

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	H8/300H
Core Size	16-Bit
Speed	20MHz
Connectivity	I²C, SCI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	47
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	64-BQFP
Supplier Device Package	64-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df36074ghv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4 **Pin Assignment**

Figures 1.3 and 1.4 show Pin Assignment (Top View). Table 1.6 lists the Pin Name Information by Pin Number.

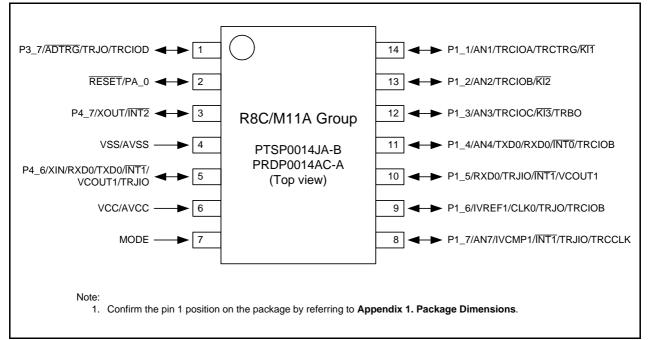
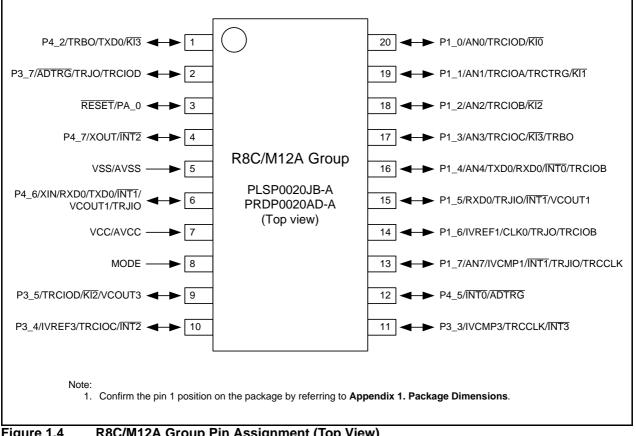



Figure 1.3 R8C/M11A Group Pin Assignment (Top View)

R8C/M12A Group Pin Assignment (Top View) Figure 1.4

WDR Bit (Watchdog timer reset detect flag)

This flag indicates that a reset has been generated by the watchdog timer.

[Condition for setting to 0]

- When a software reset, hardware reset, power-on reset, or voltage monitor 0 reset occurs.
- [Condition for setting to 1]
- When a watchdog timer reset occurs.

8. Watchdog Timer

The watchdog timer is a function for detecting program malfunctions. Using this function is recommended, since it can improve system reliability.

The watchdog timer also has a function that can be used as a periodic timer.

8.1 Overview

The watchdog timer has a 14-bit down counter, and count source protection mode can be enabled or disabled. Table 8.1 lists the Watchdog Timer Specifications.

For details on the watchdog timer reset, see 6.3.5 Watchdog Timer Reset.

For details on the periodic timer, see **8.3.4 Periodic Timer Function**.

Figure 8.1 shows the Watchdog Timer Block Diagram.

Item	Count Source Protection Mode Disabled	Count Source Protection Mode Enabled
Count source	CPU clock or low-speed on-chip oscillator clock (1/16)	Low-speed on-chip oscillator clock
Count operation	Decrement	
Count start condition	Either of the following can be selected: • The count is automatically started after a res • The count is started by writing to the WDTS	
Count stop conditions	When wait mode or stop mode is entered while the count source is the CPU clock	None
Watchdog timer initialization conditions	 Reset 00h and then FFh are written to the WDTR r (when a refresh acceptance period is set) Underflow 	register during the refresh acceptance period
Operation at underflow	Watchdog timer interrupt or watchdog timer reset	Watchdog timer reset
Selectable functions	 Selection of the count source Selected by bits WDTC6 to WDTC7 in the N Count source protection mode Whether count source protection mode is selected by the CSPROINI bit in the OFS If count source protection mode is disable enabled or disabled is selected by the CS Start or stop of the watchdog timer after a re Selected by the WDTON bit in the OFS reg Initial value of the watchdog timer (underflow Selected by bits WDTUFS0 to WDTUFS1 in Refresh acceptance period for the watchdog Selected by bits WDTRCS0 to WDTRCS1 in 	enabled or disabled after a reset can be register. d, whether count source protection mode is PRO bit in the CSPR register. eset ister. v period) n the OFS2 register. g timer

Table 8.1 Watchdog Timer Specifications

8.3.4 Periodic Timer Function

The count range is determined by the underflow period setting (bits WDTUFS0 to WDTUFS1 in the OFS2 register) and the refresh acceptance period setting (bits WDTRCS0 to WDTRCS1 in the OFS2 register). The periodic timer cannot be used in stop mode.

