
Microchip Technology - PIC18F25Q10T-I/SS Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 64MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 25

Program Memory Size 32KB (32K x 8)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 5.5V

Data Converters A/D 24x10b; D/A 1x5b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 28-SSOP (0.209", 5.30mm Width)

Supplier Device Package 28-SSOP

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18f25q10t-i-ss

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18f25q10t-i-ss-4385141
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

3.7.1 CONFIG1

Name:  CONFIG1
Address:  0x300000

Configuration word 1

Oscillators

Bit 15 14 13 12 11 10 9 8
 FCMEN CSWEN CLKOUTEN

Access R/W R/W R/W
Reset 1 1 1

Bit 7 6 5 4 3 2 1 0
 RSTOSC[2:0] FEXTOSC[2:0]

Access R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1

Bit 13 – FCMEN Fail-Safe Clock Monitor Enable bit

Value Description
1 Fail Safe Clock Monitor enabled
0 Fail Safe Clock Monitor disabled

Bit 11 – CSWEN Clock Switch Enable bit

Value Description
1 Writing to NOSC and NDIV is allowed
0 The NOSC and NDIV bits cannot be changed by user software

Bit 8 – CLKOUTEN Clock Out Enable bit
If FEXTOSC = HS, XT, LP, then this bit is ignored.

Otherwise:

Value Description
1 CLKOUT function is disabled; I/O function on OSC2
0 CLKOUT function is enabled; FOSC/4 clock appears at OSC2

Bits 6:4 – RSTOSC[2:0] Power-up Default Value for COSC bits
This value is the Reset default value for COSC and selects the oscillator first used by user software.
Refer to COSC operation.

Value Description
111 EXTOSC operating per FEXTOSC bits (device manufacturing default)
110 HFINTOSC with HFFRQ = 4 MHz and CDIV = 4:1
101 LFINTOSC
100 SOSC
011 Reserved
010 EXTOSC with 4x PLL, with EXTOSC operating per FEXTOSC bits

 PIC18F24/25Q10
Device Configuration

© 2018 Microchip Technology Inc. Datasheet Preliminary DS40001945B-page 27

then the duty cycle defaults to 50% for all values of DC except 0b00 in which case the duty cycle is 0%
(constant low output).

The duty cycle can be changed while the module is enabled. However, in order to prevent glitches on the
output, the 5.6.1.2 DC bits should only be changed when the module is disabled (5.6.1.1 EN = 0).

Important:  The 5.6.1.2 DC value at reset is 10. This makes the default duty cycle 50% and
not 0%.

5.4 Operation in Sleep Mode
The reference clock module continues to operate and provide a signal output in Sleep for all clock source
selections except FOSC (5.6.2.1 CLK=0).

 PIC18F24/25Q10
Reference Clock Output Module

© 2018 Microchip Technology Inc. Datasheet Preliminary DS40001945B-page 65

7. (PMD) Peripheral Module Disable
This module provides the ability to selectively enable or disable a peripheral. Disabling a peripheral
places it in its lowest possible power state. The user can disable unused modules to reduce the overall
power consumption.

The PIC18F24/25Q10 devices address this requirement by allowing peripheral modules to be selectively
enabled or disabled. Disabling a peripheral places it in the lowest possible power mode.

Important:  All modules are ON by default following any system Reset.

7.1 Disabling a Module
A peripheral can be disabled by setting the corresponding peripheral disable bit in the PMDx register.
Disabling a module has the following effects:

• The module is held in Reset and does not function.
• All the SFRs pertaining to that peripheral become “unimplemented”

– Writing is disabled
– Reading returns 0x00

• Module outputs are disabled

Related Links
15.1 I/O Priorities

7.2 Enabling a Module
Clearing the corresponding module disable bit in the PMDx register, re-enables the module and the SFRs
will reflect the Power-on Reset values.

Important:  There should be no reads/writes to the module SFRs for at least two instruction
cycles after it has been re-enabled.

 PIC18F24/25Q10
(PMD) Peripheral Module Disable

© 2018 Microchip Technology Inc. Datasheet Preliminary DS40001945B-page 79

9. (WWDT) Windowed Watchdog Timer
The Watchdog Timer (WDT) is a system timer that generates a Reset if the firmware does not issue a
CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the
system from unexpected events. The Windowed Watchdog Timer (WWDT) differs in that CLRWDT
instructions are only accepted when they are performed within a specific window during the time-out
period.

