

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, Memory Card, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	82
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	132K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f207vct6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

This datasheet provides the description of the STM32F205xx and STM32F207xx lines of microcontrollers. For more details on the whole STMicroelectronics STM32 family, refer to *Section 2.1: Full compatibility throughout the family*.

The STM32F205xx and STM32F207xx datasheet should be read in conjunction with the STM32F20x/STM32F21x reference manual. They will be referred to as STM32F20x devices throughout the document.

For information on programming, erasing and protection of the internal Flash memory, refer to the STM32F20x/STM32F21x Flash programming manual (PM0059).

The reference and Flash programming manuals are both available from the STMicroelectronics website *www.st.com*.

For information on the Cortex[®]-M3 core refer to the Cortex[®]-M3 Technical Reference Manual, available from the *www.arm.com* website.

The DMA can be used with the main peripherals:

- SPI and I²S
- I²C
- USART and UART
- General-purpose, basic and advanced-control timers TIMx
- DAC
- SDIO
- Camera interface (DCMI)
- ADC.

3.9 Flexible static memory controller (FSMC)

The FSMC is embedded in all STM32F20x devices. It has four Chip Select outputs supporting the following modes: PC Card/Compact Flash, SRAM, PSRAM, NOR Flash and NAND Flash.

Functionality overview:

- Write FIFO
- Code execution from external memory except for NAND Flash and PC Card
- Maximum frequency (f_{HCLK}) for external access is 60 MHz

LCD parallel interface

The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-effective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration.

3.10 Nested vectored interrupt controller (NVIC)

The STM32F20x devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 81 maskable interrupt channels plus the 16 interrupt lines of the Cortex[®]-M3.

The NVIC main features are the following:

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving, higher-priority interrupts
- Support tail chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimum interrupt latency.

3.20 Timers and watchdogs

The STM32F20x devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers.

All timer counters can be frozen in debug mode.

Table 5 compares the features of the advanced-control, general-purpose and basic timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary output	Max interface clock	Max timer clock
Advanced- control	TIM1, TIM8	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	Yes	60 MHz	120 MHz
General	TIM2, TIM5	32-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	30 MHz	60 MHz
purpose	TIM3, TIM4	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	30 MHz	60 MHz
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No	30 MHz	60 MHz
	TIM9	16-bit	Up	Any integer between 1 and 65536	No	2	No	60 MHz	120 MHz
General	TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No	60 MHz	120 MHz
purpose	TIM12	16-bit	Up	Any integer between 1 and 65536	No	2	No	30 MHz	60 MHz
	TIM13, TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	No	30 MHz	60 MHz

