

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	114
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	132K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f205zgt7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1. Device summary

Reference	Part numbers
STM32F205xx	STM32F205RB, STM32F205RC, STM32F205RE, STM32F205RF, STM32F205RG STM32F205VB, STM32F205VC, STM32F205VE, STM32F205VF, STM32F205VG STM32F205ZC, STM32F205ZE, STM32F205ZF, STM32F205ZG
STM32F207xx	STM32F207IC, STM32F207IE, STM32F207IF, STM32F207IG STM32F207VC, STM32F207VE, STM32F207VF, STM32F207VG STM32F207ZC, STM32F207ZE, STM32F207ZF, STM32F207ZG

	recommended footprint	161
Figure 86.	LQFP144 marking (package top view)	162
Figure 87.	LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package outline	163
Figure 88.	LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package	
	recommended footprint	165
Figure 89.	UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch,	
	ultra fine pitch ball grid array package outline	166
Figure 90.	UFBGA176+25 - 201-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball	
	grid array package recommended footprint	167
Figure 91.	UFBGA176+25 marking (package top view)	168

Table 2. STM32F205xx features and peripheral counts (continued)

Peripherals	STM32F205Rx				STM32F205Vx	STM32F205Zx		
Operating temperatures	Ambient temperatures: -40 to +85 °C /-40 to +105 °C							
	Junction temperature: -40 to + 125 °C							
Package	LQFP64	LQFP64 WLCSP64 +2	LQFP6 4	LQFP64 WLCSP6 4+2	LQFP100	LQFP144		

 For the LQFP100 package, only FSMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package.

2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.

On devices in WLCSP64+2 package, if IRROFF is set to V_{DD}, the supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range using an external power supply supervisor (see Section 3.16).

	Peripherals			STM32F207Vx						STM32F207lx			
Flash memory in	Kbytes	256	512	768	1024	256	512	768	1024	256	512	768	1024
SRAM in Kbytes	System (SRAM1+SRAM2)				•			12 (112	28 +16)		•	•	
	Backup		4										
FSMC memory co		Yes ⁽¹⁾											
Ethernet			Yes										
	General-purpose						10						
	Advanced-control					2							
Timers	Basic							2	2				
	IWDG							Ye	es				
	WWDG	Yes											
RTC		Yes											
Random number	generator							Ye	es				

Table 3. STM32F207xx features and peripheral counts

Figure 5. Multi-AHB matrix

3.8 DMA controller (DMA)

The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They share some centralized FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB).

The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code.

Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent.

		Pi	ns								
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	-	98	142	170	A3	PE1	I/O	FT -		FSMC_NBL1, DCMI_D3, EVENTOUT	-
-	-	-	-	-	D5	V _{SS}	S	-	-	-	-
63	D8	-	-	-	-	V _{SS}	S	-			-
-	-	99	143	171	C6	RFU	-	-	(7)	-	-
64	D9	100	144	172	C5	V _{DD}	S	-	-	-	-
-	-	-	-	173	D4	Pl4	I/O	FT	-	TIM8_BKIN, DCMI_D5, EVENTOUT	-
-	-	-	-	174	C4	PI5	I/O	FT	-	TIM8_CH1, DCMI_VSYNC, EVENTOUT	-
-	-	-	-	175	C3	Pl6	I/O	D FT - TIM8_		TIM8_CH2, DCMI_D6, EVENTOUT	-
-	-	-	-	176	C2	PI7	I/O	I/O FT		TIM8_CH3, DCMI_D7, EVENTOUT	-
-	C8	-	-	-	-	IRROFF	I/O	-	-	-	_

Table 8. STM32F20x pin and ball definitions (continued)

1. Function availability depends on the chosen device.

 PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED).

 Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F20x and STM32F21x reference manual, available from the STMicroelectronics website: www.st.com.

4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).