Table 8.5 lists the Periodic Timer Settings. Figure 8.3 shows the Timing of Periodic Timer Function.

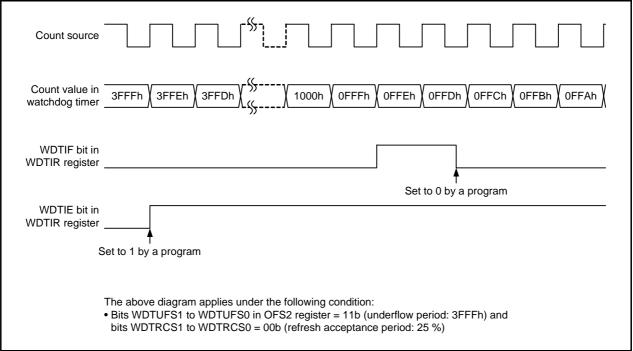

When the periodic timer runs beyond the count range in Table 8.5, the WDTIF bit in the WDTIR register is set to 1 (periodic timer interrupt requested).

Table 8.5	Periodic Timer Settings
-----------	-------------------------

Initial Value Set by Bits WDTUFS1 to WDTUFS0 in OFS2 Register	Refresh Range Set by Bits WDTRCS1 to WDTRCS0 in OFS2 Register ⁽¹⁾	Range Counted by Periodic Timer
	10b	$3FFFh \rightarrow 2FFFh$
11b	01b	$3FFFh \rightarrow 1FFFh$
	00b	$3FFFh \rightarrow 0FFFh$
	10b	$1FFFh \rightarrow 17FFh$
10b	01b	$1FFFh \rightarrow 0FFFh$
	00b	$1FFFh \rightarrow 07FFh$
	10b	$0FFFh \rightarrow 0BFFh$
01b	01b	$0FFFh \rightarrow 07FFh$
	00b	$0FFFh \rightarrow 03FFh$
	10b	$03FFh \rightarrow 02FFh$
00b	01b	$03FFh \rightarrow 01FFh$
	00b	$03FFh \rightarrow 00FFh$

Note:

1. When bits WDTRCS1 to WDTRCS0 in the OFS2 register is 11b (100 %), set the WDTIE bit to 0 (periodic timer interrupt disabled).

10.5.9 Reducing Internal Power Consumption

When entering wait mode using low-speed on-chip clock mode or low-speed on-chip oscillator mode, internal power consumption can be reduced using the LPE bit in the VCA2 register. To enable low internal power consumption using the LPE bit, follow **Figure 10.5 Procedure for Reducing Internal Power Consumption by Using LPE Bit**.

RENESAS

Interrupt	Description
Undefined instruction interrupt	An unidentified instruction interrupt is generated when the UND instruction is executed.
Overflow interrupt	An overflow interrupt is generated when the O flag is 1 (arithmetic operation overflow) and the INTO instruction is executed. Instructions that change the O flag are as follows: ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, and SUB.
BRK instruction interrupt	A BRK interrupt is generated when the BRK instruction is executed.
INT instruction interrupt	An INT instruction interrupt is generated when the INT instruction is executed. Software interrupt numbers the INT instruction can specify are 0 to 63. The number is assigned to each peripheral function interrupt. When the INT instruction is executed specifying the number, the peripheral function interrupt with the same number can be executed. For software interrupt numbers 0 to 31, the U flag is saved on the stack during instruction execution, and the U flag is set to 0 (ISP) before the interrupt sequence is executed. The U flag is restored from the stack when the MCU returns from the interrupt numbers 32 to 63, the U flag does not change state during instruction execution, and the selected SP is used.
Watchdog timer interrupt	This interrupt is generated by the watchdog timer. For details, see 8. Watchdog Timer .
Oscillation stop detection interrupt	This interrupt is generated by the oscillation stop detection function. For details on the oscillation stop detection function, see 9. Clock Generation Circuit .
Voltage monitor 1 interrupt	This interrupt is generated by the voltage detection circuit. For details on the voltage detection circuit, see 7. Voltage Detection Circuit .
Single-step interrupt	Do not use this interrupt. It is provided exclusively for use in development tools.
Address match interrupt	When one of the AIENi0 bit (i = 0 or 1) in the AIENi register is 1 (enabled), an address match interrupt is generated immediately before executing the instruction that is stored at an address indicated by the corresponding AIADRi register (i = 0 or 1). For details on the address match interrupt, see 11.7 Address Match Interrupt .
Peripheral function interrupt	A peripheral function interrupt is generated by a peripheral function in the MCU. For the interrupt sources for the corresponding peripheral function interrupt, see the interrupts and the vector table addresses as listed in Table 11.6 Relocatable Vector Table . For details on the peripheral functions, see the descriptions of individual peripheral functions.