Table 5. Timer feature comparison

3.20.1 Advanced-control timers (TIM1, TIM8)

The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

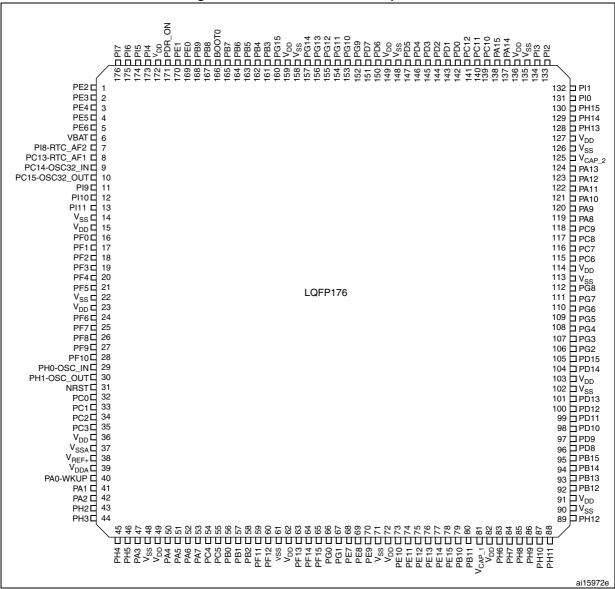


Figure 14. STM32F20x LQFP176 pinout

1. RFU means "reserved for future use". This pin can be tied to V_{DD} , V_{SS} or left unconnected.

2. The above figure shows the package top view.

		Pi	ns			-					
LQFP64	WLCSP64+2	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	-	-	131	159	C7	V _{DD}	S	-	-	-	-
-	-	-	132	160	B7	PG15	I/O	FT	-	USART6_CTS, DCMI_D13, EVENTOUT	-
55	A4	89	133	161	A10	PB3 (JTDO/TRACESWO)	I/O	FT	-	JTDO/ TRACESWO, SPI3_SCK, I2S3_SCK, TIM2_CH2, SPI1_SCK, EVENTOUT	-
56	В4	90	134	162	A9	PB4	I/O	FT	-	NJTRST, SPI3_MISO, TIM3_CH1, SPI1_MISO, EVENTOUT	-
57	A5	91	135	163	A6	PB5	I/O	FT	-	I2C1_SMBA, CAN2_RX, OTG_HS_ULPI_D7, ETH_PPS_OUT, TIM3_CH2, SPI1_MOSI, SPI3_MOSI, DCMI_D10, I2S3_SD, EVENTOUT	-
58	B5	92	136	164	B6	PB6	I/O	FT	-	I2C1_SCL,, TIM4_CH1, CAN2_TX, DCMI_D5,USART1_TX, EVENTOUT	-
59	A6		137			PB7	I/O	FT	-	I2C1_SDA, FSMC_NL ⁽⁶⁾ , DCMI_VSYNC, USART1_RX, TIM4_CH2, EVENTOUT	-
60	B6	94	138	166	D6	BOOT0	Ι	В	I	-	V _{PP}
61	B7	95	139	167	A5	PB8	I/O	FT	-	TIM4_CH3,SDIO_D4, TIM10_CH1, DCMI_D6, ETH_MII_TXD3, I2C1_SCL, CAN1_RX, EVENTOUT	-
62	A7	96	140	168	B4	PB9	I/O	FT	-	SPI2_NSS, I2S2_WS, TIM4_CH4, TIM11_CH1, SDIO_D5, DCMI_D7, I2C1_SDA, CAN1_TX, EVENTOUT	-
-	-	97	141	169	A4	PE0	I/O	FT	-	TIM4_ETR, FSMC_NBL0, DCMI_D2, EVENTOUT	-

Table 8. STM32F20x pin and ball definitions (continued)

Symbol	Ratings	Max	Unit
I _{VDD}	Total current into V _{DD} power lines (source) ⁽¹⁾	120	
I _{VSS}	Total current out of V _{SS} ground lines (sink) ⁽¹⁾	120	
I	Output current sunk by any I/O and control pin	25	
I _{IO}	Output current source by any I/Os and control pin	25	mA
ı (2)	Injected current on five-volt tolerant I/O ⁽³⁾	-5/+0	
I _{INJ(PIN)} ⁽²⁾	Injected current on any other pin ⁽⁴⁾	±5	
$\Sigma I_{\rm INJ(PIN)}^{(4)}$	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	±25	

 All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. Negative injection disturbs the analog performance of the device. See note in Section 6.3.20: 12-bit ADC characteristics.

3. Positive injection is not possible on these I/Os. A negative injection is induced by $V_{IN} < V_{SS}$. $I_{INJ(PIN)}$ must never be exceeded. Refer to *Table 11* for the values of the maximum allowed input voltage.

4. A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS} . $I_{INJ(PIN)}$ must never be exceeded. Refer to *Table 11* for the values of the maximum allowed input voltage.

5. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	125	°C

6.3 Operating conditions

6.3.1 General operating conditions

Table 14. General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HCLK}	Internal AHB clock frequency	-	0	120	
f _{PCLK1}	Internal APB1 clock frequency	-	0	30	MHz
f _{PCLK2}	Internal APB2 clock frequency	-	0	60	

Symbol	Parameter	Conditions		Тур	Ма	Unit	
Symbol	Farameter	Conditions	fhclk	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			120 MHz	61	81	93	
			90 MHz	48	68	80	
			60 MHz	33	53	65	
		(2)	30 MHz	18	38	50	
		External clock ⁽²⁾ , all peripherals enabled ⁽³⁾	25 MHz	14	34	46	
			16 MHz ⁽⁴⁾	10	30	42	
			8 MHz	6	26	38	
			4 MHz	4	24	36	
	Supply current		2 MHz	3	23	35	
I _{DD}	in Run mode		120 MHz	33	54	66	mA
			90 MHz	27	47	59	
			60 MHz	19	39	51	
		30 MHz 11	31	43			
		External clock ⁽²⁾ , all peripherals disabled	25 MHz	8	28	41	
			16 MHz ⁽⁴⁾	6	26	38	
			8 MHz	4	24	36	
			4 MHz	3	23	35	
			2 MHz	2	23	34	

Table 21. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled)

1. Guaranteed by characterization results, tested in production at V_{DD} max and f_{HCLK} max with peripherals enabled.

2. External clock is 4 MHz and PLL is on when f_{HCLK} > 25 MHz.

When the ADC is on (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

4. In this case HCLK = system clock/2.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
Jitter ⁽³⁾		Cycle to cycle at	RMS	-	90	-	
	Master I2S clock jitter	12.288 MHz on 48KHz period, N=432, R=5	peak to peak	-	±280	-	ps
		Average frequency of 12.288 MHz N=432, R=5 on 1000 samples		-	90	-	ps
	WS I2S clock jitter	Cycle to cycle at 48 k on 1000 samples	-	400	-	ps	
I _{DD(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V_{DD}	VCO freq = 192 MHz VCO freq = 432 MHz		0.15 0.45	-	0.40 0.75	mA
I _{DDA(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V_{DDA}	VCO freq = 192 MHz VCO freq = 432 MHz		0.30 0.55	-	0.40 0.85	mA

Table 35. PLLI2S (audio PLL) characteristics (continued)

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design, not tested in production.

3. Value given with main PLL running.

4. Guaranteed by characterization results, not tested in production.

6.3.11 PLL spread spectrum clock generation (SSCG) characteristics

The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic interferences (see *Table 42: EMI characteristics*). It is available only on the main PLL.

Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit
f _{Mod}	Modulation frequency	-	-	10	KHz
md	Peak modulation depth	0.25	-	2	%
MODEPER * INCSTEP	-	-	-	2 ¹⁵ -1	-

Table 26	2222	noromotoro	aanatraint
Table 30.	3366	parameters	constraint

1. Guaranteed by design, not tested in production.

Equation 1

The frequency modulation period (MODEPER) is given by the equation below:

 $MODEPER = round[f_{PLL \ IN}/ \ (4 \times f_{Mod})]$

 $f_{\text{PLL}\ \text{IN}}$ and f_{Mod} must be expressed in Hz.

As an example:

If $f_{PLL_IN} = 1$ MHz and $f_{MOD} = 1$ kHz, the modulation depth (MODEPER) is given by equation 1:

MODEPER = round
$$[10^{6}/(4 \times 10^{3})] = 250$$

Equation 2

Equation 2 allows to calculate the increment step (INCSTEP):

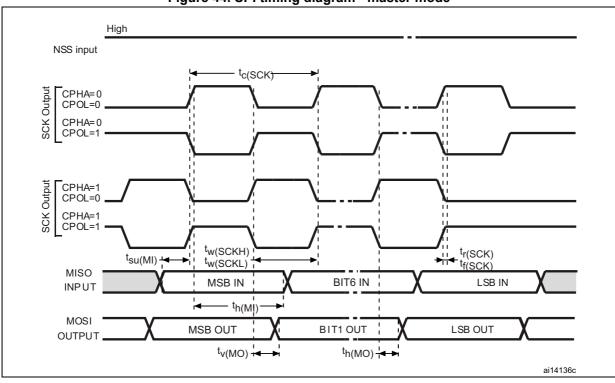
INCSTEP = round[
$$((2^{15} - 1) \times md \times PLLN)/(100 \times 5 \times MODEPER)$$
]

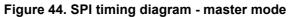
f_{VCO OUT} must be expressed in MHz.