5. If the device is delivered in an UFBGA176 package and if the REGOFF pin is set to V_{DD} (Regulator OFF), then PA0 is used as an internal Reset (active low).

6. FSMC_NL pin is also named FSMC_NADV on memory devices.

7. RFU means "reserved for future use". This pin can be tied to V_{DD} , V_{SS} or left unconnected.

Table 9. FSMC pin definition

Pine		FSMC							
F 1113	CF	NOR/PSRAM/SRAM	NOR/PSRAM Mux	NAND 16 bit	LQFF100				
PE2	-	A23	A23	-	Yes				
PE3	-	A19	A19	-	Yes				
PE4	-	A20	A20	-	Yes				

66/10

DocID15818 Rev 15

						Table 1	0. Alterna	ate fund	ction ma	pping (continu	ed)					
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
Port		SYS	TIM1/2	TIM3/4/5	TIM8/9/10/11	I2C1/I2C2/I2C3	SPI1/SPI2/I2S2	SPI3/I2S3	USART1/2/3	UART4/5/ USART6	CAN1/CAN2/ TIM12/13/14	OTG_FS/ OTG_HS	ETH	FSMC/SDIO/ OTG_HS	DCMI	AF014	AF15
	PH0 - OSC_IN	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PH1 - OSC_OUT	-	-				-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PH2	-	-				-	-	-	-	-	-	ETH_MII_CRS	-	-	-	EVENTOUT
	PH3	-	-				-	-	-	-	-	-	ETH _MII_COL	-	-	-	EVENTOUT
	PH4	-	-			I2C2_SCL	-	-	-	-	-	OTG_HS_ULPI_N XT	-	-	-	-	EVENTOUT
	PH5	-	-			I2C2_SDA	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PH6	-	-			I2C2_SMBA	-	-	-	-	TIM12_CH1	-	ETH_MII_RXD2	-	-	-	EVENTOUT
Port H	PH7	-	-			I2C3_SCL	-	-	-	-	-	-	ETH_MII_RXD3	-	-	-	EVENTOUT
	PH8	-	-			I2C3_SDA	-	-	-	-	-	-	-	-	DCMI_HSYNC	-	EVENTOUT
	PH9	-	-			I2C3_SMBA	-	-	-	-	TIM12_CH2	-	-	-	DCMI_D0	-	EVENTOUT
	PH10	-	-	TIM5_CH1			-	-	-	-	-	-	-	-	DCMI_D1	-	EVENTOUT
	PH11	-	-	TIM5_CH2			-	-	-	-	-	-	-	-	DCMI_D2	-	EVENTOUT
	PH12	-	-	TIM5_CH3			-	-	-	-	-	-	-	-	DCMI_D3	-	EVENTOUT
	PH13	-	-		TIM8_CH1N		-	-	-	-	CAN1_TX	-	-	-	-	-	EVENTOUT
	PH14	-	-		TIM8_CH2N		-	-	-	-	-	-	-	-	DCMI_D4	-	EVENTOUT
	PH15	-	-		TIM8_CH3N		-	-	-	-	-	-	-	-	DCMI_D11	-	EVENTOUT
	PI0	-	-	TIM5_CH4			SPI2_NSS I2S2_WS	-	-	-	-	-	-	-	DCMI_D13	-	EVENTOUT
	PI1	-	-				SPI2_SCK I2S2_SCK	-	-	-	-	-	-	-	DCMI_D8	-	EVENTOUT
	Pl2	-	-		TIM8_CH4		SPI2_MISO	-	-	-	-	-	-	-	DCMI_D9	-	EVENTOUT
	PI3	-	-		TIM8_ETR		SPI2_MOSI I2S2_SD	-	-	-	-	-	-	-	DCMI_D10	-	EVENTOUT
	Pl4	-	-		TIM8_BKIN		-	-	-	-	-	-	-	-	DCMI_D5	-	EVENTOUT
Port I	PI5	-	-		TIM8_CH1		-	-	-	-	-	-	-	-	DCMI_VSYNC	-	EVENTOUT
	PI6	-	-		TIM8_CH2		-	-	-	-	-	-	-	-	DCMI_D6	-	EVENTOUT
	PI7	-	-		TIM8_CH3		-	-	-	-	-	-	-	-	DCMI_D7	-	EVENTOUT
	PI8	-	-				-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PI9	-	-				-	-	-	-	CAN1_RX	-	-	-	-	-	EVENTOUT
	PI10	-	-				-	-	-	-	-	-	ETH _MII_RX_ER	-	-	-	EVENTOUT
	PI11	-	-				-	-	-	-	-	OTG_HS_ULPI_ DIR	-	-	-	-	EVENTOUT