The WWDT has the following features:

• Selectable clock source
• Multiple operating modes

– WWDT is always on
– WWDT is off when in Sleep
– WWDT is controlled by software
– WWDT is always off

• Configurable time-out period is from 1 ms to 256s (nominal)
• Configurable window size from 12.5% to 100% of the time-out period
• Multiple Reset conditions

 PIC18F24/25Q10
(WWDT) Windowed Watchdog Timer

© 2018 Microchip Technology Inc. Datasheet Preliminary DS40001945B-page 102

address of the register. When ‘a’ is ‘0’, the address is interpreted as being a register in the Access Bank.
Addressing that uses the Access RAM is sometimes also known as Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire 12-bit address (either source or destination) in their
opcodes. In these cases, the BSR is ignored entirely.

The destination of the operation’s results is determined by the destination bit ‘d’. When ‘d’ is ‘1’, the
results are stored back in the source register, overwriting its original contents. When ‘d’ is ‘0’, the results
are stored in the W register. Instructions without the ‘d’ argument have a destination that is implicit in the
instruction; their destination is either the target register being operated on or the W register.

10.4.3 Indirect Addressing
Indirect addressing allows the user to access a location in data memory without giving a fixed address in
the instruction. This is done by using File Select Registers (FSRs) as pointers to the locations which are
to be read or written. Since the FSRs are themselves located in RAM as Special File Registers, they can
also be directly manipulated under program control. This makes FSRs very useful in implementing data
structures, such as tables and arrays in data memory.

The registers for indirect addressing are also implemented with Indirect File Operands (INDFs) that permit
automatic manipulation of the pointer value with auto-incrementing, auto-decrementing or offsetting with
another value. This allows for efficient code, using loops, such as the following example of clearing an
entire RAM bank.

Example 10-3. How to Clear RAM (Bank 1) Using Indirect Addressing

 LFSR FSR0,100h ; Set FSR0 to beginning of Bank1
NEXT:
 CLRF POSTINC0 ; Clear location in Bank1 then increment FSR0

 BTFSS FSR0H,1 ; Has high FSR0 byte incremented to next bank?
 BRA NEXT ; NO, clear next byte in Bank1

CONTINUE: ; YES, continue

10.4.3.1 FSR Registers and the INDF Operand
At the core of indirect addressing are three sets of registers: FSR0, FSR1 and FSR2. Each represents a
pair of 8-bit registers, FSRnH and FSRnL. Each FSR pair holds a 12-bit value, therefore, the four upper
bits of the FSRnH register are not used. The 12-bit FSR value can address the entire range of the data
memory in a linear fashion. The FSR register pairs, then, serve as pointers to data memory locations.

Indirect addressing is accomplished with a set of Indirect File Operands, INDF0 through INDF2. These
can be thought of as “virtual” registers; they are mapped in the SFR space but are not physically
implemented. Reading or writing to a particular INDF register actually accesses its corresponding FSR
register pair. A read from INDF1, for example, reads the data at the address indicated by FSR1H:FSR1L.
Instructions that use the INDF registers as operands actually use the contents of their corresponding FSR
as a pointer to the instruction’s target. The INDF operand is just a convenient way of using the pointer.

Because indirect addressing uses a full 12-bit address, the FSR value can target any location in any bank
regardless of the BSR value. However, the Access RAM bit must be cleared to 0 to ensure that the INDF
register in Access space is the object of the operation instead of a register in one of the other banks. The
assembler default value for the Access RAM bit is zero when targeting any of the indirect operands.

10.4.3.2 FSR Registers and POSTINC, POSTDEC, PREINC and PLUSW
In addition to the INDF operand, each FSR register pair also has four additional indirect operands. Like
INDF, these are “virtual” registers which cannot be directly read or written. Accessing these registers

 PIC18F24/25Q10
Memory Organization

© 2018 Microchip Technology Inc. Datasheet Preliminary DS40001945B-page 128

10.8.4 STKPTR

Name:  STKPTR
Address:  0xFFC

Stack Pointer Register

Bit 7 6 5 4 3 2 1 0
 STKPTR[4:0]

Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Bits 4:0 – STKPTR[4:0] Stack Pointer Location bits

 PIC18F24/25Q10
Memory Organization

© 2018 Microchip Technology Inc. Datasheet Preliminary DS40001945B-page 138

11.5.2 NVMCON1

Name:  NVMCON1
Address:  0xF80

Nonvolatile Memory Control 1 Register

Bit 7 6 5 4 3 2 1 0
 SECER SECWR WR SECRD RD

Access R/S/HC R/S/HC R/S/HC R/S/HC R/S/HC
Reset 0 0 0 0 0

Bit 6 – SECER
NVM Sector Erase Enable Control bit

Value Condition Description
1 NVMADR points to PFM Immediately following the sector erase unlock sequence, perform a

sector erase operation. Stays set until operation is complete.
Cannot be cleared by software.