 Table 11.2
 Descriptions of Interrupts

11.2.4 Key Input Enable Register (KIEN)

Address 0003Eh									
Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Symbol	KI3PL	KI3EN	KI2PL	KI2EN	KI1PL	KI1EN	KI0PL	KI0EN	
After Reset	0	0	0	0	0	0	0	0	

Bit	Symbol	Bit Name	Function	R/W
b0	KI0EN	KI0 input enable bit	0: Disabled 1: Enabled	R/W
b1	KI0PL	KIO input edge select bit ⁽¹⁾	0: Falling edge 1: Rising edge	R/W
b2	KI1EN	KI1 input enable bit	0: Disabled 1: Enabled	R/W
b3	KI1PL	KI1 input edge select bit ⁽¹⁾	0: Falling edge 1: Rising edge	R/W
b4	KI2EN	KI2 input enable bit	0: Disabled 1: Enabled	R/W
b5	KI2PL	KI2 input edge select bit ⁽¹⁾	0: Falling edge 1: Rising edge	R/W
b6	KI3EN	KI3 input enable bit	0: Disabled 1: Enabled	R/W
b7	KI3PL	KI3 input edge select bit ⁽¹⁾	0: Falling edge 1: Rising edge	R/W

Note:

1. Changing the bits KliPL or KliEN (i = 0 to 3) may set the IRKI bit in the IRR3 register to 1 (interrupt requested). See 11.9.4 Rewriting Registers PMLi, PMHi (i = 1, 3, or 4), ISCR0, INTEN, and KIEN.

Interrupt Monitor Flag Register 2 (IRR2) 11.2.8

Ado	dress 00	052h								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Sy	/mbol	_			—	IRCMP3	3 IRCMP1			
After F	Reset	0	0	0	0	0	0	0	0	
	<u> </u>									
Bit	Symbo	l.		Bit Nam	е			Func	tion	R/W
b0	—	Res	erved				The read value is 0.			R
b1	—									
b2	IRCMP	1 Con	nparator B1	interrupt re	equest mo	•	0: No interru		ed	R
b3	IRCMP:	3 Con	nparator B3	interrupt re	equest mo	onitor flag	1: Interrupt r	equested		R
b4	—	Noth	Nothing is assigned. The write value must be 0. The read value is 0.							—
b5	—									
b6	—									
b7	—									

The IRR2 register is the monitor flag register for comparator B1 and comparator B3 interrupt requests. See 11.4.2.1 Registers IRR0 to IRR2 for the relation between interrupt monitor flag bits and peripheral function interrupts.

13.3.4 Timer RJ Mode Register (TRJMR)

Address	Address 000DCh									
Bit	b7	b6	b5	b4	b3	b2	b1	b0		
Symbol	TCKCUT	TCK2	TCK1	TCK0	TEDGPL	TMOD2	TMOD1	TMOD0		
After Reset	0	0	0	0	0	0	0	0		