Symbol			Тур				
	Parameter	Conditions	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
	Supply current in Stop mode with main regulator in Run mode	Flash in Stop mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.55	1.2	11.00	20.00	
		Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.50	1.2	11.00	20.00	m۸
IDD_STOP	Supply current in Stop mode with main regulator in Low-power mode	Flash in Stop mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.35	1.1	8.00	15.00	mA
		Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.30	1.1	8.00	15.00	

Table 23. Typical and maximum current consumptions in Stop mode

Figure 29. Typical current consumption vs. temperature in Stop mode

All typical and maximum values from table 18 and figure 26 will be reduced over time by up to 50% as part
of ST continuous improvement of test procedures. New versions of the datasheet will be released to reflect
these changes

	Peripheral ⁽¹⁾	Typical consumption at 25 °C	Unit
	TIM2	0.61	
	TIM3	0.49	
	TIM4	0.54	
	TIM5	0.62	
	TIM6	0.20	
	TIM7	0.20	
	TIM12	0.36	
	TIM13	0.28	
	TIM14	0.25	
	USART2	0.25	
	USART3	0.25	
	UART4	0.25	m۸
APDI	UART5	0.26	ША
	I2C1	0.25	
	I2C2	0.25	
	I2C3	0.25	
	SPI2	0.20/0.10	
	SPI3	0.18/0.09	
	CAN1	0.31	
	CAN2	0.30	
	DAC channel 1 ⁽²⁾	1.11	
	DAC channel 1 ⁽³⁾	1.11	
	PWR	0.15	
	WWDG	0.15	

Table 26. Peripheral current consumption (continued)

6.3.8 External clock source characteristics

High-speed external user clock generated from an external source

The characteristics given in *Table 28* result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	External user clock source frequency ⁽¹⁾		1	-	26	MHz
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V_{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage	-	V_{SS}	-	$0.3V_{\text{DD}}$	v
t _{w(HSE)} t _{w(HSE)}	OSC_IN high or low time ⁽¹⁾		5	-	-	ne
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	20	115
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾	-	-	5	-	pF
$DuCy_{(HSE)}$	Duty cycle	-	45	-	55	%
١ _L	OSC_IN Input leakage current	V _{SS} ≤V _{IN} ≤V _{DD}	-	-	±1	μA

 Table 28. High-speed external user clock characteristics

1. Guaranteed by design, not tested in production.

Low-speed external user clock generated from an external source

The characteristics given in *Table 29* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		$0.7V_{DD}$	-	V_{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage		V_{SS}	-	$0.3V_{\text{DD}}$	v
t _{w(LSE)} t _{f(LSE)}	OSC32_IN high or low time ⁽¹⁾	-	450	-	-	ne
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	115
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(LSE)	Duty cycle	-	30	-	70	%
١L	OSC32_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

Table 29. Low-speed externa	al user clock characteristics
-----------------------------	-------------------------------

1. Guaranteed by design, not tested in production.

The test results are given in *Table 41*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Parameter Conditions	
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V _{DD} = 3.3 V, LQFP176, T _A = +25 °C, f _{HCLK} = 120 MHz, conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V _{DD} = 3.3 V, LQFP176, T _A = +25 °C, f _{HCLK} = 120 MHz, conforms to IEC 61000-4-2	4A