0 NVMADR points to PFM NVM sector erase operation is complete and inactive.

Bit 5 – SECWR
NVM Sector Write Enable Control bit

Value Condition Description
1 NVMADR points to PFM or

CONFIG
Immediately following the sector write unlock sequence,
initiates the PFM sector write operation. Stays set until the
write is complete. Cannot be cleared by software.

0 NVMADR points to PFM or
CONFIG

NVM sector write operation is complete and inactive.

Bit 4 – WR
NVM Write Control bit

Value Condition Description
1 NVMADR points to

DFM
Immediately following the DFM write unlock sequence, initiates a
DFM byte erase/write sequence using data in the NVMDATL register.
Stays set until the operation is complete. Cannot be cleared by
software.

1 NVMADR points to
PFM

Immediately following the PFM write unlock sequence, initiates an
NVM word write sequence using data in the NVMDATH:L register
pair. Stays set until the operation is complete. Cannot be cleared by
software.

0 NVMADR points to
PFM or DFM

NVM byte/word write operation is complete and inactive.

Bit 1 – SECRD
PFM Sector Read Enable Control bit

 PIC18F24/25Q10
(NVM) Nonvolatile Memory Control

© 2018 Microchip Technology Inc. Datasheet Preliminary DS40001945B-page 172

17.8 Register Summary - PPS

Address Name Bit Pos.

0x0E9B PPSLOCK 7:0 PPSLOCKED

0x0E9C INT0PPS 7:0 PORT PIN[2:0]

0x0E9D INT1PPS 7:0 PORT PIN[2:0]

0x0E9E INT2PPS 7:0 PORT PIN[2:0]

0x0E9F T0CKIPPS 7:0 PORT PIN[2:0]

0x0EA0 T1CKIPPS 7:0 PORT[1:0] PIN[2:0]

0x0EA1 T1GPPS 7:0 PORT[1:0] PIN[2:0]

0x0EA2 T3CKIPPS 7:0 PORT[1:0] PIN[2:0]

0x0EA3 T3GPPS 7:0 PORT[1:0] PIN[2:0]

0x0EA4 T5CKIPPS 7:0 PORT[1:0] PIN[2:0]

0x0EA5 T5GPPS 7:0 PORT[1:0] PIN[2:0]

0x0EA6 T2INPPS 7:0 PORT[1:0] PIN[2:0]

0x0EA7 T4INPPS 7:0 PORT[1:0] PIN[2:0]

0x0EA8 T6INPPS 7:0 PORT[1:0] PIN[2:0]

0x0EA9 ADACTPPS 7:0 PORT[1:0] PIN[2:0]

0x0EAA CCP1PPS 7:0 PORT[1:0] PIN[2:0]

0x0EAB CCP2PPS 7:0 PORT[1:0] PIN[2:0]

0x0EAC CWG1PPS 7:0 PORT[1:0] PIN[2:0]

0x0EAD MDCARLPPS 7:0 PORT[1:0] PIN[2:0]

0x0EAE MDCARHPPS 7:0 PORT[1:0] PIN[2:0]

0x0EAF MDSRCPPS 7:0 PORT[1:0] PIN[2:0]

0x0EB0 RX1PPS 7:0 PORT[1:0] PIN[2:0]

0x0EB1 CK1PPS 7:0 PORT[1:0] PIN[2:0]

0x0EB2 SSP1CLKPPS 7:0 PORT[1:0] PIN[2:0]

0x0EB3 SSP1DATPPS 7:0 PORT[1:0] PIN[2:0]

0x0EB4 SSP1SSPPS 7:0 PORT[1:0] PIN[2:0]

0x0EB5

...

