

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	RX
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, SCI, SPI
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	10К х 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f523t5adfl-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1		Overview
	•	

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, TMR, POE, CAC)	Communications (SClg, RSPI, RIIC)	Others
1	VCL				
2	MD				FINED
3	RES#				
4	XTAL	P37			
5	VSS				
6	EXTAL	P36			
7	VCC				
8		PE2	POE10#		NMI
9		PD6	TMO1	SSLA0/CTS1#/RTS1#/SS1#	ADST0/IRQ5
10		PD5	TMRIO	RXD1/SMISO1/SSCL1	IRQ3
11		PD4	TMCI0	SCK1	IRQ2
12		PD3	TMO0	TXD1/SMOSI1/SSDA1	
13		PB6		RXD5/SMISO5/SSCL5	IRQ5
14		PB5		TXD5/SMOSI5/SSDA5	
15	VCC				
16		PB4	POE8#		IRQ3
17		PB3	MTIOC0A/CACREF	SCK5/RSPCKA	
18		PB2	MTIOC0B/ADSM0	TXD5/SMOSI5/SSDA5/SDA0	
19		PB1	MTIOCOC	RXD5/SMISO5/SSCL5/SCL0	IRQ2
20		PB0	MTIOCOD	MOSIA	
21		PA3	MTIOC2A	SSLA0	
22		PA2	MTIOC2B	CTS5#/RTS5#/SS5#/SSLA1	IRQ4
23		P94	MTIOC0C/TMO1	MISOA	IRQ1
24		P93	MTIOC0B/TMRI1	SCK5/RSPCKA	IRQ0
25		P76	MTIOC4D		
26		P75	MTIOC4C		
27		P74	MTIOC3D		
28		P73	MTIOC4B		
29		P72	MTIOC4A		
30		P71	MTIOC3B		
31		P70	POE0#		IRQ5
32	VCC				
33	VSS				
34		P24	MTIC5U/TMCI2	RSPCKA	COMP0/IRQ3
35		P23	MTIC5V/CACREF/TMO2	MOSIA	COMP1/IRQ4
36		P22	MTIC5W/TMRI2	MISOA	COMP2/IRQ2
37		P47			AN007/CMPC12/ CMPC22
38		P46			AN006/CMPC02
39		P45			AN005/CMPC21
40		P44			AN004/CMPC11
41		P43			AN003/CMPC01
42		P42			AN002/CMPC20
43		P41			AN001/CMPC10
44		P40			AN000/CMPC00
45	AVCC0				
46	AVSS0				
47		P11	MTIOC3A/MTCLKC/TMO3		IRQ1/AN016/ CVREFC0
48		P10	MTCLKD/TMRI3		IRQ0/AN017/ CVREFC1

Table 1.8 List of Pins and Pin Functions (48-Pin LFQFP)

3. Address Space

3.1 Address Space

This LSI has a 4-Gbyte address space, consisting of the range of addresses from 0000 0000h to FFFF FFFFh. That is, linear access to an address space of up to 4 Gbytes is possible, and this contains both program and data areas. Figure 3.1 shows the memory maps in the respective operating modes. Accessible areas will differ according to the operating mode and states of control bits.

4. I/O Registers

This section provides information on the on-chip I/O register addresses and bit configuration. The information is given as shown below. Notes on writing to registers are also given below.

(1) I/O register addresses (address order)

- Registers are listed from the lower allocation addresses.
- Registers are classified according to module symbols.
- Numbers of cycles for access indicate numbers of cycles of the given base clock.
- Among the internal I/O register area, addresses not listed in the list of registers are reserved. Reserved addresses must not be accessed. Do not access these addresses; otherwise, the operation when accessing these bits and subsequent operations cannot be guaranteed.

(2) Notes on writing to I/O registers

When writing to an I/O register, the CPU starts executing the subsequent instruction before completing I/O register write. This may cause the subsequent instruction to be executed before the post-update I/O register value is reflected on the operation.

As described in the following examples, special care is required for the cases in which the subsequent instruction must be executed after the post-update I/O register value is actually reflected.

