

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f25q10-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device Overview

Value	Description
f	Reset Value is determined by fuse setting
g	Reset Value at POR for PPS re-mappable signals

4.5 Register Summary - OSC

Address	Name	Bit Pos.								
0x0ED3	OSCCON1	7:0			NOSC[2:0]			NDIV	/[3:0]	
0x0ED4	OSCCON2	7:0			COSC[2:0]			CDI	/[3:0]	
0x0ED5	OSCCON3	7:0	CSWHOLD	SOSCPWR		ORDY	NOSCR			
0x0ED6	OSCSTAT	7:0	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR		PLLR
0x0ED7	OSCEN	7:0	EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN		
0x0ED8	OSCTUNE	7:0					HFTU	N[5:0]		
0x0ED9	OSCFRQ	7:0						HFFR	Q[3:0]	

4.6 Register Definitions: Oscillator Control

4.6.4 OSCSTAT

Name:	OSCSTAT
Address:	0xED6

Oscillator Status Register 1

Bit	7	6	5	4	3	2	1	0
	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR		PLLR
Access	RO	RO	RO	RO	RO	RO		RO
Reset	q	q	q	q	q	q		q

Bit 7 - EXTOR EXTOSC (external) Oscillator Ready bit

Va	lue	Description
1		The oscillator is ready to be used
0		The oscillator is not enabled, or is not yet ready to be used

Bit 6 - HFOR HFINTOSC Oscillator Ready bit

	/alue	Description
-	L	The oscillator is ready to be used
()	The oscillator is not enabled, or is not yet ready to be used

Bit 5 - MFOR MFINTOSC Oscillator Ready bit

Value	Description
1	The oscillator is ready to be used
0	The oscillator is not enabled, or is not yet ready to be used

Bit 4 - LFOR LFINTOSC Oscillator Ready bit

Value	Description
1	The oscillator is ready to be used
0	The oscillator is not enabled, or is not yet ready to be used

Bit 3 – SOR Secondary (Timer1) Oscillator Ready bit

Value	Description
1	The oscillator is ready to be used
0	The oscillator is not enabled, or is not yet ready to be used

Bit 2 - ADOR ADC Oscillator Ready bit

Value	Description
1	The oscillator is ready to be used
0	The oscillator is not enabled, or is not yet ready to be used

Bit 0 - PLLR PLL Ready bit

5.6.1 CLKRCON

Name:	CLKRCON
Address:	0xF39

Reference Clock Control Register

Bit	7	6	5	4	3	2	1	0
	EN			DC[[1:0]		DIV[2:0]	
Access	R/W			R/W	R/W	R/W	R/W	R/W
Reset	0			1	0	0	0	0

Bit 7 – EN

Reference Clock Module Enable bit

Value	Description
1	Reference clock module enabled
0	Reference clock module is disabled

Bits 4:3 - DC[1:0]

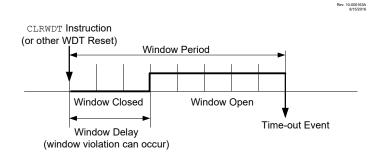
Reference Clock Duty Cycle bits⁽¹⁾

Value	Description
11	Clock outputs duty cycle of 75%
10	Clock outputs duty cycle of 50%
01	Clock outputs duty cycle of 25%
00	Clock outputs duty cycle of 0%

Bits 2:0 – DIV[2:0]

Reference Clock Divider bits

Value	Description
111	Base clock value divided by 128
110	Base clock value divided by 64
101	Base clock value divided by 32
100	Base clock value divided by 16
011	Base clock value divided by 8
010	Base clock value divided by 4
001	Base clock value divided by 2
000	Base clock value


Note:

1. Bits are valid for reference clock divider values of two or larger, the base clock cannot be further divided.

(WWDT) Windowed Watchdog Timer

Conditions	WWDT
WDTE = 10 and enter Sleep	
CLRWDT Command	
Oscillator Fail Detected	
Exit Sleep + System Clock = SOSC, EXTRC, INTOSC, EXTCLK	
Exit Sleep + System Clock = XT, HS, LP	Cleared until the end of OST
Change INTOSC divider (IRCF bits)	Unaffected

Figure 9-2. Window Period and Delay

Related Links

4.2.1.3 Oscillator Start-up Timer (OST)10.8.5 STATUS8.14.2 PCON010. Memory Organization

13.12.4 CRCACC

Name:	CRCACC
Address:	0xF71
Reset:	0

CRC Accumulator Register

Bit	15	14	13	12	11	10	9	8
				CRCAC	CH[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CRCAC	CL[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 – CRCACCH[7:0] CRC Accumulator Register most significant byte Writing to this register writes the Most Significant Byte of the CRC accumulator register. Reading from

this register reads the Most Significant Byte of the CRC accumulator.