With a modulation depth (md) = ± 2 % (4 % peak to peak), and PLLN = 240 (in MHz):

INCSTEP = round[$((2^{15}-1) \times 2 \times 240)/(100 \times 5 \times 250)$] = 126md(quantitazed)%

An amplitude quantization error may be generated because the linear modulation profile is obtained by taking the quantized values (rounded to the nearest integer) of MODPER and INCSTEP. As a result, the achieved modulation depth is quantized. The percentage quantized modulation depth is given by the following formula:


$$md_{quantized}$$
% = (MODEPER × INCSTEP × 100 × 5)/ ((2¹⁵ - 1) × PLLN)


As a result:

 $md_{guantized}$ % = (250 × 126 × 100 × 5)/ ((2¹⁵ - 1) × 240) = 2.0002%(peak)

DocID15818 Rev 15

Table 65 gives the list of Ethernet MAC signals for MII and *Figure 50* shows the corresponding timing diagram.

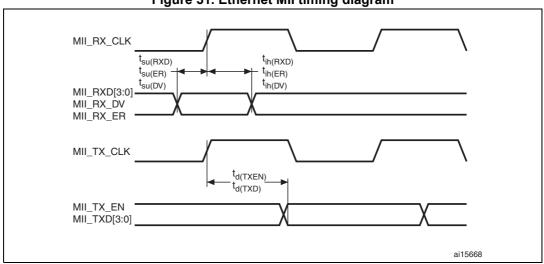


Figure 51. Ethernet MII timing diagram

Symbol	Rating	Min	Тур	Мах	Unit
t _{su(RXD)}	Receive data setup time	7.5	-	-	ns
t _{ih(RXD)}	Receive data hold time	1	-	-	ns
t _{su(DV)}	Data valid setup time	4	-	-	ns
t _{ih(DV)}	Data valid hold time	0	-	-	ns
t _{su(ER)}	Error setup time	3.5	-	-	ns
t _{ih(ER)}	Error hold time	0	-	-	ns
t _{d(TXEN)}	Transmit enable valid delay time	-	11	14	ns
t _{d(TXD)}	Transmit data valid delay time	-	11	14	ns

CAN (controller area network) interface

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (CANTX and CANRX).

6.3.23 V_{BAT} monitoring characteristics

Symbol	Parameter	Min	Тур	Max	Unit
R	Resistor bridge for V _{BAT}	-	50	-	KΩ
Q	Ratio on V _{BAT} measurement	-	2	-	
Er ⁽¹⁾	Error on Q	–1	-	+1	%
T _{S_vbat} ⁽²⁾⁽²⁾	C sampling time when reading the V _{BAT} 5		-	μs	

1. Guaranteed by design, not tested in production.

2. Shortest sampling time can be determined in the application by multiple iterations.

6.3.24 Embedded reference voltage

The parameters given in *Table 71* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{REFINT}	Internal reference voltage	–40 °C < T _A < +105 °C	1.18	1.21	1.24	V
T _{S_vrefint} ⁽¹⁾	ADC sampling time when reading the internal reference voltage	-	10	-	-	μs
V _{RERINT_s}	Internal reference voltage spread over the temperature range	V _{DD} = 3 V	-	3	5	mV
T _{Coeff} ⁽²⁾	Temperature coefficient	-	-	30	50	ppm/°C
t _{START} ⁽²⁾	Startup time	-	-	6	10	μs

Table 71. Embedded internal reference voltage

1. Shortest sampling time can be determined in the application by multiple iterations.

2. Guaranteed by design, not tested in production.

6.3.25 FSMC characteristics

Asynchronous waveforms and timings

Figure 57 through *Figure 60* represent asynchronous waveforms and *Table 72* through *Table 75* provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

- AddressSetupTime = 1
- AddressHoldTime = 1
- DataSetupTime = 1
- BusTurnAroundDuration = 0x0

In all timing tables, the T_{HCLK} is the HCLK clock period.