[Examples of cases requiring special care]

- The subsequent instruction must be executed while an interrupt request is disabled with the IENj bit in IERn of the ICU (interrupt request enable bit) cleared to 0.
- A WAIT instruction is executed immediately after the preprocessing for causing a transition to the low power consumption state.

In the above cases, after writing to an I/O register, wait until the write operation is completed using the following procedure and then execute the subsequent instruction.

- (a) Write to an I/O register.
- (b) Read the value from the I/O register to a general register.
- (c) Execute the operation using the value read.
- (d) Execute the subsequent instruction.

[Instruction examples]

• Byte-size I/O registers

MOV.L #SFR_ADDR, R1 MOV.B #SFR_DATA, [R1] CMP [R1].UB, R1 ;; Next process

• Word-size I/O registers

MOV.L #SFR_ADDR, R1 MOV.W #SFR_DATA, [R1] CMP [R1].W, R1 ;; Next process

Table 4.1 List of I/O Registers (Address Order) (3 / 16)

	Module		Register	Number of		Number of Access Cycles
Address	Symbol	Register Name	Symbol	Bits	Access Size	$\textbf{ICLK} \geq \textbf{PCLK}$
0008 707Bh	ICU	Interrupt Request Register 123	IR123	8	8	2 ICLK
0008 707Ch	ICU	Interrupt Request Register 124	IR124	8	8	2 ICLK
0008 707Dh	ICU	Interrupt Request Register 125	IR125	8	8	2 ICLK
0008 707Eh	ICU	Interrupt Request Register 126	IR126	8	8	2 ICLK
0008 707Fh	ICU	Interrupt Request Register 127	IR127	8	8	2 ICLK
0008 7080h	ICU	Interrupt Request Register 128	IR128	8	8	2 ICLK
0008 7081h	ICU	Interrupt Request Register 129	IR129	8	8	2 ICLK
0008 7082h	ICU	Interrupt Request Register 130	IR130	8	8	2 ICLK
0008 7083h	ICU	Interrupt Request Register 131	IR131	8	8	2 ICLK
0008 7084h	ICU	Interrupt Request Register 132	IR132	8	8	2 ICLK
0008 7085h	ICU	Interrupt Request Register 133	IR133	8	8	2 ICLK
0008 7086h	ICU	Interrupt Request Register 134	IR134	8	8	2 ICLK
0008 7087h	ICU	Interrupt Request Register 135	IR135	8	8	2 ICLK
0008 7088h	ICU	Interrupt Request Register 136	IR136	8	8	2 ICLK
0008 7089h	ICU	Interrupt Request Register 137	IR137	8	8	2 ICLK
0008 708Ah	ICU	Interrupt Request Register 138	IR138	8	8	2 ICLK
0008 708Bh	ICU	Interrupt Request Register 139	IR139	8	8	2 ICLK
0008 708Ch	ICU	Interrupt Request Register 140	IR140	8	8	2 ICLK
0008 708Dh	ICU	Interrupt Request Register 141	IR141	8	8	2 ICLK
0008 70A8h	ICU	Interrupt Request Register 168	IR168	8	8	2 ICLK
0008 70AAh	ICU	Interrupt Request Register 170	IR170	8	8	2 ICLK
0008 70ABh	ICU	Interrupt Request Register 171	IR171	8	8	2 ICLK
0008 70AEh	ICU	Interrupt Request Register 174	IR174	8	8	2 ICLK
0008 70AFh	ICU	Interrupt Request Register 175	IR175	8	8	2 ICLK
0008 70B0h	ICU	Interrupt Request Register 176	IR176	8	8	2 ICLK
0008 70B1h	ICU	Interrupt Request Register 177	IR177	8	8	2 ICLK
0008 70B2h	ICU	Interrupt Request Register 178	IR178	8	8	2 ICLK
0008 70B3h	ICU	Interrupt Request Register 179	IR179	8	8	2 ICLK
0008 70B4h	ICU	Interrupt Request Register 180	IR180	8	8	2 ICLK
0008 70B5h	ICU	Interrupt Request Register 181	IR181	8	8	2 ICLK
0008 70B6h	ICU	Interrupt Request Register 182	IR182	8	8	2 ICLK
0008 70B7h	ICU	Interrupt Request Register 183	IR183	8	8	2 ICLK
0008 70B8h	ICU	Interrupt Request Register 184	IR184	8	8	2 ICLK
0008 70B9h	ICU	Interrupt Request Register 185	IR185	8	8	2 ICLK
0008 70DAh	ICU	Interrupt Request Register 218	IR218	8	8	2 ICLK
0008 70DBh	ICU	Interrupt Request Register 219	IR219	8	8	2 ICLK
0008 70DCh	ICU	Interrupt Request Register 220	IR220	8	8	2 ICLK
0008 70DDh	ICU	Interrupt Request Register 221	IR221	8	8	2 ICLK
0008 70DEh	ICU	Interrupt Request Register 222	IR222	8	8	2 ICLK
0008 70DFh	ICU	Interrupt Request Register 223	IR223	8	8	2 ICLK
0008 70E0h	ICU	Interrupt Request Register 224	IR224	8	8	2 ICLK
0008 70E1h	ICU	Interrupt Request Register 225	IR225	8	8	2 ICLK
0008 70F6h	ICU	Interrupt Request Register 246	IR246	8	8	2 ICLK
0008 70F7h	ICU	Interrupt Request Register 247	IR247	8	8	2 ICLK
0008 70F8h	ICU	Interrupt Request Register 248	IR248	8	8	2 ICLK
0008 70F9h	ICU	Interrupt Request Register 249	IR249	8	8	2 ICLK
0008 711Bh	ICU	DTC Activation Enable Register 027	DTCER027	8	8	2 ICLK
0008 711Ch	ICU	DTC Activation Enable Register 028	DTCER028	8	8	2 ICLK
0008 711Dh	ICU	DTC Activation Enable Register 029	DTCER029	8	8	2 ICLK
0008 711Eh	ICU	DTC Activation Enable Register 030	DTCER030	8	8	2 ICLK
0008 711Fh	ICU	DTC Activation Enable Register 031	DTCER031	8	8	2 ICLK
0008 712Dh	ICU	DTC Activation Enable Register 045	DTCER045	8	8	2 ICLK

