CLK low to FSMC_NOE high	1	-	ns
t _{d(CLKL-ADV)}	FSMC_CLK low to FSMC_AD[15:0] valid	-	3	ns
t _{d(CLKL} -ADIV)	FSMC_CLK low to FSMC_AD[15:0] invalid	0	_	ns

1. Dimensions are expressed in millimeters.

		Dimensions					
Symbol millin		millimeters	imeters		inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах	
HD	25.900	-	26.100	1.0197	-	1.0276	
ZD	-	1.250	-	-	0.0492	-	
E	23.900	-	24.100	0.9409	-	0.9488	
HE	25.900	-	26.100	1.0197	-	1.0276	
ZE	-	1.250	-	-	0.0492	-	
е	-	0.500	-	-	0.0197	-	
L ⁽²⁾	0.450	-	0.750	0.0177	-	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	-	7°	0°	-	7°	
ССС	-	-	0.080	-	-	0.0031	

Table 92. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. L dimension is measured at gauge plane at 0.25 mm above the seating plane.

Figure 88. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

8 Ordering information

Table 96. Ordering information scheme

Example:	STM32 F	205 R E	Т	6 V	xxx
Device family					
STM32 = ARM-based 32-bit microcontroller					
Product type					
F = general-purpose					
Device subfamily					
205 = STM32F20x, connectivity					
207= STM32F20x, connectivity, camera interface, Ethernet					
Pin count					
R = 64 pins or 66 pins ⁽¹⁾					
V = 100 pins					
Z = 144 pins					
I = 176 pins					
Flash memory size					
B = 128 Kbytes of Flash memory					
C = 256 Kbytes of Flash memory					
E = 512 Kbytes of Flash memory					
F = 768 Kbytes of Flash memory					
G = 1024 Kbytes of Flash memory					
Package					
T = LQFP					
H = UFBGA					
Y = WLCSP					
Temperature range					
6 = Industrial temperature range, -40 to 85 °C.				-	
7 = Industrial temperature range, -40 to 105 °C.					
Software option					
Internal code or Blank					
Options					

xxx = programmed parts

TR = tape and reel

1. The 66 pins is available on WLCSP package only.

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, contact your nearest ST sales office.

Date	Revision	Changes
		Update I/Os in Section : Features
		Added WLCSP64+2 package. Added note 1 related to LQFP176 on cover page.
		Added trademark for ART accelerator. Updated Section 3.2: Adaptive real-time memory accelerator (ART Accelerator™).
		Updated Figure 5: Multi-AHB matrix.
		Added case of BOR inactivation using IRROFF on WLCSP devices in <i>Section 3.15: Power supply supervisor</i> .
		Reworked Section 3.16: Voltage regulator to clarify regulator off modes. Renamed PDROFF, IRROFF in the whole document.
		Added Section 3.19: VBAT operation.
		Updated LIN and IrDA features for UART4/5 in Table 6: USART feature
		Table 8: STM32E20x nin and hall definitions: Modified V nin and
		added note related to the FSMC_NL pin; renamed BYPASS-REG REGOFF, and add IRROFF pin; renamed USART4/5 UART4/5. USART4 pins renamed UART4.
		Changed V_{SS_SA} to V_{SS}, and V_{DD_SA} pin reserved for future use.
		Updated maximum HSE crystal frequency to 26 MHz.
		Section 6.2: Absolute maximum ratings: Updated V _{IN} minimum and maximum values and note related to five-volt tolerant inputs in <i>Table 11:</i> Voltage characteristics. Updated I _{INJ(PIN)} maximum values and related notes in <i>Table 12: Current characteristics</i> .
25-Nov-2010	5	Updated V _{DDA} minimum value in <i>Table 14: General operating conditions</i> .
		Added Note 2 and updated Maximum CPU frequency in <i>Table 15:</i> <i>Limitations depending on the operating power supply range</i> , and added <i>Figure 21: Number of wait states versus fCPU and VDD range</i> .
		Added brownout level 1, 2, and 3 thresholds in <i>Table 19: Embedded</i> reset and power control block characteristics.
		Changed f _{OSC_IN} maximum value in <i>Table 30: HSE 4-26 MHz oscillator characteristics</i> .
		Changed f _{PLL_IN} maximum value in <i>Table 34: Main PLL characteristics</i> , and updated jitter parameters in <i>Table 35: PLLI2S (audio PLL) characteristics</i> .
		Section 6.3.16: I/O port characteristics: updated V _{IH} and V _{IL} in Table 48: I/O AC characteristics.
		Added Note 1 below Table 47: Output voltage characteristics.
		Updated R_{PD} and R_{PU} parameter description in <i>Table 57: USB OTG FS DC electrical characteristics</i> .
		Updated V _{REF+} minimum value in <i>Table 66: ADC characteristics</i> .
		Updated Table 71: Embedded internal reference voltage.
		Removed Ethernet and USB2 for 64-pin devices in Table 101: Main
		applications versus package for STM32F2xxx microcontrollers.
		Added A.2: USB OTG full speed (FS) interface solutions, removed "OTG FS connection with external PHY" figure, updated Figure 87, Figure 88, and Figure 90 to add STULPI01B.

Table 97. Document revision history (continued)

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