0x0EE1

Reserved

0x0EE2 RA0PPS 7:0 PPS[4:0]

0x0EE3 RA1PPS 7:0 PPS[4:0]

0x0EE4 RA2PPS 7:0 PPS[4:0]

0x0EE5 RA3PPS 7:0 PPS[4:0]

0x0EE6 RA4PPS 7:0 PPS[4:0]

0x0EE7 RA5PPS 7:0 PPS[4:0]

0x0EE8 RA6PPS 7:0 PPS[4:0]

0x0EE9 RA7PPS 7:0 PPS[4:0]

0x0EEA RB0PPS 7:0 PPS[4:0]

0x0EEB RB1PPS 7:0 PPS[4:0]

0x0EEC RB2PPS 7:0 PPS[4:0]

0x0EED RB3PPS 7:0 PPS[4:0]

0x0EEE RB4PPS 7:0 PPS[4:0]

0x0EEF RB5PPS 7:0 PPS[4:0]

 PIC18F24/25Q10
(PPS) Peripheral Pin Select Module

© 2018 Microchip Technology Inc. Datasheet Preliminary DS40001945B-page 290

18.1 Timer0 Operation
Timer0 can operate as either an 8-bit or 16-bit timer. The mode is selected with the T016BIT bit.

18.1.1 8-bit Mode
In this mode Timer0 increments on the rising edge of the selected clock source. A prescaler on the clock
input gives several prescale options (see prescaler control bits, T0CKPS).

In this mode as shown in Figure 18-1, a buffered version of TMR0H is maintained. This is compared with
the value of TMR0L on each cycle of the selected clock source. When the two values match, the following
events occur:

• TMR0L is reset
• The contents of TMR0H are copied to the TMR0H buffer for next comparison

18.1.2 16-Bit Mode
In this mode Timer0 increments on the rising edge of the selected clock source. A prescaler on the clock
input gives several prescale options (see prescaler control bits, T0CKPS).

In this mode TMR0H:TMR0L form the 16-bit timer value. As shown in Figure 18-1, read and write of the
TMR0H register are buffered. TMR0H register is updated with the contents of the high byte of Timer0
during a read of TMR0L register. Similarly, a write to the high byte of Timer0 takes place through the
TMR0H buffer register. The high byte is updated with the contents of TMR0H register when a write occurs
to TMR0L register. This allows all 16 bits of Timer0 to be read and written at the same time.

Timer0 rolls over to 0x0000 on incrementing past 0xFFFF. This makes the timer free running. TMR0L/H
registers cannot be reloaded in this mode once started.

18.2 Clock Selection
Timer0 has several options for clock source selections, option to operate synchronously/asynchronously
and a programmable prescaler.

18.2.1 Clock Source Selection
The T0CS bits are used to select the clock source for Timer0. The possible clock sources are listed in the
table below.

Table 18-1. Timer 0 Clock Source Selections

T0CS Clock Source

111 Reserved

110 Reserved

101 SOSC

100 LFINTOSC

011 HFINTOSC

010 Fosc/4

001 Pin selected by T0CKIPPS (Inverted)

000 Pin selected by T0CKIPPS (Non-inverted)

 PIC18F24/25Q10
Timer0 Module

© 2018 Microchip Technology Inc. Datasheet Preliminary DS40001945B-page 296

19.7.4 Timer1 Gate Single-Pulse Mode
When Timer1 Gate Single-Pulse mode is enabled, it is possible to capture a single-pulse gate event.
Timer1 Gate Single-Pulse mode is first enabled by setting the 19.14.2.4 GSPM bit. Next, the 19.14.2.5
GGO/DONE bit must be set. The Timer1 will be fully enabled on the next incrementing edge. On the next
trailing edge of the pulse, the GGO/DONE bit will automatically be cleared. No other gate events will be
allowed to increment Timer1 until the GGO/DONE bit is once again set in software.

Clearing the GSPM bit will also clear the GGO/DONE bit. See figure below for timing details.

Enabling the Toggle mode and the Single-Pulse mode simultaneously will permit both sections to work
together. This allows the cycle times on the Timer1 gate source to be measured. See figure below for
timing details.