Table 4.1 List of I/O Registers (Address Order) (10 / 16)

	Module		Register	Number of		Number of Access Cycles
Address	Symbol	Register Name	Symbol	Bits	Access Size	$\textbf{ICLK} \geq \textbf{PCLK}$
0008 B082h	DOC	DOC Data Input Register	DODIR	16	16	2 or 3 PCLKB
0008 B084h	DOC	DOC Data Setting Register	DODSR	16	16	2 or 3 PCLKB
0008 C000h	PORT0	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C001h	PORT1	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C002h	PORT2	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C003h	PORT3	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C004h	PORT4	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C007h	PORT7	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C009h	PORT9	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C00Ah	PORTA	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C00Bh	PORTB	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C00Dh	PORTD	Port Direction Register	PDR	8	8	2 or 3 PCLKB
0008 C020h	PORT0	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
0008 C021h	PORT1	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
0008 C022h	PORT2	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
0008 C023h	PORT3	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
0008 C024h	PORT4	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
0008 C027h	PORT7	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
0008 C029h	PORT9	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
0008 C02Ah	PORTA	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
0008 C02Bh	PORTB	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
0008 C02Dh	PORTD	Port Output Data Register	PODR	8	8	2 or 3 PCLKB
0008 C040h	PORT0	Port Input Data Register	PIDR	8	8	2 or 3 PCLKB
0008 C041h	PORT1	Port Input Data Register	PIDR	8	8	2 or 3 PCLKB
0008 C042h	PORT2	Port Input Data Register	PIDR	8	8	2 or 3 PCLKB
0008 C043h	PORT3	Port Input Data Register	PIDR	8	8	2 or 3 PCLKB
0008 C044h	PORT4	Port Input Data Register	PIDR	8	8	2 or 3 PCLKB
0008 C047h	PORT7	Port Input Data Register	PIDR	8	8	2 or 3 PCLKB
0008 C049h	PORT9	Port Input Data Register	PIDR	8	8	2 or 3 PCLKB
0008 C04Ah	PORTA	Port Input Data Register	PIDR	8	8	2 or 3 PCLKB
0008 C04Bh	PORTB	Port Input Data Register	PIDR	8	8	2 or 3 PCLKB
0008 C04Dh	PORTD	Port Input Data Register	PIDR	8	8	2 or 3 PCLKB
0008 C04Eh	PORTE	Port Input Data Register	PIDR	8	8	2 or 3 PCLKB
0008 C060h	PORT0	Port Mode Register	PMR	8	8	2 or 3 PCLKB
0008 C061h	PORT1	Port Mode Register	PMR	8	8	2 or 3 PCLKB
0008 C062h	PORT2	Port Mode Register	PMR	8	8	2 or 3 PCLKB
0008 C063h	PORT3	Port Mode Register	PMR	8	8	2 or 3 PCLKB
0008 C067h	PORT7	Port Mode Register	PMR	8	8	2 or 3 PCLKB
0008 C069h	PORT9	Port Mode Register	PMR	8	8	2 or 3 PCLKB
0008 C06Ah	PORTA	Port Mode Register	PMR	8	8	2 or 3 PCLKB
0008 C06Bh	PORTB	Port Mode Register	PMR	8	8	2 or 3 PCLKB
0008 C06Dh	PORTD	Port Mode Register	PMR	8	8	2 or 3 PCLKB
0008 C06Eh	PORTE	Port Mode Register	PMR	8	8	2 or 3 PCLKB
0008 C080h	PORT0	Open Drain Control Register 0	ODR0	8	8, 16	2 or 3 PCLKB
0008 C082h	PORT1	Open Drain Control Register 0	ODR0	8	8, 16	2 or 3 PCLKB
0008 C084h	PORT2	Open Drain Control Register 0	ODR0	8	8, 16	2 or 3 PCLKB
0008 C085h	PORT2	Open Drain Control Register 1	ODR1	8	8, 16	2 or 3 PCLKB
0008 C086h	PORT3	Open Drain Control Register 0	ODR0	8	8, 16	2 or 3 PCLKB
0008 C087h	PORT3	Open Drain Control Register 1	ODR1	8	8, 16	2 or 3 PCLKB
0008 C08Eh	PORT7	Open Drain Control Register 0	ODR0	8	8, 16	2 or 3 PCLKB
0008 C08Fh	PORT7	Open Drain Control Register 1	ODR1	8	8, 16	2 or 3 PCLKB
0008 C092h	PORT9	Open Drain Control Register 0	ODR0	8	8 16	2 or 3 PCI KB

Table 4.1 List of I/O Registers (Address Order) (13 / 16)