Bit	Symbol	Bit Name	Function	R/W
b0	TMOD0	Timer RJ operating mode select bits	b2 b1 b0	R/W
b1	TMOD1		0 0 0: Timer mode 0 0 1: Pulse output mode	R/W
b2	TMOD2		0 1 0: Event counter mode 0 1 1: Pulse width measurement mode 1 0 0: Pulse period measurement mode Other than the above: Do not set.	R/W
b3	TEDGPL	TRJIO edge polarity select bit	0: One-way edge 1: Two-way edge	R/W
b4	TCK0	Timer RJ count source select bits (1, 2)	b6 b5 b4 0 0 0; f1	R/W
b5	TCK1		0.0.1; f8	R/W
b6	TCK2		0 1 0: fHOCO 0 1 1: f2 Other than the above: Do not set.	R/W
b7	TCKCUT	Timer RJ count source cutoff bit ⁽²⁾	0: Count source is supplied 1: Count source is cut off	R/W

Notes:

1. When event counter mode is selected, the external input (TRJIO) is selected as the count source regardless of the setting of bits TCK0 to TCK2.

2. Do not switch or cut off the count source during count operation. When switching or cutting off the count source, set the TSTART bit in the TRJCR register to 0 (count is stopped) and the TCSTF bit to 0 (count is stopped) to stop the timer count.

Select the operating mode when the count is stopped (the TSTART bit is 0 and the TCSTF bit is 0). When a value is written to the TRJMR register, the toggle flip-flop is initialized.

13.3.5 Timer RJ Event Select Register (TRJISR)

Address 000DDh								
Bit	b7	b6	b5	b4	b3	b2	b1	b0
Symbol					—	RCCPSEL2	RCCPSEL1	RCCPSEL0
After Reset	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Function	R/W
b0	RCCPSEL0	Timer RC output signal select	0 0: TRCIOD	R/W
b1	RCCPSEL1	bits	0 1: TRCIOC 1 0: TRCIOB	R/W
b2	RCCPSEL2	Timer RC output signal inversion bit	 1 1: TRCIOA 0: Low-level period of timer RC output signal is counted 1: High-level period of timer RC output signal is counted 	R/W
b3			value must be 0. The read value is 0.	
03		Nothing is assigned. The write	value must be 0. The feat value is 0.	_
b4	—			
b5	—			
b6	—			
b7	_			

,	Write 01h to TRBPRE register and 25h to TRBPR register		
Count source	After the value is written, it is written to the reload register by the third count source		
TRBPRE · reload register	Previous value (01h)		
······································	Reloaded by the next count source		
Prescaler	(07h) 06h) 05h) 04h) 01h) 00h) 0	01h 00h	(01h
Prescaler underflow			1
	After the value is written, it is written to the read at the first underflow	reload regis	ter
TRBPR reload register	Previous value New value (25h)		
	Reloaded at the second under	erflow	
Counter	03h 02h 25h 24h		√
	RBMR register is 1 (write to reload register only) Write 01h to TRBPRE register and 25h to TRBPR register	23h	<u>х</u>
	RBMR register is 1 (write to reload register only))
,	RBMR register is 1 (write to reload register only) Write 01h to TRBPRE register and 25h to TRBPR register)
Count source	RBMR register is 1 (write to reload register only) Write 01h to TRBPRE register and 25h to TRBPR register)
Count source	RBMR register is 1 (write to reload register only) Write 01h to TRBPRE register and 25h to TRBPR register	23h)()())(01h)
Count source TRBPRE reload register	RBMR register is 1 (write to reload register only) Write 01h to TRBPRE register and 25h to TRBPR register) (01h)
Count source TRBPRE reload register	RBMR register is 1 (write to reload register only) Write 01h to TRBPRE register and 25h to TRBPR register)) 01h)
Count source TRBPRE reload register Prescaler	RBMR register is 1 (write to reload register only) Write 01h to TRBPRE register and 25h to TRBPR register After the value is written, it is written to the reload register by the third count source Previous value New value (01h) Reloaded at underflow (07h) 06h 05h 04h 03h 02h 01h 00h 01h 00h 01h 00h 0 After the value is written, it is v	01h (00h))]
Count source TRBPRE ⁻ reload register Prescaler underflow TRBPR ⁻	RBMR register is 1 (write to reload register only) Write 01h to TRBPRE register and 25h to TRBPR register After the value is written, it is written to the reload register by the third count source Previous value New value (01h) Reloaded at underflow (07h 06h 05h 04h 03h 02h 01h 00h 01h 00h 01h 00h 0	01h (00h)() ()(01h) ()(1h)
Count source TRBPRE reload register Prescaler underflow	RBMR register is 1 (write to reload register only) Write 01h to TRBPRE register and 25h to TRBPR register After the value is written, it is written to the reload register by the third count source Previous value New value (01h) Reloaded at underflow O7h 06h 05h 04h 03h 02h 01h 00h 01h 00h 01h 00h 0 After the value is written, it is written to the reload register the reload register the reload register at the first underflow	01h (00h	
Count source TRBPRE ⁻ reload register Prescaler underflow TRBPR ⁻	RBMR register is 1 (write to reload register only) Write 01h to TRBPRE register and 25h to TRBPR register After the value is written, it is written to the reload register by the third count source Previous value New value (01h) Reloaded at underflow O7h 06h 05h 04h 03h 02h 01h 00h 01h 00h 01h 00h 0 After the value is written, it is written to the reload register the reload register the reload register at the first underflow	01h (00h	