Bits 7:0 – CRCACCL[7:0] CRC Accumulator Register least significant byte Writing to this register writes the Least Significant Byte of the CRC accumulator register. Reading from this register reads the Least Significant Byte of the CRC accumulator.

14.13.7 PIR5

Name: PIR5 Address: 0xECA

Peripheral Interrupt Request (Flag) Register 5

Bit	7	6	5	4	3	2	1	0
						TMR5GIF	TMR3GIF	TMR1GIF
Access						R/W	R/W	R/W
Reset						0	0	0

Bit 2 – TMR5GIF TMR5 Gate Interrupt Flag bit

Value	Description
1	TMR5 gate interrupt occurred (must be cleared in software)
0	No TMR5 gate occurred

Bit 1 – TMR3GIF TMR3 Gate Interrupt Flag bit

Valu	ue	Description
1		TMR3 gate interrupt occurred (must be cleared in software)
0		No TMR3 gate occurred

Bit 0 – TMR1GIF TMR1 Gate Interrupt Flag bit

Value	Description
1	TMR1 gate interrupt occurred (must be cleared in software)
0	No TMR1 gate occurred

14.13.16 PIE6

Name: PIE6 Address: 0xEC3

Peripheral Interrupt Enable Register 6

Bit 1 – CCP2IE ECCP2 Interrupt Enable bit

Value	Description
1	Enabled
0	Disabled

Bit 0 - CCP1IE ECCP1 Interrupt Enable bit

Value	Description
1	Enabled
0	Disabled

15.5.4 PORTE

Name:PORTEAddress:0xF90

PORTE Register

Note: Writes to PORTE are actually written to the corresponding LATE register. Reads from PORTE register return actual I/O pin values.

Bit	7	6	5	4	3	2	1	0
					RE3			
Access					R/W	-		
Reset					x			

Bit 3 – RE3 Port I/O Value bits

Note: Bit RE3 is read-only, and will read '1' when MCLRE = 1 (Master Clear enabled).

Reset States: POR/BOR = x

All Other Resets = u

Value	Description
1	Port pin is ≥ V _{IH}
0	Port pin is ≤ V _{IL}

15.5.7 TRISC

Name:TRISCAddress:0xF89

Tri-State Control Register

Bit	7	6	5	4	3	2	1	0
	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
Access	R/W							
Reset	1	1	1	1	1	1	1	1

Bits 0, 1, 2, 3, 4, 5, 6, 7 - TRISCn TRISC Port I/O Tri-state Control bits

Value	Description
1	Port output driver is disabled
0	Port output driver is enabled

21.6.4 CCPTMRS

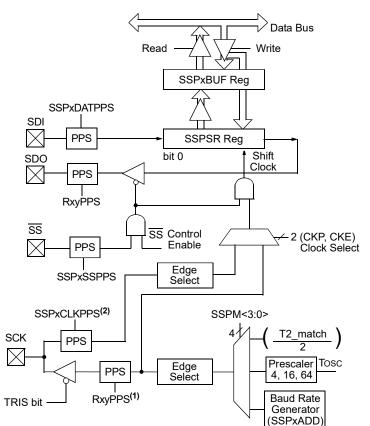
Name:	CCPTMRS
Address:	0xFAD

CCP Timers Control Register

Bit	7	6	5	4	3	2	1	0	
	P4TSEL[1:0]		P3TSEL[1:0]		C2TSI	EL[1:0]	C1TSEL[1:0]		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	1	0	1	0	1	0	1	

Bits 4:5, 6:7 – PnTSEL PWMn Timer Selection bits

Value	Description
11	PWMn based on Timer6
10	PWMn based on Timer4
01	PWMn based on Timer2
00	Reserved