	Module		Register	Number of		Number of Access Cycles
Address	Symbol	Register Name	Symbol	Bits	Access Size	$\textbf{ICLK} \geq \textbf{PCLK}$
000A 0CACh	CMPC1	Comparator Output Monitor Register 1	CMPMON	8	8	1 or 2 PCLKB
000A 0CB0h	CMPC1	Comparator External Output Enable Register 1	CMPIOC	8	8	1 or 2 PCLKB
000A 0CC0h	CMPC2	Comparator Control Register 2	CMPCTL	8	8	1 or 2 PCLKB
000A 0CC4h	CMPC2	Comparator Input Select Register 2	CMPSEL0	8	8	1 or 2 PCLKB
000A 0CC8h	CMPC2	Comparator Reference Voltage Select Register 2	CMPSEL1	8	8	1 or 2 PCLKB
000A 0CCCh	CMPC2	Comparator Output Monitor Register 2	CMPMON	8	8	1 or 2 PCLKB
000A 0CD0h	CMPC2	Comparator External Output Enable Register 2	CMPIOC	8	8	1 or 2 PCLKB
000C 1200h	MTU3	Timer Control Register	TCR	8	8, 16, 32	4 or 5 PCLKA
000C 1201h	MTU4	Timer Control Register	TCR	8	8	4 or 5 PCLKA
000C 1202h	MTU3	Timer Mode Register 1	TMDR1	8	8, 16	4 or 5 PCLKA
000C 1203h	MTU4	Timer Mode Register 1	TMDR1	8	8	4 or 5 PCLKA
000C 1204h	MTU3	Timer I/O Control Register H	TIORH	8	8, 16, 32	4 or 5 PCLKA
000C 1205h	MTU3	Timer I/O Control Register L	TIORL	8	8	4 or 5 PCLKA
000C 1206h	MTU4	Timer I/O Control Register H	TIORH	8	8, 16	4 or 5 PCLKA
000C 1207h	MTU4	Timer I/O Control Register L	TIORL	8	8	4 or 5 PCLKA
000C 1208h	MTU3	Timer Interrupt Enable Register	TIER	8	8, 16	4 or 5 PCLKA
000C 1209h	MTU4	Timer Interrupt Enable Register	TIER	8	8	4 or 5 PCLKA
000C 120Ah	MTU	Timer Output Master Enable Register A	TOERA	8	8	4 or 5 PCLKA
000C 120Dh	MTU	Timer Gate Control Register	TGCRA	8	8	4 or 5 PCLKA
000C 120Eh	MTU	Timer Output Control Register 1A	TOCR1A	8	8, 16	4 or 5 PCLKA
000C 120Fh	MTU	Timer Output Control Register 2A	TOCR2A	8	8	4 or 5 PCLKA
000C 1210h	MTU3	Timer Counter	TCNT	16	16, 32	4 or 5 PCLKA
000C 1212h	MTU4	Timer Counter	TCNT	16	16	4 or 5 PCLKA
000C 1214h	MTU	Timer Cycle Data Register A	TCDRA	16	16, 32	4 or 5 PCLKA
000C 1216h	MTU	Timer Dead Time Data Register A	TDDRA	16	16	4 or 5 PCLKA