(Timer Mode or Programmable One-Shot Generation Mode)

RENESAS

15. Timer RC

Timer RC is a 16-bit timer that provides output compare and input capture functions and can count external events. It can be used as a multifunction timer with various applications such as generation of pulse output with an arbitrary duty cycle using the compare match between the timer RC counter and four general registers.

15.1 Overview

Table 15.1 lists the Timer RC Specifications. Table 15.2 lists the Timer RC Functions. Figure 15.1 shows the Timer RC Block Diagram. Table 15.3 lists Timer RC Pin Configuration.

	Item		Description		
Count sources (counter input clocks)	Operating Internal clock clock		 f1, f2, f4, f8, or f32: Selected when bits CKS2 to CKS0 in the TRCCR1 register are 000b to 100b. fHOCO: Selected when bits CKS2 to CKS0 in the TRCCR1 register are 110b. 		
		External clock (external event count)	TRCCLK input: Selected when bits CKS2 to CKS0 in the TRCCR1 register are 101b.		
Pulse I/O pins			4		
General registers			 4 Can be set as output compare or input capture registers individually. Can be used as buffer registers for output compare or input capture. 		
Operating modes Timer mode			 Output compare function: Low-level, high-level, or toggle output can be performed. Input capture function: A rising edge, falling edge, or two-way edge can be detected. Counter clear function: A count period can be set. 		
	PWM mode		PWM output with up to three phases.		
	PWM2 mode		Pulse output with an arbitrary period and duty.		
Interrupt sources			 Compare match/input capture multiplexed interrupt × 4 sources Overflow interrupt 		
Others			 The initial value of the timer RC output can be set arbitrarily. A/D conversions triggered by compare matches in registers TRCGRA, TRCGRB, TRCGRC, and TRCGRD can be set. 		

Table 15.1 Timer RC Specifications

Table 15.2 Timer RC Functions

Item		Counter	I/O Pin					
		Counter	TRCIOA	TRCIOB	TRCIOC	TRCIOD		
General registers (output		Period setting	TRCGRA	TRCGRB	TRCGRC	TRCGRD		
	nput capture	with the	register	register	register	register		
multiplexe	d registers)	TRCGRA			In buffer	In buffer		
		register			operation	operation		
					Buffer register	Buffer register		
					for the TRCGRA	for the TRCGRB		
					register	register		
Counter c	ear function	Input capture/	Input capture/	—	—	—		
		compare match	compare match					
		for the TRCGRA	for the TRCGRA					
		register	register					
		TRCTRG input	—	_	_	—		
-	nction for initial	—	Available	Available	Available	Available		
output leve	əl							
Buffer ope	ration	_	Available	Available	_	—		
Compare Low-level		—	Available	Available	Available	Available		
match	output							
High-level		—	Available	Available	Available	Available		
	output							
Toggle output		—	Available	Available	Available	Available		
Input capture function		—	Available	Available	Available	Available		
PWM mode		—	—	Available	Available	Available		
PWM2 mc	de	—	—	Available	_	—		
Interrupt s	ources	Overflow	Compare match/	Compare match/	Compare match/	Compare match/		
			input capture	input capture	input capture	input capture		

16.3.1.4 Continuous Receive Mode

Continuous receive mode is selected by setting the U0RRM bit in the U0C1 register to 1 (continuous receive mode enabled). In this mode, reading the U0RB register sets the TI bit in the U0C1 register to 0 (data present in the U0TB register). When the U0RRM bit is 1, do not write dummy data to the U0TB register by a program.