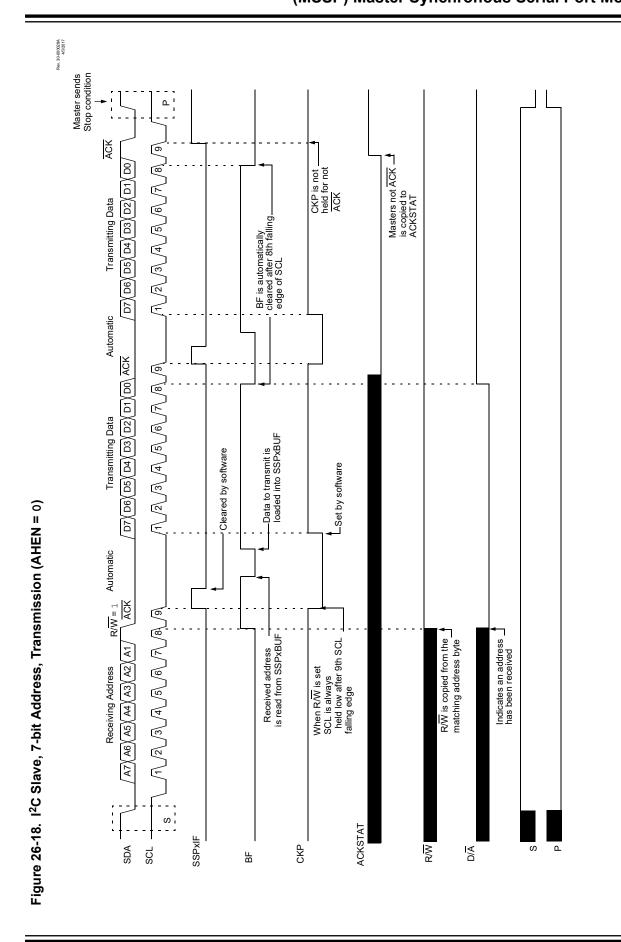

Bits 0:1, 2:3 - CnTSEL CCPn Timer Selection bits

Value	Description
11	CCPn is based off Timer5 in Capture/Compare mode and Timer6 in PWM mode
10	CCPn is based off Timer3 in Capture/Compare mode and Timer4 in PWM mode
01	CCPn is based off Timer1 in Capture/Compare mode and Timer2 in PWM mode
00	Reserved

PIC18F24/25Q10 (MSSP) Master Synchronous Serial Port Module

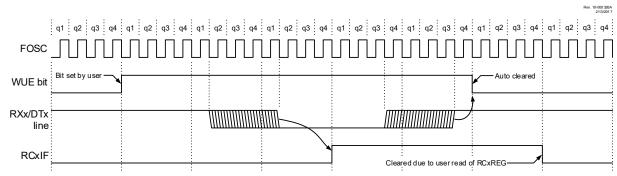
Rev. 30-000011A 3/31/2017

Figure 26-1. MSSP Block Diagram (SPI mode)


Note 1: Output selection for master mode

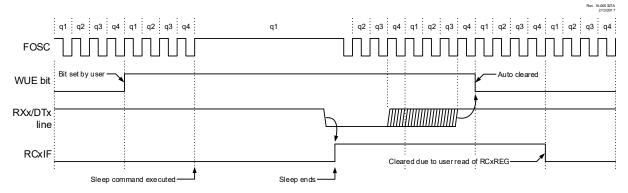
2: Input selection for slave and master mode

The SPI bus operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.


The figure below shows a typical connection between a master device and multiple slave devices.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

© 2018 Microchip Technology Inc.


PIC18F24/25Q10 (EUSART) Enhanced Universal Synchronous Asyn...

Note 1: The EUSART remains in idle while the WUE bit is set.

Figure 27-8. Auto-Wake-up Bit (WUE) Timings During Sleep

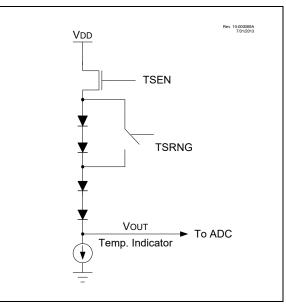
Note 1: The EUSART remains in idle while the WUE bit is set.

27.2.4 Break Character Sequence

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TXxSTA register. The Break character transmission is then initiated by a write to the TXxREG. The value of data written to TXxREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).


The TRMT bit of the TXxSTA register indicates when the transmit operation is active or idle, just as it does during normal transmission. See Figure 27-9 for more detail.

27.2.4.1 Break and Sync Transmit Sequence

The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TXxREG with a dummy character to initiate transmission (the value is ignored).

Figure 29-1. Temperature Circuit Diagram

Related Links

28. (FVR) Fixed Voltage Reference

29.2 Minimum Operating V_{DD}

When the temperature circuit is operated in low range, the device may be operated at any operating voltage that is within specifications.