Table 41. EMS	characteristics
---------------	-----------------

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
			C _L = 50 pF, V _{DD >} 2.70 V	-	-	25	
	f	Maximum fraguanav ⁽²⁾	C _L = 50 pF, V _{DD >} 1.8 V	-	-	12.5	M⊔⇒
	Imax(IO)out		C _L = 10 pF, V _{DD >} 2.70 V	-	-	50 ⁽³⁾	IVILITZ
01			C _L = 10 pF, V _{DD >} 1.8 V	-	-	20	
01			C _L = 50 pF, V _{DD} >2.7 V	-	-	10	
	t _{f(IO)out} /	Output high to low level fall	C _L = 50 pF, V _{DD >} 1.8 V	-	-	20	20
	t _{r(IO)out}	level rise time	C _L = 10 pF, V _{DD >} 2.70 V	-	-	6	115
			C _L = 10 pF, V _{DD >} 1.8 V	-	-	10	
			C _L = 40 pF, V _{DD >} 2.70 V	-	-	25	
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C _L = 40 pF, V _{DD >} 1.8 V	-	-	20	MHz
			C _L = 10 pF, V _{DD >} 2.70 V	-	-	100 ⁽³⁾	
10			C _L = 10 pF, V _{DD >} 1.8 V	-	-	50 ⁽³⁾	
10	t _{f(IO)out} / t _{r(IO)out}	Output high to low level fall time and output low to high level rise time	C _L = 40 pF, V _{DD >} 2.70 V	-	-	6	ns
			C _L = 40 pF, V _{DD >} 1.8 V	-	-	10	
			C _L = 10 pF, V _{DD >} 2.70 V	-	-	4	
			C _L = 10 pF, V _{DD >} 1.8 V	-	-3	6	
			C _L = 30 pF, V _{DD >} 2.70 V	-	-	100 ⁽³⁾	
	f _{max(IO)out}	Maximum fraguanau ⁽²⁾	C _L = 30 pF, V _{DD >} 1.8 V	-	-	50 ⁽³⁾	
		ax(IO)out	C _L = 10 pF, V _{DD >} 2.70 V	-	-	120 ⁽³⁾	
11			C _L = 10 pF, V _{DD >} 1.8 V	-	-	100 ⁽³⁾	
			C _L = 30 pF, V _{DD >} 2.70 V	-	-	4	
	t _{f(IO)out} /	Output high to low level fall	C _L = 30 pF, V _{DD >} 1.8 V	-	-	6	ns
	t _{r(IO)out}	level rise time	C _L = 10 pF, V _{DD >} 2.70 V	-	-	2.5	
			C _L = 10 pF, V _{DD >} 1.8 V	-	-	4	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10	-	-	ns

Table 48. I/O AC characteristics⁽¹⁾ (continued)

 The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F20/21xxx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register.

2. The maximum frequency is defined in *Figure 39*.

3. For maximum frequencies above 50 MHz and V_{DD} above 2.4 V, the compensation cell should be used.

1. R_S= series protection resistor.

2. R_P = external pull-up resistor.

3. $V_{DD \ I2C}$ is the I²C bus power supply.

f. (//Ц¬)	I2C_CCR value
	R _P = 4.7 kΩ
400	0x8019
300	0x8021
200	0x8032
100	0x0096
50	0x012C
20	0x02EE

----... (1)(2)

1. R_P = External pull-up resistance, f_{SCL} = I²C speed,

For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application.

USB OTG FS characteristics

The USB OTG interface is USB-IF certified (Full-Speed). This interface is present in both the USB OTG HS and USB OTG FS controllers.