16.3.1.5 Dealing with Communication Errors

If communication is aborted or a communication error occurs while transmitting or receiving in clock synchronous serial I/O mode, follow the procedure below:

- (1) Set the TE bit in the U0C1 register to 0 (transmission disabled) and the RE bit to 0 (reception disabled).
- (2) Set bits SMD2 to SMD0 in the U0MR register to 000b (serial interface disabled).
- (3) Set bits SMD2 to SMD0 in the U0MR register to 001b (clock synchronous serial I/O mode).
- (4) Set the TE bit in the U0C1 register to 1 (transmission enabled) and the RE bit to 1 (reception enabled).

17.2.4 A/D Control Register 0 (ADCON0)

Ade	dress 000	9Eh								
	Bit	b7	b6	b5	b4	b3	b2	b1	b0	
Sy	/mbol	_	—	—	—	—	—	_	ADST	
After F	Reset	0	0	0	0	0	0	0	0	
		-								
Bit	Symbol		В	lit Name				Functior	1	R/W
b0	ADST	A/D o	conversion	start bit		0: A/D co	onversion	stops		R/W
						1: A/D co	onversion	starts		
b1	-	Noth	ing is assig	gned. The v	write value	must be 0.	The read	value is 0.		_
b2	—									
b3	—									
b4	—									
b5	—									
b6	—									
b7	—									

The ADCON0 register is used to control A/D conversion operation.

ADST Bit (A/D conversion start bit)

The ADST bit is used to start or stop A/D conversion.

[Conditions for setting to 0]

- When A/D conversion is completed in one-shot mode or single sweep mode.
- When 0 is written to this bit by software. (A/D conversion stops)
- [Conditions for setting to 1]
- When 1 is written to this bit by software. (A/D conversion starts)
- When the A/D conversion start trigger enabled by the TRCADCR register is input.
- When an external trigger ($\overline{\text{ADTRG}}$) is input.

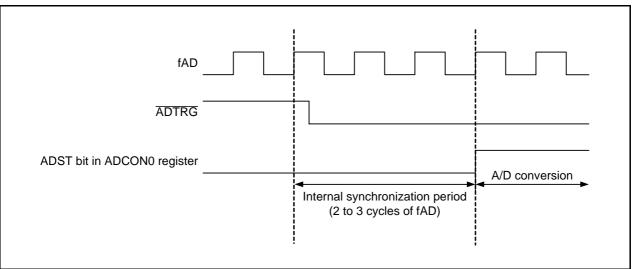
Table 17.6	A/D Conversion Tim	е
		•

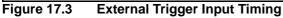
			A/	D Conversion Clo	ock	
	Symbol	f1	f2	f4	f8	fAD
Item		CKS0 = 1	CKS0 = 0	CKS0 = 1	CKS0 = 0	CKS0 = 0
		CKS	1 = 1	CKS	CKS1 = 0	
			CKS2 = 1 ⁽²⁾			
A/D conversion start delay time ⁽³⁾	tD	3	3 to 4	3 to 6	3 to 10	3
Input sampling time	tSPL	16	31	61	121	16
A/D comparison time	tCMP	25	50	100	200	25
A/D conversion time	tCONV	44	84 to 85	164 to 167	324 to 331	44
End processing time	tEND	2 to 3 cycles of fAD				

CKS0, CKS1, CKS2: Bits in ADMOD register

Notes:

1. The numerical values in the table indicate the number of system clock (f) cycles.


2. The numerical values in the table indicate the number of fAD cycles.


3. In repeat mode, single sweep mode, and repeat sweep mode, there is no delay time during the A/D conversion time (tCONV) for the second and subsequent rounds.

17.3.1.2 External Trigger Input Timing

A/D conversion can also be started by an external trigger input. When bits ADCAP1 to ADCAP0 in the ADMOD register are 11b (A/D conversion is started by external trigger (\overline{ADTRG})), an external trigger can be input to the \overline{ADTRG} pin. The ADST bit in the ADCON0 register is set to 1 (A/D conversion starts) on the rising edge of the \overline{ADTRG} input pin and A/D conversion is started. Other operations are the same as when the ADST bit in the ADCON0 register set to 1 by software.