Figure 19-6. TIMER1 GATE SINGLE-PULSE MODE

TMRxGE

TxGPOL

TxG_IN

TxCKI

TxGVAL

N N + 1 N + 2

TxGSPM

TxGGO/
DONE

Set by software
Cleared by hardware on
falling edge of TxGVAL

Set by hardware on
falling edge of TxGVAL

Cleared by software
Cleared by
software TMRxGIF

Counting enabled on
rising edge of TxG

TIMER1/3/5/7

Rev. 30-000139A
5/25/2017

 PIC18F24/25Q10
Timer1 Module with Gate Control

© 2018 Microchip Technology Inc. Datasheet Preliminary DS40001945B-page 312

21.6.4 CCPTMRS

Name:  CCPTMRS
Address:  0xFAD

CCP Timers Control Register

Bit 7 6 5 4 3 2 1 0
 P4TSEL[1:0] P3TSEL[1:0] C2TSEL[1:0] C1TSEL[1:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 1 0 1 0 1 0 1

Bits 4:5, 6:7 – PnTSEL PWMn Timer Selection bits

Value Description
11 PWMn based on Timer6
10 PWMn based on Timer4
01 PWMn based on Timer2
00 Reserved

Bits 0:1, 2:3 – CnTSEL CCPn Timer Selection bits

Value Description
11 CCPn is based off Timer5 in Capture/Compare mode and Timer6 in PWM mode
10 CCPn is based off Timer3 in Capture/Compare mode and Timer4 in PWM mode
01 CCPn is based off Timer1 in Capture/Compare mode and Timer2 in PWM mode
00 Reserved

 PIC18F24/25Q10
Capture/Compare/PWM Module

© 2018 Microchip Technology Inc. Datasheet Preliminary DS40001945B-page 364

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early
(Figure 26-35). If, however, a ‘1’ is sampled on the SDA pin, the SDA pin is asserted low at the end of the
BRG count. The Baud Rate Generator is then reloaded and counts down to zero; if the SCL pin is
sampled as ‘0’ during this time, a bus collision does not occur. At the end of the BRG count, the SCL pin
is asserted low.

Figure 26-35. BRG Reset Due to SDA Arbitration During Start Condition

SDA

SCL

SEN

Set S
Less than TBRG TBRG

SDA = 0, SCL = 1

BCLxIF

S

SSPxIF

S

Interrupts cleared
by software set SSPxIF

SDA = 0, SCL = 1,

SCL pulled low after BRG
time out

Set SSPxIF

’0’

SDA pulled low by other master.
Reset BRG and assert SDA.

Set SEN, enable Start
sequence if SDA = 1, SCL = 1

Rev. 30-000045A
4/10/2017

Important:  The reason that bus collision is not a factor during a Start condition is that no two
bus masters can assert a Start condition at the exact same time. Therefore, one master will
always assert SDA before the other. This condition does not cause a bus collision because the
two masters must be allowed to arbitrate the first address following the Start condition. If the
address is the same, arbitration must be allowed to continue into the data portion, Repeated
Start or Stop conditions.

26.6.13.2 Bus Collision During a Repeated Start Condition
During a Repeated Start condition, a bus collision occurs if:

1. A low level is sampled on SDA when SCL goes from low level to high level (Case 1).
2. SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a

data ‘1’ (Case 2).

When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPxADD and
counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data ‘0’, Figure
26-36). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low
before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the
same time.

 PIC18F24/25Q10
(MSSP) Master Synchronous Serial Port Module

© 2018 Microchip Technology Inc. Datasheet Preliminary DS40001945B-page 473

26.9.5 SSPxBUF

Name:  SSPxBUF
Address:  0x0F91

MSSP Data Buffer Register

Bit 7 6 5 4 3 2 1 0
 BUF[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset x x x x x x x x

Bits 7:0 – BUF[7:0] MSSP Input and Output Data Buffer bits

 PIC18F24/25Q10
(MSSP) Master Synchronous Serial Port Module

© 2018 Microchip Technology Inc. Datasheet Preliminary DS40001945B-page 486

Note:  If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the
receiver to function.

27.3.1.6 Receive Overrun Error
The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in
its entirety, is received before RCxREG is read to access the FIFO. When this happens the OERR bit of
the RCxSTA register is set. Previous data in the FIFO will not be overwritten. The two characters in the
FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The
OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the
SREN bit is set and CREN is clear then the error is cleared by reading RCxREG. If the overrun occurred
when the CREN bit is set then the error condition is cleared by either clearing the CREN bit of the
RCxSTA register or by clearing the SPEN bit which resets the EUSART.

27.3.1.7 Receiving 9-Bit Characters
The EUSART supports 9-bit character reception. When the RX9 bit of the RCxSTA register is set the
EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCxSTA
register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When
reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight
Least Significant bits from the RCxREG.