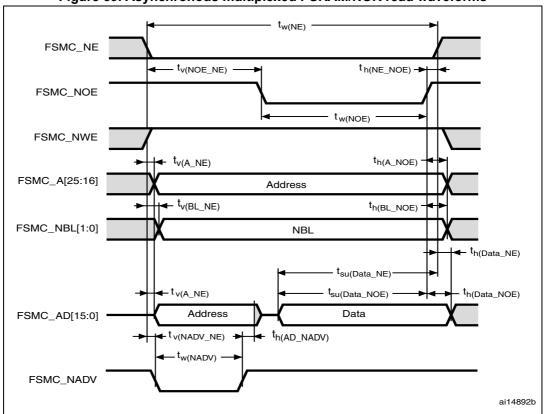


Figure 59. Asynchronous multiplexed PSRAM/NOR read waveforms

Table 74. Asynchronous multiplexed PSRAM/NOR read timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FSMC_NE low time	3T _{HCLK} -1	3T _{HCLK} +1	ns
t _{v(NOE_NE)}	FSMC_NEx low to FSMC_NOE low	2T _{HCLK}	2T _{HCLK} +0.5	ns
t _{w(NOE)}	FSMC_NOE low time	T _{HCLK} -1	T _{HCLK} +1	ns
t _{h(NE_NOE)}	FSMC_NOE high to FSMC_NE high hold time	0	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	2	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	1	2.5	ns
t _{w(NADV)}	FSMC_NADV low time	T _{HCLK} – 1.5	T _{HCLK}	ns
t _{h(AD_NADV)}	FSMC_AD(adress) valid hold time after FSMC_NADV high)	T _{HCLK}	-	ns
t _{h(A_NOE)}	Address hold time after FSMC_NOE high	T _{HCLK}	-	ns
t _{h(BL_NOE)}	FSMC_BL time after FSMC_NOE high	0	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	1	ns
t _{su(Data_NE)}	Data to FSMC_NEx high setup time	T _{HCLK} + 2	-	ns
t _{su(Data_NOE)}	Data to FSMC_NOE high setup time	T _{HCLK} + 3	-	ns

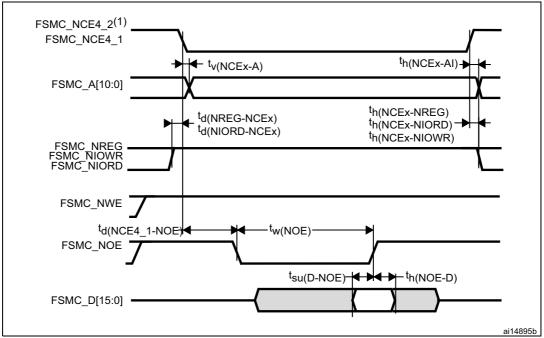
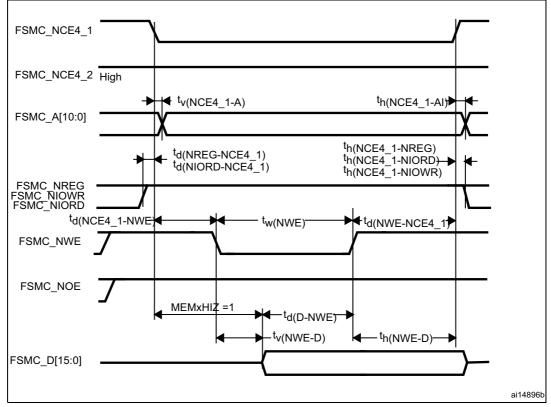



Figure 65. PC Card/CompactFlash controller waveforms for common memory read access