Figure 17.3 shows the External Trigger Input Timing.

FST2 Bit (LBDATA monitor flag)

This is a read-only bit indicating the lock bit status. To confirm the lock bit status, execute the read lock bit status command and then read the FST2 bit after the FST7 bit is set to 1 (ready).

This bit is updated when the program, erase, and read lock bit status commands are generated. When the read lock bit status command is input, the FST7 bit is set to 0 (busy). When the FST7 bit is set to 1 (ready), the lock bit status is stored in the FST2 bit. The data in the FST2 bit is retained until the next command is input.

FST3 Bit (Program-suspend status flag)

This is a read-only bit indicating the suspend status. This bit is set to 1 when a program-suspend request is acknowledged and a program-suspend status is entered; otherwise it is set to 0.

FST4 Bit (Program error status flag)

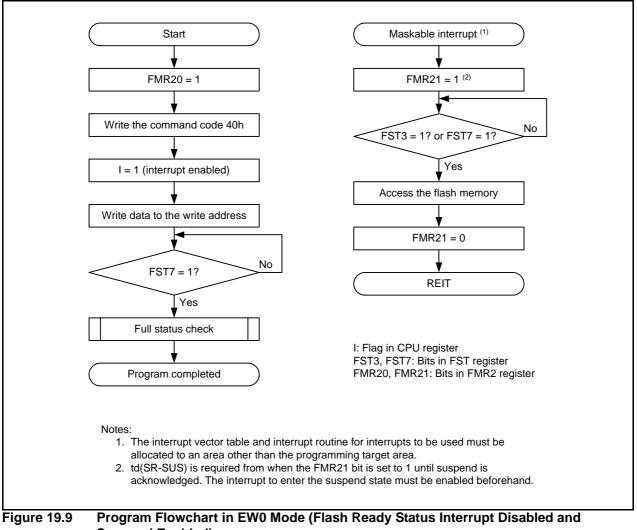
This is a read-only bit indicating the auto-programming status. The bit is set to 1 if a program error occurs; otherwise it is set to 0. For details, see the description in **19.6.7 Full Status Check**.

FST5 Bit (Erase error/blank check error status flag)

This is a read-only bit indicating the status of auto-erase or block blank check command. The bit is set to 1 if an erase error or blank check error occurs; otherwise it is set to 0. For details, see the description in **19.6.7 Full Status Check**.

FST6 Bit (Erase-suspend status flag)

This is a read-only bit indicating the suspend status. This bit is set to 1 when an erase-suspend request is acknowledged and an erase-suspend status is entered; otherwise it is set to 0.


FST7 Bit (Ready/busy status flag)

When the FST7 bit is set to 0 (busy), the flash memory is in one of the following states:

- During programming
- During erasure
- During the lock bit program
- During the read lock bit status
- During the block blank check
- During forced stop operation
- The flash memory is being stopped
- The flash memory is being activated

Otherwise, the FST7 bit is set to 1 (ready).

Suspend Enabled)

21.5.6 Setting Procedure When INTi Input Filter (i = 0 to 2) is Used for Peripheral Functions

Figure 21.3 shows the Register Setting Procedure When \overline{INTi} Input Filter (i = 0 to 2) is Used for Peripheral Functions (Timer RJ2, Timer RB2, and Timer RC).