000C 1218h	MTU3	Timer General Register A	TGRA	16	16, 32	4 or 5 PCLKA
000C 121Ah	MTU3	Timer General Register B	TGRB	16	16	4 or 5 PCLKA
000C 121Ch	MTU4	Timer General Register A	TGRA	16	16, 32	4 or 5 PCLKA
000C 121Eh	MTU4	Timer General Register B	TGRB	16	16	4 or 5 PCLKA
000C 1220h	MTU	Timer Subcounters A	TCNTSA	16	16, 32	4 or 5 PCLKA
000C 1222h	MTU	Timer Cycle Buffer Register A	TCBRA	16	16	4 or 5 PCLKA
000C 1224h	MTU3	Timer General Register C	TGRC	16	16, 32	4 or 5 PCLKA
000C 1226h	MTU3	Timer General Register D	TGRD	16	16	4 or 5 PCLKA
000C 1228h	MTU4	Timer General Register C	TGRC	16	16, 32	4 or 5 PCLKA
000C 122Ah	MTU4	Timer General Register D	TGRD	16	16	4 or 5 PCLKA
000C 122Ch	MTU3	Timer Status Register	TSR	8	8, 16	4 or 5 PCLKA
000C 122Dh	MTU4	Timer Status Register	TSR	8	8	4 or 5 PCLKA
000C 1230h	MTU	Timer Interrupt Skipping Set Register 1A	TITCR1A	8	8, 16	4 or 5 PCLKA
000C 1231h	MTU	Timer Interrupt Skipping Counters 1A	TITCNT1A	8	8	4 or 5 PCLKA
000C 1232h	MTU	Timer Buffer Transfer Set Register A	TBTERA	8	8	4 or 5 PCI KA
000C 1234h	MTU	Timer Dead Time Enable Register A	TDERA	8	8	4 or 5 PCI KA
000C 1236h	MTU	Timer Output Level Buffer Register A	TOLBRA	8	8	4 or 5 PCI KA
000C 1238h	MTU3	Timer Buffer Operation Transfer Mode Register	твтм	8	8 16	4 or 5 PCI KA
000C 1230h	MTU4	Timer Buffer Operation Transfer Mode Register	TBTM	8	0, 10 g	4 or 5 PCI KA
0000 12330	MTU	Timer Interrunt Skinning Mode Register A	TITMRA	8	۵ ۵	
000C 123Rh	MTU	Timer Interrunt Skinning Set Register 24	TITCR24	9 8	۵ ۵	
0000 12300	MTU	Timer Interrunt Skinning Counters 24	TITCNT24	e R	Q Q	
0000 123011	MTUA	Timor A/D Converter Start Request Control Register		0	0	
0000 12400	MTU4	Timer A/D Converter Start Poquest Cuelo Set Pogister		10	16 22	
0000 12440	MTU4	Timor A/D Converter Start Population Cycle Set Register A		10	10, 32	
0000 12400	MTL14	Timer A/D Converter Start Request Cycle Set Register B	TADCORDA	10	10	4 UI 3 POLKA
000C 1248h	IVI I U4	Register A	TADCOBRA	16	16, 32	4 or 5 PCLKA