1. FSMC_NCE4_2 remains high (inactive during 8-bit access.

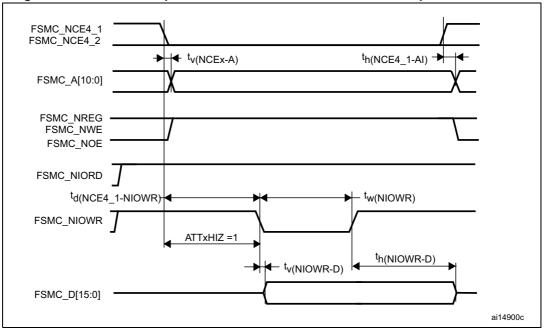


Figure 70. PC Card/CompactFlash controller waveforms for I/O space write access

Table 80. Switching characteristics for PC Card/CF read and write cycles in attribute/common space⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{v(NCEx-A)}	FSMC_Ncex low to FSMC_Ay valid	-	0	ns
t _{h(NCEx_AI)}	FSMC_NCEx high to FSMC_Ax invalid	4	-	ns
t _{d(NREG-NCEx)}	FSMC_NCEx low to FSMC_NREG valid	-	3.5	ns
t _{h(NCEx-NREG)}	FSMC_NCEx high to FSMC_NREG invalid	T _{HCLK} + 4	-	ns
t _{d(NCEx-NWE)}	FSMC_NCEx low to FSMC_NWE low	-	5T _{HCLK} + 1	ns
t _{d(NCEx-NOE)}	FSMC_NCEx low to FSMC_NOE low	-	5T _{HCLK}	ns
t _{w(NOE)}	FSMC_NOE low width	8T _{HCLK} - 0.5	8T _{HCLK} + 1	ns
t _{d(NOE_NCEx)}	FSMC_NOE high to FSMC_NCEx high	5T _{HCLK} + 2.5	-	ns
t _{su (D-NOE)}	FSMC_D[15:0] valid data before FSMC_NOE high	4	-	ns
t _{h (N0E-D)}	FSMC_N0E high to FSMC_D[15:0] invalid	2	-	ns
t _{w(NWE)}	FSMC_NWE low width	8T _{HCLK} - 1	8T _{HCLK} + 4	ns
t _{d(NWE_NCEx})	FSMC_NWE high to FSMC_NCEx high	5T _{HCLK} + 1.5	-	ns
t _{d(NCEx-NWE)}	FSMC_NCEx low to FSMC_NWE low	-	5HCLK+ 1	ns
t _{v (NWE-D)}	FSMC_NWE low to FSMC_D[15:0] valid	-	0	ns
t _{h (NWE-D)}	FSMC_NWE high to FSMC_D[15:0] invalid	8T _{HCLK}	-	ns
t _{d (D-NWE)}	FSMC_D[15:0] valid before FSMC_NWE high	13T _{HCLK}	_	ns

1. C_L = 30 pF.

2. Guaranteed by characterization results, not tested in production.

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP64 package information

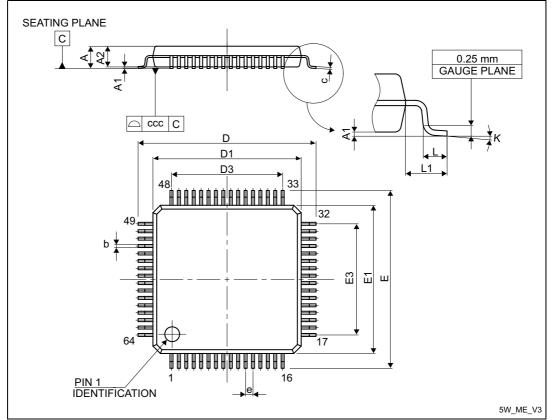
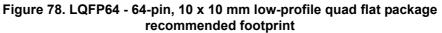
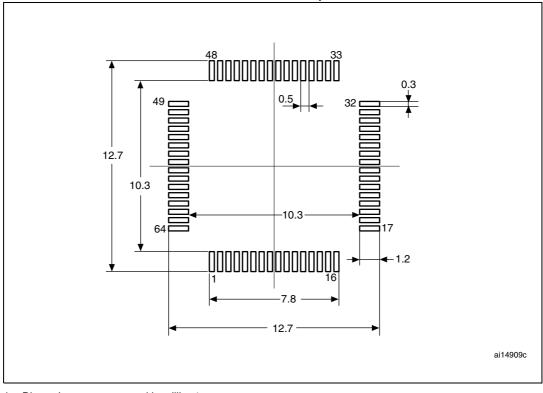