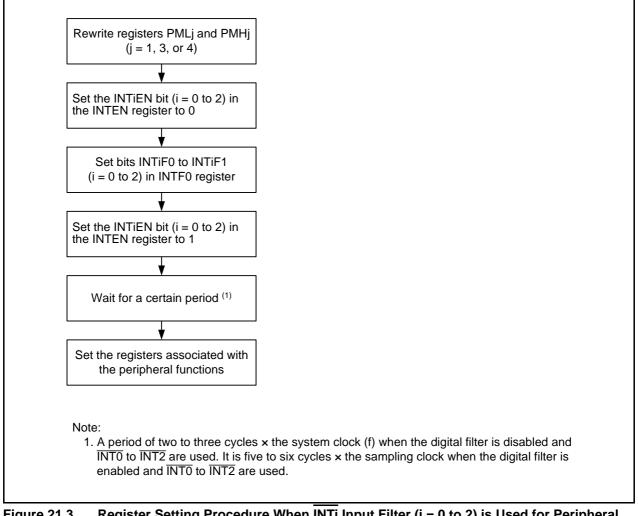
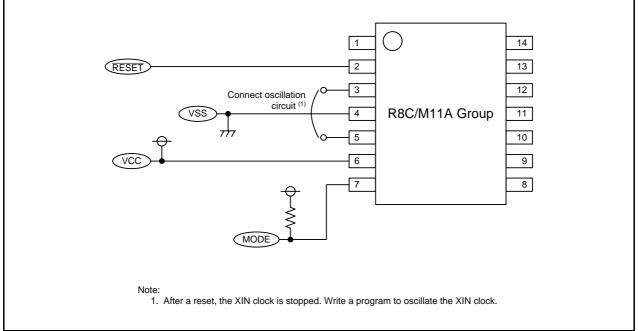
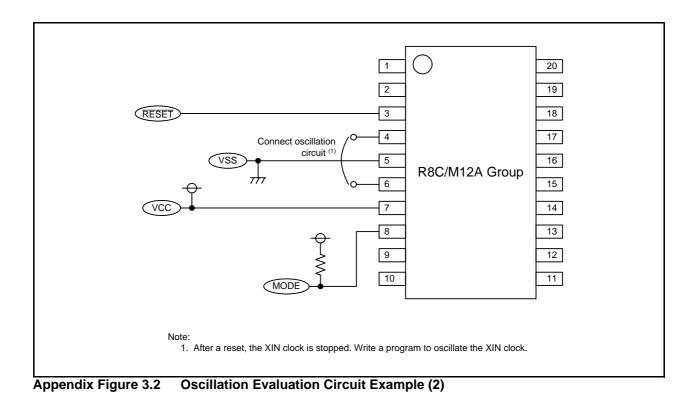



Figure 21.3 Register Setting Procedure When INTi Input Filter (i = 0 to 2) is Used for Peripheral Functions (Timer RJ2, Timer RB2, and Timer RC)



Appendix 3. Oscillation Evaluation Circuit Example

Appendix Figures 3.1 and 3.2 show Oscillation Evaluation Circuit Examples.

Appendix Figure 3.1 Oscillation Evaluation Circuit Example (1)

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renessas.com/" for the latest and detailed information.
Renesas Electronics America Inc.
2880 Scott Bouloward Samta Clara, CA 95050-2554, U.S.A.
Tel: +1408-588-6000, Fax: +1408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1905-898-5441, Fax: +11-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-182-585-100, Fax: +44-1028-585-900
Renesas Electronics Europe Limited
Trel: +44-182-585-100, Fax: +44-1028-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-11-65030, Fax: +44-1028-503-1327
Renesas Electronics (China) Co., Ltd.
Th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +49-11-55030, Fax: +48-21-18650-3127
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, A2IA Center, No.1233 Lujazul Ring Rd., Pudong District, Shanghai 200120, China
Tel: +49-11-85030, Fax: +452-2886-7898
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujazul Ring Rd., Pudong District, Shanghai 200120, China
Tel: +482-1-5877-1818, Fax: +486-21-6867-78387
Renesas Electronics Taiwan Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujazul Ring Rd., Pudong District, Shanghai 200120, China
Tel: +482-1869-9318, Fax: +485-2386-0229044
Renesas Electronics Taiwan Co., Ltd.
Unit 104, 1051, 16/F, Tower 2, Grand Century Place, 139 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2486-9318, Fax: +485-2486-921994
Renesas Electronics Singapore Pte. Ltd.
In AntowirFord Areau, #65-078-980
Renesas Electronics Singapore Pte. Ltd.
In AntowirFord Areau, #66-078-8901
Renesas Electronics Singapore Pte. Ltd.
In AntowirFord Areaus, #66-078-9805
Renesas Electronics Singapore Pte. Ltd.
In AntowirFord Areaus, #66-078-9805
Renesas Electronics Korea Co., Ltd.
In Genesas Electronics Korea Co., Ltd.
In Genesa Electronics Korea Co., Ltd.
In Genesas Electronics Korea Co., Ltd.
In Genesa Electro

© 2012 Renesas Electronics Corporation. All rights reserved. Colophon 1.1