5.2.2 Standard I/O Pin Output Characteristics (2)

Figure 5.8 to Figure 5.11 show the characteristics when high-drive output is selected by the drive capacity control register.

Figure 5.8 V_{OH}/V_{OL} and I_{OH}/I_{OL} Voltage Characteristics at $T_a = 25^{\circ}$ C When Normal Output is Selected (Reference Data)

5.2.3 Standard I/O Pin Output Characteristics (3)

Figure 5.12 to Figure 5.15 show the output characteristics of the large current ports (ports 71 to 76, port B5, port D3).

Figure 5.12 V_{OH}/V_{OL} and I_{OH}/I_{OL} Voltage Characteristics of Large Current Ports (Ports 71 to 76, Port B5, Port D3) at T_a = 25°C (Reference Data)

Figure 5.13 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics of Large Current Ports (Ports 71 to 76, Port B5, Port D3) at VCC = 2.7 V (Reference Data)

Figure 5.14 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics of Large Current Ports (Ports 71 to 76, Port B5, Port D3) at VCC = 5.0 V (Reference Data)

Figure 5.15 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics of Large Current Ports (Ports 71 to 76, Port B5, Port D3) at VCC = 5.5 V (Reference Data)

5.2.4 RIIC Pin Output Characteristics

Figure 5.16 to Figure 5.19 show the output characteristics of the RIIC pin.

5.3 **AC Characteristics**

5.3.1 **Clock Timing**

Table 5.14 **Operating Frequency Value (High-Speed Operating Mode)**

Conditions: VCC = 2.7 V to 5.5 V, AVCC0 = VREFH0 = VCC to 5.5 V, VSS = AVSS0 = VREFL0 = 0 V, T_a = -40 to +105°C

Item		Symbol	min.	typ.	max.	Unit
Maximum operating frequency	System clock (ICLK)	f _{max}	—	_	40	MHz
	FlashIF clock (FCLK)*1, *2		—	_	32	
	Peripheral module clock (PCLKA)		—	—	40	
	Peripheral module clock (PCLKB)		—	_	40	
	Peripheral module clock (PCLKD)		_	_	40	

Note 1. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. Note 2. The frequency accuracy of FCLK should be ±3.5%.

Table 5.15 **Operating Frequency Value (Middle-Speed Operating Mode)**

Conditions: VCC = 2.7 V to 5.5 V, AVCC0 = VREFH0 = VCC to 5.5 V, VSS = AVSS0 = VREFL0 = 0 V, T_a = -40 to +105°C

ltem		Symbol	min.	typ.	max.	Unit
Maximum operating frequency	System clock (ICLK)	f _{max}	_	_	12	MHz
	FlashIF clock (FCLK)*1, *2		_	—	12	
	Peripheral module clock (PCLKA)		_	_	12	
	Peripheral module clock (PCLKB)		_	_	12	
	Peripheral module clock (PCLKD)		—	—	12	

Note 1. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 2. The frequency accuracy of FCLK should be ±3.5%.