Symbol	Parameter	Мах	Unit	
t _{STARTUP} ⁽¹⁾	USB OTG FS transceiver startup time	1	μs	

Table 56. USB OTG FS startup time

1. Guaranteed by design, not tested in production.

Sym	bol	Parameter	Conditions	Min ⁽¹⁾	Min ⁽¹⁾ Typ Max ⁽¹⁾		Unit
V _{DD}		USB OTG FS operating voltage		3.0 ⁽²⁾	-	3.6	V
Input levels	V _{DI} ⁽³⁾	Differential input sensitivity	I(USB_FS_DP/DM, USB_HS_DP/DM)	0.2	-	-	
	V _{CM} ⁽³⁾	Differential common mode range	Includes V _{DI} range	0.8	-	2.5	V
	$V_{SE}^{(3)}$	Single ended receiver threshold		1.3	-	2.0	
Output V _{OL}		Static output level low	$\rm R_L$ of 1.5 k\Omega to 3.6 $\rm V^{(4)}$	-	-	0.3	V
levels	V _{OH}	Static output level high	${\sf R}_{\sf L}$ of 15 k Ω to ${\sf V}_{\sf SS}{}^{(\!4\!)}$	2.8	-	3.6	v
		PA11, PA12, PB14, PB15 (USB_FS_DP/DM, USB_HS_DP/DM)		17	21	24	
R _{PD}	PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)		VIN - VDD	0.65	1.1	2.0	kΩ
R _{PU}		PA12, PB15 (USB_FS_DP, USB_HS_DP)	V _{IN} = V _{SS}	1.5	1.8	2.1	
		PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	V _{IN} = V _{SS}	0.25	0.37	0.55	

Table 57. USB OTG FS DC electrical characteristics

1. All the voltages are measured from the local ground potential.

2. The STM32F205xx and STM32F207xx USB OTG FS functionality is ensured down to 2.7 V but not the full USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V V_{DD} voltage range.

3. Guaranteed by design, not tested in production.

4. R_L is the load connected on the USB OTG FS drivers

being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 6.3.16 does not affect the ADC accuracy.

- Example of an actual transfer curve 1.
- 2. Ideal transfer curve
- 3. End point correlation line.
- E_T = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one. 4. EG = Gain Error: deviation between the last ideal transition and the last actual one. ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.

EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.

 $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high $C_{parasitic}$ value downgrades conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.

Refer to Table 66 for the values of $\mathsf{R}_{AIN},\,\mathsf{R}_{ADC}$ and C_{ADC} 1.

General PCB design guidelines

Power supply decoupling should be performed as shown in Figure 54 or Figure 55, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

Figure 54. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})

 V_{REF+} and V_{REF-} inputs are both available on UFBGA176 package. V_{REF+} is also available on all packages except for LQFP64. When V_{REF+} and V_{REF-} are not available, they are internally connected to V_{DDA} and V_{SSA} . 1.

ai17535c

Symbol	Parameter	Min	Max	Unit
t _{w(NWE)}	FSMC_NWE low width	4T _{HCLK} - 1	4T _{HCLK} + 3	ns
t _{v(NWE-D)}	FSMC_NWE low to FSMC_D[15-0] valid	-	0	ns
t _{h(NWE-D)}	FSMC_NWE high to FSMC_D[15-0] invalid	3T _{HCLK}	-	ns
t _{d(D-NWE)}	FSMC_D[15-0] valid before FSMC_NWE high	5T _{HCLK}	-	ns
t _{d(ALE-NWE)}	FSMC_ALE valid before FSMC_NWE low	-	3T _{HCLK} + 2	ns
t _{h(NWE-ALE)}	FSMC_NWE high to FSMC_ALE invalid	3T _{HCLK} - 2	-	ns

 Table 83. Switching characteristics for NAND Flash write cycles⁽¹⁾⁽²⁾

1. C_L = 30 pF.

2. Guaranteed by characterization results, not tested in production.

6.3.26 Camera interface (DCMI) timing specifications

Table 84.	DCMI	characteristics
-----------	------	-----------------

Symbol	Parameter	Conditions	Min	Мах
-	Frequency ratio DCMI_PIXCLK/f _{HCLK}	DCMI_PIXCLK= 48 MHz	-	0.4

6.3.27 SD/SDIO MMC card host interface (SDIO) characteristics

Unless otherwise specified, the parameters given in *Table 85* are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 14*.