27.3.1.8 Synchronous Master Reception Setup
1. Initialize the SPxBRGH:SPxBRGL register pair and set or clear the BRG16 bit, as required, to

achieve the desired baud rate.
2. Select the receive input pin by writing the appropriate values to the RxyPPS register and RXxPPS

register. Both selections should enable the same pin.
3. Select the clock output pin by writing the appropriate values to the RxyPPS register and CKxPPS

register. Both selections should enable the same pin.
4. Clear the ANSEL bit for the RXx pin (if applicable).
5. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
6. Ensure bits CREN and SREN are clear.
7. If interrupts are desired, set the RCxIE bit of the PIEx register and the GIE and PEIE bits of the

INTCON register.
8. If 9-bit reception is desired, set bit RX9.
9. Start reception by setting the SREN bit or for continuous reception, set the CREN bit.
10. Interrupt flag bit RCxIF will be set when reception of a character is complete. An interrupt will be

generated if the enable bit RCxIE was set.
11. Read the RCxSTA register to get the ninth bit (if enabled) and determine if any error occurred

during reception.
12. Read the 8-bit received data by reading the RCxREG register.
13. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCxSTA register or

by clearing the SPEN bit which resets the EUSART.

 PIC18F24/25Q10
(EUSART) Enhanced Universal Synchronous Asyn...

© 2018 Microchip Technology Inc. Datasheet Preliminary DS40001945B-page 509

27.6.4 SPxBRG

Name:  SPxBRG
Address:  0x0F9A

Baud Rate Determination Register

Bit 15 14 13 12 11 10 9 8
 SPBRGH[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
 SPBRGL[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 15:8 – SPBRGH[7:0] Baud Rate High Byte Register

Bits 7:0 – SPBRGL[7:0] Baud Rate Low Byte Register

 PIC18F24/25Q10
(EUSART) Enhanced Universal Synchronous Asyn...

© 2018 Microchip Technology Inc. Datasheet Preliminary DS40001945B-page 521

36. Instruction Set Summary
PIC18F24/25Q10 devices incorporate the standard set of 75 PIC18 core instructions, as well as an
extended set of eight new instructions, for the optimization of code that is recursive or that utilizes a
software stack. The extended set is discussed later in this section.

36.1 Standard Instruction Set
The standard PIC18 instruction set adds many enhancements to the previous PIC® MCU instruction sets,
while maintaining an easy migration from these PIC® MCU instruction sets. Most instructions are a single
program memory word (16 bits), but there are four instructions that require two program memory
locations.

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type
and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

• Byte-oriented operations
• Bit-oriented operations
• Literal operations
• Control operations

The PIC18 instruction set summary in Table 36-2 lists byte-oriented, bit-oriented, literal and control
operations. Table 36-1 shows the opcode field descriptions.

Most byte-oriented instructions have three operands:

1. The file register (specified by ‘f’)
2. The destination of the result (specified by ‘d’)
3. The accessed memory (specified by ‘a’)

The file register designator ‘f’ specifies which file register is to be used by the instruction. The destination
designator ‘d’ specifies where the result of the operation is to be placed. If ‘d’ is zero, the result is placed
in the WREG register. If ‘d’ is one, the result is placed in the file register specified in the instruction.

All bit-oriented instructions have three operands:

1. The file register (specified by ‘f’)
2. The bit in the file register (specified by ‘b’)
3. The accessed memory (specified by ‘a’)

The bit field designator ‘b’ selects the number of the bit affected by the operation, while the file register
designator ‘f’ represents the number of the file in which the bit is located.

The literal instructions may use some of the following operands:

• A literal value to be loaded into a file register (specified by ‘k’)
• The desired FSR register to load the literal value into (specified by ‘f’)
• No operand required

(specified by ‘—’)

The control instructions may use some of the following operands:

• A program memory address (specified by ‘n’)

 PIC18F24/25Q10
Instruction Set Summary

© 2018 Microchip Technology Inc. Datasheet Preliminary DS40001945B-page 618

NEGF Negate f

Syntax: NEGF f {,a}

Operands: 0 ≤ f ≤ 255
a ∈ [0,1]

Operation: (f) + 1 → f

Status
Affected:

N, OV, C, DC, Z

Encoding: 0110 110a ffff ffff

Description: Location ‘f’ is negated using two’s
complement. The result is placed in the data memory location ‘f’.
If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR
bank.