Table 5.20 Timing of Recovery from Low Power Consumption Modes (3)

Conditions: VCC = 2.7 V to AVCC0, AVCC0 = VREFH0 = 2.7 V to 5.5 V, VSS = AVSS0 = VREFL0 = 0 V, T_a = -40 to +105°C

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Recovery time from deep sleep mode*1	High-speed mode*2	t _{DSLP}	—	2	3.5	μs	Figure 5.31
	Middle-speed mode*3	t _{DSLP}	—	3	4	μs	

Note 1. Oscillators continue oscillating in deep sleep mode.

Note 2. When the frequency of the system clock is 32 MHz.

Note 3. When the frequency of the system clock is 12 MHz.

Figure 5.31 Deep Sleep Mode Recovery Timing

Table 5.21 Operating Mode Transition Time

Conditions: VCC = 2.7 V to AVCC0, AVCC0 = VREFH0 = 2.7 V to 5.5 V, VSS = AVSS0 = VREFL0 = 0 V, $T_a = -40$ to $+105^{\circ}$ C

Mode before Transition	Mode after Transition		Tra	Linit		
Mode before transition		ICENTITEquency	Min.	Тур.	Max.	Onit
High-speed operating mode	Middle-speed operating modes	8 MHz	—	10	—	μs
Middle-speed operating modes	High-speed operating mode	8 MHz	—	37.5	—	μs

Note: Values when the frequencies of PCLKB, PCLKD, and FCLK are not divided.

Table 5.26 **Timing of On-Chip Peripheral Modules (4)**

Conditions: VCC = 2.7 V to 5.5 V, AVCC0 = VREFH0 = VCC to 5.5 V, VSS = AVSS0 = VREFL0 = 0 V, $T_a = -40$ to +105°C

	Item	Symbol	Min.*1, *2	Max.	Unit	Test Conditions	
RIIC	SCL cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 1300		ns	Figure 5.47	
(Standard mode, SMBus)	SCL high pulse width	t _{SCLH}	3 (6) × t _{IICcyc} + 300	_	ns		
	SCL low pulse width	t _{SCLL}	3 (6) × t_{IICcyc} + 300		ns		
	SCL, SDA rise time	t _{Sr}	—	1000	ns		
	SCL, SDA fall time	t _{Sf}	—	300	ns		
	SCL, SDA spike pulse removal time	t _{SP}	0	1 (4) × t _{IICcyc}	ns		
	SDA bus free time	t _{BUF}	3 (6) × t _{IICcyc} + 300	_	ns		
	START condition hold time	t _{STAH}	t _{IICcyc} + 300	_	ns		
	Repeated START condition setup time	t _{STAS}	1000	_	ns		
	STOP condition setup time	t _{STOS}	1000	_	ns		
	Data setup time	t _{SDAS}	t _{IICcyc} + 50	_	ns		
	Data hold time	t _{SDAH}	0	_	ns		
	SCL, SDA capacitive load	Cb	—	400	pF		
RIIC	SCL cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 600	_	ns	Figure 5.47	
(Fast mode)	SCL high pulse width	t _{SCLH}	3 (6) × t _{IICcyc} + 300	_	ns		
	SCL low pulse width	t _{SCLL}	3 (6) × t _{IICcyc} + 300	_	ns		
	SCL, SDA rise time	t _{Sr}	—	300	ns		
	SCL, SDA fall time	t _{Sf}	—	300	ns		
	SCL, SDA spike pulse removal time	t _{SP}	0	1 (4) × t _{IICcyc}	ns		
	SDA bus free time	t _{BUF}	3 (6) × t _{IICcyc} + 300	_	ns		
	START condition hold time	t _{STAH}	t _{IICcyc} + 300	_	ns		
	Repeated START condition setup time	t _{STAS}	300	_	ns		
	STOP condition setup time	t _{STOS}	300	_	ns		
	Data setup time	t _{SDAS}	t _{IICcyc} + 50	_	ns		
	Data hold time	t _{SDAH}	0		ns		
	SCL, SDA capacitive load	Cb	_	400	pF		

Note 1. t_{IICcyc} : RIIC internal reference count clock (IIC ϕ) cycle Note 2. The value in parentheses is used when the ICMR3.NF[1:0] bits are set to 11b while a digital filter is enabled with the ICFER.NFE bit = 1.