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (D[7:0], CMD, CK).

Figure 75. SDIO high-speed mode

DocID15818 Rev 15

7.3 LQFP100 package information

Figure 81. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale.

	mechanical data							
Symbol	millimeters							
Symbol	Min	Тур	Мах	Min	Тур	Мах		
А	-	-	1.600	-	-	0.0630		
A1	0.050	-	0.150	0.0020	-	0.0059		
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571		
b	0.170	0.220	0.270	0.0067	0.0087	0.0106		
С	0.090	-	0.200	0.0035	-	0.0079		
D	15.800	16.000	16.200	0.6220	0.6299	0.6378		
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591		

Table 90. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data

8 Ordering information

Table 96. Ordering information scheme

Example:	STM32 F	205 R E	Т	6 V	xxx
Device family					
STM32 = ARM-based 32-bit microcontroller					
Product type					
F = general-purpose					
Device subfamily					
205 = STM32F20x, connectivity					
207= STM32F20x, connectivity, camera interface, Ethernet					
Pin count					
R = 64 pins or 66 pins ⁽¹⁾					
V = 100 pins					
Z = 144 pins					
I = 176 pins					
Flash memory size					
B = 128 Kbytes of Flash memory					
C = 256 Kbytes of Flash memory					
E = 512 Kbytes of Flash memory					
F = 768 Kbytes of Flash memory					
G = 1024 Kbytes of Flash memory					
Package					
T = LQFP					
H = UFBGA					
Y = WLCSP					
Temperature range					
6 = Industrial temperature range, -40 to 85 °C.				-	
7 = Industrial temperature range, -40 to 105 °C.					
Software option					
Internal code or Blank					
Options					

xxx = programmed parts

TR = tape and reel

1. The 66 pins is available on WLCSP package only.

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, contact your nearest ST sales office.

Date	Revision	Changes		
		Changed minimum supply voltage from 1.65 to 1.8 V.		
		Updated number of AHB buses in <i>Section 2: Description</i> and <i>Section 3.12: Clocks and startup</i> .		
		Removed Figure 4. Compatible board design between STM32F10xx and STM32F2xx for LQFP176 package.		
		Updated Note 2 below Figure 4: STM32F20x block diagram.		
		Changed System memory to System memory + OTP in <i>Figure 16: Memory map</i> .		
		Added Note 1 below Table 16: VCAP1/VCAP2 operating conditions.		
		Updated V _{DDA} and V _{REF+} decoupling capacitor in <i>Figure 19: Power supply scheme</i> and updated <i>Note 3</i> .		
		Changed simplex mode into half-duplex mode in <i>Section 3.24: Inter-integrated sound (I2S)</i> .		
		Replaced DAC1_OUT and DAC2_OUT by DAC_OUT1 and DAC_OUT2, respectively.Changed TIM2_CH1/TIM2_ETR into TIM2_CH1_ETR for PA0 and PA5 in <i>Table 10: Alternate function</i>		
		Updated note applying to I _{DD} (external clock and all peripheral disabled) in Table 21: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled). Updated Note 3 below Table 22: Typical and		
		maximum current consumption in Sleep mode.		
29-Oct-2012	10	Removed f _{HSE_ext} typical value in <i>Table 28: High-speed external user clock characteristics</i> .		
		Updated master I2S clock jitter conditions and values in <i>Table 35: PLLI2S (audio PLL) characteristics</i> .		
		Updated equations in Section 6.3.11: PLL spread spectrum clock generation (SSCG) characteristics.		
		Swapped TTL and CMOS port conditions for V _{OL} and V _{OH} in <i>Table 47: Output voltage characteristics.</i>		
		Updated $V_{IL(NRST)}$ and $V_{IH(NRST)}$ in <i>Table 49: NRST pin characteristics</i> . Updated <i>Table 54: SPI characteristics</i> and <i>Table 55: I2S characteristics</i> . Removed note 1 related to measurement points below <i>Figure 43: SPI timing diagram - slave mode and CPHA = 1, Figure 44: SPI timing diagram - master mode</i> , and <i>Figure 45: I2S slave timing diagram (Philips protocol)(1)</i> .		
		Updated t _{HC} in <i>Table 61: ULPI timing</i> .		
		Updated Figure 49: Ethernet SMI timing diagram, Table 63: Dynamics characteristics: Ethernet MAC signals for SMI and Table 65: Dynamics characteristics: Ethernet MAC signals for MII.		
		Update f _{TRIG} in Table 66: ADC characteristics.		
		Updated I _{DDA} description in <i>Table 68: DAC characteristics</i> .		
		Updated note below <i>Figure 54: Power supply and reference decoupling</i> (<i>VREF+ not connected to VDDA</i>) and <i>Figure 55: Power supply and reference decoupling</i> (<i>VREF+ connected to VDDA</i>).		