When the temperature circuit is operated in high range, the device operating voltage, V_{DD}, must be high enough to ensure that the temperature circuit is correctly biased.

Table 29-1 shows the recommended minimum V_{DD} vs. range setting.

Table 29-1. Recommended V_{DD} vs. Range

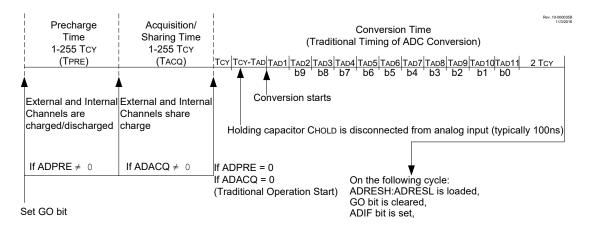
Min. V _{DD} , TSRNG = 1	Min. V _{DD} , TSRNG = 0			
3.6V	1.8V			

29.3 Temperature Output

The output of the circuit is measured using the internal Analog-to-Digital Converter. A channel is reserved for the temperature circuit output. Refer to *"Analog-to-Digital Converter with Computation (ADC²) Module"* chapter for detailed information.

Related Links

31. (ADC2) Analog-to-Digital Converter with Computation Module


(ADC2) Analog-to-Digital Converter with Comp...

	ck Period _{AD})	Device Frequency (F _{OSC})							
ADC Clock Source	ADCLK	64 MHz	32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz	
F _{OSC} /128	111111	2.0 µs	4.0 µs	6.4 µs	8.0 µs	16.0 μs ⁽³⁾	32.0 µs ⁽²⁾	128.0 μs ⁽²⁾	
FRC	ADCS=1	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	

Note:

- 1. See T_{AD} parameter in the "Electrical Specifications" section for FRC source typical T_{AD} value.
- 2. These values violate the required T_{AD} time.
- 3. Outside the recommended T_{AD} time.
- 4. The ADC clock period (T_{AD}) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock F_{OSC}. However, the FRC oscillator source must be used when conversions are to be performed with the device in Sleep mode.

Figure 31-2. Analog-to-Digital Conversion T_{AD} Cycles

Related Links

38.4.8 Analog-to-Digital Converter (ADC) Conversion Timing Specifications

31.1.5 Interrupts

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital Conversion. The ADC Interrupt Flag is the ADIF bit in the PIRx register. The ADC Interrupt Enable is the ADIE bit in the PIEx register. The ADIF bit must be cleared in software.

Important:

- 1. The ADIF bit is set at the completion of every conversion, regardless of whether or not the ADC interrupt is enabled.
- 2. The ADC operates during Sleep only when the FRC oscillator is selected.

Register Summary

Address	Name	Bit Pos.								
0x0EF4	RC2PPS	7:0						PPS[4:0]		
0x0EF5	RC3PPS	7:0						PPS[4:0]		
0x0EF6	RC4PPS	7:0				PPS[4:0]				
0x0EF7	RC5PPS	7:0						PPS[4:0]		
0x0EF8	RC6PPS	7:0						PPS[4:0]		
0x0EF9	RC7PPS	7:0						PPS[4:0]		
0x0EFA	Konro	7.0						110[4.0]		
	Reserved									
 0x0F04	Roborrou									
0x0F05	IOCAF	7:0	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0
0x0F06	IOCAN	7:0	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0
0x0F07	IOCAP	7:0	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0
0x0F08	INLVLA	7:0	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0
0x0F09	SLRCONA	7:0	SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0
0x0F0A	ODCONA	7:0	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0
0x0F0B	WPUA	7:0	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0
0x0F0C	ANSELA	7:0	ANSELA7	ANSELA6	ANSELA5	ANSELA4	ANSELA3	ANSELA2	ANSELA1	ANSELA0
0x0F0D	IOCBF	7:0	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0
0x0F0E	IOCBN	7:0	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0
0x0F0F	IOCBP	7:0	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0
0x0F10	INLVLB	7:0	INLVLB7	INLVLB6	INLVLB5	INLVLB4	INLVLB3	INLVLB2	INLVLB1	INLVLB0
0x0F11	SLRCONB	7:0	SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0
0x0F12	ODCONB	7:0	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0
0x0F13	WPUB	7:0	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0
0x0F14	ANSELB	7:0	ANSELB7	ANSELB6	ANSELB5	ANSELB4	ANSELB3	ANSELB2	ANSELB1	ANSELB0
0x0F15	IOCCF	7:0	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0
0x0F16	IOCCN	7:0	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0
0x0F17	IOCCP	7:0	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0
0x0F18	INLVLC	7:0	INLVLC7	INLVLC6	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0
0x0F19	SLRCONC	7:0	SLRC7	SLRC6	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0
0x0F1A	ODCONC	7:0	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0
0x0F1B	WPUC	7:0	WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0
0x0F1C	ANSELC	7:0	ANSELC7	ANSELC6	ANSELC5	ANSELC4	ANSELC3	ANSELC2	ANSELC1	ANSELC0
0x0F1D										
	Reserved									
0x0F21										
0x0F22	IOCEF	7:0					IOCEF3			
0x0F23	IOCEN	7:0					IOCEN3			
0x0F24	IOCEP	7:0					IOCEP3			
0x0F25	INLVLE	7:0					INLVLE3			
0x0F26										
	Reserved									
0x0F27										
0x0F28	WPUE	7:0					WPUE3			
0x0F29	Reserved									
0x0F2A	HLVDCON0	7:0	EN		OUT	RDY			INTH	INTL