Differential nonlinearity error (DNL)

Differential nonlinearity error is the difference between 1-LSB width based on the ideal A/D conversion characteristics and the width of the actual output code.

Offset error

Offset error is the difference between a transition point of the ideal first output code and the actual first output code.

Full-scale error

Full-scale error is the difference between a transition point of the ideal last output code and the actual last output code.

Figure 5.53 Voltage Detection Circuit Timing (V_{det1})

Figure 5.54 Voltage Detection Circuit Timing (V_{det2})

5.9 ROM (Flash Memory for Code Storage) Characteristics

Table 5.37	ROM (Flash Memory for Code Storage) Characteristics (1)
------------	---

Item		Symbol	Min.	Тур.	Max.	Unit	Conditions
Reprogramming/erasure cycle*1		N _{PEC}	1000	_	_	Times	
Data hold time	After 1000 times of N_{PEC}	t _{DRP}	20*2, *3	_		Year	T _a = +85°C

Note 1. Definition of reprogram/erase cycle: The reprogram/erase cycle is the number of erasing for each block. When the reprogram/ erase cycle is n times (n = 1000), erasing can be performed n times for each block. For instance, when 4-byte programming is performed 256 times for different addresses in 1-Kbyte block and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasing is not enabled (overwriting is prohibited).

Note 2. Characteristic when using the flash memory programmer and the self-programming library provided from Renesas Electronics. Note 3. This result is obtained from reliability testing.

Table 5.38 ROM (Flash Memory for Code Storage) Characteristics (2): High-Speed Operating Mode

Conditions: VCC = 2.7 V to 5.5 V, AVCC0 = VREFH0 = VCC to 5.5 V, VSS = AVSS0 = VREFL0 = 0 V, T_a = -40 to +105°C Temperature range for the programming/erasure operation: $T_a = -40$ to +85°C

Item		Symbol	FCLK = 1 MHz			FCLK = 32 MHz			l loit
			Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Programming time	8-byte	t _{P8}	_	112.0	967.0	_	52.3	490.5	μs
Erasure time	2-Kbyte	t _{E2K}	_	8.7	278.1	_	5.5	214.6	ms
	128-Kbyte (when block erase command used)		_	239.7	5111.4	_	25.9	734.3	ms
	128-Kbyte (when all- block erase command used)	t _{E128K}	_	234.5	4906.8	_	20.6	524.6	ms
Blank check time	8-byte	t _{BC8}		—	55.0	_	—	16.1	μs
	2-Kbyte	t _{BC2K}	_	—	1840.0	_	—	135.7	μs
Erase operation forcible stop time		t _{SED}	_	—	18.0	_	—	10.7	μs
Start-up area switching setting time		t _{SAS}	_	12.3	566.5	_	6.2	433.5	ms
Access window time		t _{AWS}	—	12.3	566.5	—	6.2	433.5	ms
ROM mode transition wait time 1		t _{DIS}	2.0	—	—	2.0	—	—	μs
ROM mode transition wait time 2		t _{MS}	5.0	_	_	5.0	_	_	μs

Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software. Note: The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below

4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set. Note: The frequency accuracy of FCLK should be ±3.5%.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
 - are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do not access
 these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
 Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

— The characteristics of an MPU or MCU in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits software or information 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, lease evaluate the safety of the final products or systems manufactured by you 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information.

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 **Renesas Electronics Europe Limited** Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +88-10-8235-1155, Fax: +88-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tei: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Non-case Lectronics nong rong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +56-5613-0200, Fax: +65-6213-0300 t 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207. Block B. Menara Amcorp. Amco Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141

Notice