If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in
Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See 36.2.3 Byte-
Oriented and
Bit-Oriented Instructions in Indexed Literal Offset Mode for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process Data Write
register ‘f’

Example: NEGF REG, 1

Before Instruction
REG = 0011 1010 [3Ah]

After Instruction

REG = 1100 0110 [C6h]

NOP No Operation

Syntax: NOP

Operands: None

Operation: No operation

Status Affected: None

Encoding: 0000
1111

0000
xxxx

0000
xxxx

0000
xxxx

 PIC18F24/25Q10
Instruction Set Summary

© 2018 Microchip Technology Inc. Datasheet Preliminary DS40001945B-page 672

REG = F5h (1111 0101)

; [2’s comp]

W = 0Eh (0000 1110)

C = 0

Z = 0

N = 1 ; result is negative

SWAPF Swap f

Syntax: SWAPF f {,d {,a}}

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]

a ∈ [0,1]

Operation: (f<3:0>) → dest<7:4>,
(f<7:4>) → dest<3:0>

Status
Affected:

None

Encoding: 0011 10da ffff ffff

Description: The upper and lower nibbles of register ‘f’ are exchanged. If ‘d’ is ‘0’, the result is placed
in W. If ‘d’ is ‘1’, the result is placed in register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is selected. If ‘a’ is ‘1’, the BSR is used to select the GPR
bank.

If ‘a’ is ‘0’ and the extended instruction set is enabled, this instruction operates in
Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See 36.2.3 Byte-
Oriented and
Bit-Oriented Instructions in Indexed Literal Offset Mode for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process Data Write to
destination

Example: SWAPF REG, 1, 0

Before Instruction
REG = 53h

After Instruction

 PIC18F24/25Q10
Instruction Set Summary

© 2018 Microchip Technology Inc. Datasheet Preliminary DS40001945B-page 691

PUSHL Store Literal at FSR2, Decrement FSR2

Description: The 8-bit literal ‘k’ is written to the data memory address specified by FSR2. FSR2 is
decremented by 1 after the operation.
This instruction allows users to push values onto a software stack.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read ‘k’ Process
data

Write to
destination

Example: PUSHL 08h

Before Instruction
FSR2H:FSR2L = 01ECh

Memory (01ECh) = 00h

After Instruction

FSR2H:FSR2L = 01EBh

Memory (01ECh) = 08h

SUBFSR Subtract Literal from FSR

Syntax: SUBFSR f, k

Operands: 0 ≤ k ≤ 63

f ∈ [0, 1, 2]

Operation: FSR(f) – k → FSRf

Status Affected: None

Encoding: 1110 1001 ffkk kkkk

Description: The 6-bit literal ‘k’ is subtracted from the contents of the FSR specified by ‘f’.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process Data Write to
destination

 PIC18F24/25Q10
Instruction Set Summary

© 2018 Microchip Technology Inc. Datasheet Preliminary DS40001945B-page 706

• Conditional assembly for multipurpose
source files

• Directives that allow complete control over the assembly process

37.4 MPLINK Object Linker/MPLIB Object Librarian
The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link
relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code.
When a routine from a library is called from a source file, only the modules that contain that routine will be
linked in with the application. This allows large libraries to be used efficiently in many different
applications.

The object linker/library features include:

• Efficient linking of single libraries instead of many smaller files
• Enhanced code maintainability by grouping related modules together
• Flexible creation of libraries with easy module listing, replacement, deletion and extraction

37.5 MPLAB Assembler, Linker and Librarian for Various Device Families
MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24,
PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The
assembler generates relocatable object files that can then be archived or linked with other relocatable
object files and archives to create an executable file. Notable features of the assembler include:

• Support for the entire device instruction set
• Support for fixed-point and floating-point data
• Command-line interface
• Rich directive set
• Flexible macro language
• MPLAB X IDE compatibility

37.6 MPLAB X SIM Software Simulator
The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by
simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data
areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller.
Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display
extend the power of the simulator to record and track program execution, actions on I/O, most peripherals
and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC
Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to
develop and debug code outside of the hardware laboratory environment, making it an excellent,
economical software development tool.

 PIC18F24/25Q10
Development Support

© 2018 Microchip Technology Inc. Datasheet Preliminary DS40001945B-page 715