Figure 77. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 87. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flatpackage mechanical data


Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
A	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106



Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Max
С	0.090	-	0.200	0.0035	-	0.0079
D	-	12.000	-	-	0.4724	-
D1	-	10.000	-	-	0.3937	-
D3	-	7.500	-	-	0.2953	-
E	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-
E3	-	7.500	-	-	0.2953	-
е	-	0.500	-	-	0.0197	-
К	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
CCC	-	-	0.080	-	-	0.0031

Table 87. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flatpackage mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

8 Ordering information

Table 96. Ordering information scheme

Example:	STM32 F	205 R E	Т	6 V	xxx
Device family					
STM32 = ARM-based 32-bit microcontroller					
Product type F = general-purpose Device subfamily 205 = STM32F20x, connectivity 207 = STM32F20x, connectivity, camera interface, Ethernet Pin count R = 64 pins or 66 pins ⁽¹⁾ V = 100 pins					
F = general-purpose					
Device subfamily					
205 = STM32F20x, connectivity					
207= STM32F20x, connectivity, camera interface, Ethernet					
R = 64 pins or 66 pins ⁽¹⁾					
V = 100 pins					
Z = 144 pins					
I = 176 pins					
Flash memory size					
B = 128 Kbytes of Flash memory					
C = 256 Kbytes of Flash memory					
E = 512 Kbytes of Flash memory					
F = 768 Kbytes of Flash memory					
G = 1024 Kbytes of Flash memory					
Package					
T = LQFP					
H = UFBGA					
Y = WLCSP					
Temperature range					
6 = Industrial temperature range, -40 to 85 °C.				_	
7 = Industrial temperature range, -40 to 105 °C.					
Software option					
Internal code or Blank					
Options					

xxx = programmed parts

TR = tape and reel

1. The 66 pins is available on WLCSP package only.

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, contact your nearest ST sales office.

Date
Date

Date	Revision	Changes
Date 22-Apr-2011	Revision 6 (continued)	Changes Changed t _{w(SCKH)} to t _{w(SCLL)} , t _{r(SCK)} to t _{r(SCL)} , and t _{r(SCK)} to t _{r(SCL)} in Table 52: I2C characteristics and in Figure 41: I2C bus AC waveforms and measurement circuit. Added Table 57: USB OTG FS DC electrical characteristics and updated Table 58: USB OTG FS electrical characteristics. Updated Table 66: ADC characteristics and R _{AIN} equation. Updated Table 66: ADC characteristics and R _{AIN} equation. Updated Table 66: ADC characteristics and R _{AIN} equation. Updated Table 66: ADC characteristics and R _{AIN} equation. Updated Table 66: ADC characteristics and R _{AIN} equation. Updated Table 66: ADC characteristics and R _{AIN} equation. Updated Table 71: Embedded internal reference voltage. Modified FSMC_NOE waveform in Figure 57: Asynchronous non- multiplexed SRAM/PSRAM/NOR read waveforms. Shifted end of FSMC_NEx/NADV/addresses/NWE/NOE/NWAIT of a half FSMC_CLK Period, changed t _a (CLKI-NEH), and t _a (CLKI-NEH), t _a (CLKI-NWEH), and updated data latency from 1 to 0 in Figure 61: Synchronous multiplexed NOR/PSRAM read timings, Figure 63: Synchronous mon- multiplexed NOR/PSRAM read timings, and Figure 64: Synchronous non-multiplexed PSRAM write timings, Changed t _a (CLKI-NEH), t _a (CLKI-NEH), to t _a (CLKI-NEH), and modified t _w (CLK) minimum value in Table 76, Table 77, Table 78, and Table 79. Updated note 2 in Table 72, Table 73, Table 74, Table 75, Table 76, Table 77, Table 78, and Table 79. Modified FSMC_NCEx signal in Figure 71: NAND controller wavefor

Table 97. Document revision history (continued)