Table 97	. Document	revision	history	(continued)
----------	------------	----------	---------	-------------

Date	Revision	Changes
04-Nov-2013	11 (continued)	Removed Appendix A Application block diagrams. Updated Figure 77: LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline and Table 87: LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data. Updated Figure 80: LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline, Figure 83: LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline, Figure 86: LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm, package outline. Updated Figure 88: UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline and Figure 88: UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline.
27-Oct-2014	12	Updated V _{BAT} voltage range in <i>Figure 19: Power supply scheme</i> . Added caution note in <i>Section 6.1.6: Power supply scheme</i> . Updated V _{IN} in <i>Table 14: General operating conditions</i> . Removed note 1 in <i>Table 23: Typical and maximum current consumptions in Stop mode</i> . Updated <i>Table 45: I/O current injection susceptibility, Section 6.3.16: I/O port characteristics</i> and <i>Section 6.3.17: NRST pin characteristics</i> . Removed note 3 in <i>Table 69: Temperature sensor characteristics</i> . Updated <i>Figure 79: WLCSP64+2 - 0.400 mm pitch wafer level chip size package outline</i> and <i>Table 88: WLCSP64+2 - 0.400 mm pitch wafer level chip size package mechanical data</i> . Added <i>Figure 83: LQFP100 marking (package top view)</i> and <i>Figure 86: LQFP144 marking (package top view)</i> .
2-Feb-2016	13	Updated Section 1: Introduction. Updated Table 32: HSI oscillator characteristics and its footnotes. Updated Figure 36: PLL output clock waveforms in center spread mode, Figure 37: PLL output clock waveforms in down spread mode, Figure 54: Power supply and reference decoupling (VREF+ not connected to VDDA) and Figure 55: Power supply and reference decoupling (VREF+ connected to VDDA). Updated Section 7: Package information and its subsections.
24-Jun-2016	14	Updated figures 1, 2 and 3 in Section 2.1: Full compatibility throughout the family. Updated Device marking and Figure 83 in Section 7.3: LQFP100 package information. Updated Device marking and Figure 86 in Section 7.4: LQFP144 package information. Updated Section 7.6: UFBGA176+25 package information with introduction of Device marking and Figure 91. Updated Table 96: Ordering information scheme.
11-Aug-2016	15	Updated Features, Section 7.2: WLCSP64+2 package information and title of Section 8: Ordering information. Updated Figure 54: Power supply and reference decoupling (VREF+ not connected to VDDA).

Table 97. Document revision h	history	(continued)
-------------------------------	---------	-------------