Table 36-2. Instruction Set

Mnemo	nic,			16-Bit Instruction Word				Status	
Operands		Description	Cycles	MSb			LSb	Affected	Notes
	BYTE-ORIENTED OPERATIONS								
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and CARRY bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1, 2
CLRF	f, a	Clear f	1	0110	101a	ffff	fff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, skip =	1 (2 or 3)	0110	001a	fff	fff	None	4
CPFSGT	f, a	Compare f with WREG, skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	fff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	

36.1.1 Standard Instruction Set

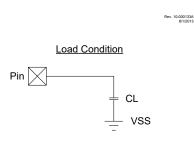
ADDLW	ADD literal to W						
Syntax:	ADDLW k	ADDLW k					
Operands:	0 ≤ k ≤ 255						
Operation:	$(W) + k \rightarrow W$						
Status Affected:	N, OV, C, DC, Z						
Encoding:	0000	1111	kkkk	kkkk			
Description:	The contents of W are added to the 8-bit literal 'k' and the result is placed in W.						
Words:	1						
Cycles:	1						

Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read literal 'k'	Process Data	Write to W

Example:	ADDLW	15h
Before Instruction W = 10h		
After Instruction		
W = 25h		

ADDWF	ADD W to f					
Syntax:	ADDWF f {,d {,a}}	ADDWF f {,d {,a}}				
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$					
Operation:	$(W) + (f) \rightarrow dest$					
Status Affected:	N, OV, C, DC, Z					
Encoding:	0010 01da ffff fff					
Description:	Add W to register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.					

Electrical Specifications


Standard Operating Conditions (unless otherwise stated)					
Param No.	Sym.	Characteristic	Тур.	Units	Conditions
			24	°C/W	28-pin SSOP package
			24	°C/W	28-pin UQFN 4x4mm package
			24	°C/W	28-pin QFN 6x6mm package
TH03	T _{JMAX}	Maximum Junction Temperature	150	°C	
TH04	PD	Power Dissipation	_	W	PD=P _{INTERNAL} +P _{I/O} ⁽³⁾
TH05	PINTERNAL	Internal Power Dissipation	_	W	P _{INTERNAL} =I _{DD} xV _{DD} ⁽¹⁾
TH06	P _{I/O}	I/O Power Dissipation	_	W	$P_{I/O} = \Sigma(I_{OL} * V_{OL}) + \Sigma(I_{OH} * (V_{DD} - V_{OH}))$
TH07	P _{DER}	Derated Power	_	W	$P_{DER} = PD_{MAX} (T_{J} - T_{A}) / \theta_{JA}^{(2)}$
Note:					

1. I_{DD} is current to run the chip alone without driving any load on the output pins.

- 2. T_A = Ambient Temperature, T_J = Junction Temperature.
- 3. See "Absolute Maximum Ratings" for total power dissipation.

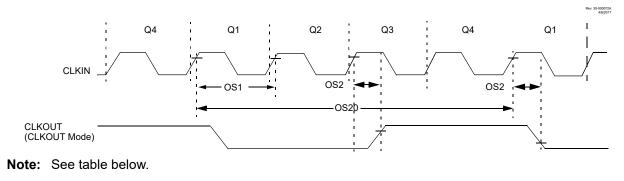

38.4 AC Characteristics

Figure 38-3. Load Conditions

Legend: CL=50 pF for all pins

38.4.1 External Clock/Oscillator Timing Requirements Figure 38-4. Clock Timing

